Research Article
BibTex RIS Cite

Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.)

Year 2022, , 274 - 285, 31.10.2022
https://doi.org/10.19159/tutad.1109558

Abstract

The purpose of this study was to identify and describe members of the phytochrome-interacting factors (PIFs) gene family including the basic helix loop helix (bHLH) binding site in Phaseolus vulgaris plants, as well as to investigate their responses to salt and drought stress. Various tools of in silico approaches were used to identify five Pvul-PIF gene families in the P. vulgaris genome. This gene family contained 324 to 726 amino acids and has molecular weights ranging from 35.11 kDa to 77.67 kDa. The theoretical isoelectric points range from 6.03 (Pvul-PIF-3.3) to 8.30 (Pvul-PIF-3.2). Pvul-PIF proteins were shown to be clustered in three main groups with Arabidopsis thaliana, Populus trichocarpa, Solanum lycopersicum, Zea mays, Arachis hypogaea L., Oryza sativa, Vitis vinifera, Glycine max, and Phaseolus vulgaris species as a result of the phylogenetic study. Segmental duplication was detected between Pvul-PIF-3.2, Pvul-PIF-3.3 and Pvul-PIF-3.1 genes, Pvul-PIF-4.1 and Pvul-PIF-4.2 genes and Pvul-PIF-3.3 and Pvul-PIF-3.1 genes. When the expression patterns of the Pvul-PIF genes were examined, it was observed that they had different levels of expression under salt and drought stress and that they may be involved in specific biological and molecular processes in response to different abiotic and biotic stresses. The results of this research, which were established for the first time in response to salt and drought stress in P. vulgaris of the PIF gene family, will be a valuable source of knowledge and additional information in the fields of plant biotechnology, agricultural biotechnology, and molecular biology.

References

  • Anonymous, 2021a. Phytozome Database. (https://phytozome-next.jgi.doe.gov/), (Accessed: 20.11.2021).
  • Anonymous, 2021b. Pfam Database. (http://pfam.xfam.org/family/PF00010), (Accessed: 21.11.2021).
  • Anonymous, 2021c. Hidden Markov Model (HMM). (http://www.ebi.ac.uk), (Accessed: 21.11.2021).
  • Anonymous, 2021d. HMMER. (http://www.ebi.ac.uk), (Accessed: 21.11.2021).
  • Anonymous, 2021e. The ProtParam Tool. (https://web. expasy.org/protparam/), (Accessed: 22.11.2021).
  • Anonymous, 2021f. String Database. (https://string-db.org/), (Accessed: 20.12.2021).
  • Anonymous, 2021g. Sequence Read Archive. (https://www.ncbi.nlm.nih.gov/bioproject-/PRJNA 508605), (Accessed: 21.12.2021).
  • Anonymous, 2021h. CIMMiner. (http://discover.nci.nih. gov/cimminer), (Accessed: 25.12.2021).
  • Arya, H., Singh, M.B., Bhalla, P.L., 2018. Genomic and molecular analysis of conserved and unique features of soybean PIF4. Scientific Reports, 8: 12569.
  • Ashraf, M.P.J.C., Harris, P.J.C., 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.
  • Bailey, T.L., Williams, N., Misleh, C., Li, W.W., 2006. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34: W369-W373.
  • Bertioli, D.J., Jenkins, J., Clevenger, J., Dudchenko, O., Gao, D., Seijo, G., Leal-Bertioli, S.C.M., Ren, L., Farmer, A.D., Pandey, M.K., Samoluk, S.S., Abernathy, B., Agarwal, G., Ballén-Taborda, C., Cameron, C., Campbell, J., Chavarro, C., Chitikineni, A., Chu, Y., Dash, S., El Baidouri, M., Guo, B., Huang, W., Kim, K.D., Korani, W., Lanciano, S., Lui, C.G., Mirouze, M., Moretzsohn, M.C., Pham, M., Shin, J.H., Shirasawa, K., Sinharoy, S., Sreedasyam, A., Weeks, N.T., Zhang, X., Zheng, Z., Sun, Z., Froenicke, L., Aiden, E.L., Michelmore, R., Varshney, R.K., Holbrook, C.C., Cannon, E.K.S., Scheffler, B.E., Grimwood, J., Ozias-Akins, P., Cannon, S.B., Jackson, S.A., Schmutz, J., 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51(5): 877-884.
  • Blair, M.W., González, L.F., Kimani, P.M., Butare, L., 2010. Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theoretical and Applied Genetic, 121(2): 237-248.
  • Bornowski, N., Michel, K.J., Hamilton, J.P., Ou, S., Seetharam, A.S., Jenkins, J., Grimwood, J., Plott, C., Shu, S., Talag, J., Kennedy, M., Hundley, H., Singan, V.R., Barry, K., Daum, C., Yoshinaga, Y., Schmutz, J., Hirsch, C.N., Hufford, M.B., de Leon, N., Kaeppler, S.M., Buell, C.R., 2021. Genomic variation within the maize stiff‐stalk heterotic germplasm pool. The Plant Genome, 14: e20114.
  • Büyük, I., 2014. Investigation of Lea-3 Gene mRNA expression levels in different bean (Phaseolus vulgaris L.) cultivars developed under salt and drought stress by quantitative Real-Time PCR method. PhD thesis, Ankara University (Unpublished), Ankara, Türkiye. (In Turkish).
  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., Peñuelas, J., 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences, 108(4): 1474-1478.
  • Casal, J.J., Candia, A.N., Sellaro, R., 2014. Light perception and signaling by phytochrome A. Journal of Experimental Botany, 65(11): 2835-2845.
  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyzes of Big Biological Data. Molecular Plant, 13(8): 1194-1202.
  • Correa, P., 1981. Epidemiological correlations between diet and cancer frequency. Cancer Research, 41: 3685-3690.
  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., 2004. WebLogo: A sequence logo generator. Genome Research, 14(6): 1188-1190.
  • de Lucas, M., Prat, S., 2014. PIFs get BRright: Phytochrome interacting factors as integrators of light and hormonal signals. New Phytologist, 202(4): 1126-1141.
  • De Ron, A.M., Papa, R., Bitocchi, E., González, A.M., Debouck, D.G., Brick, M.A., Fourie, D., Marsolais, F., Beaver, J., Geffroy, V., McClean, P., Santalla, M., Lozano, R., Yuste-Lisbona, F.J., Casquero, P.A., 2015. Common bean. In: A.M. De Ron (Eds.), Grain Legumes, Springer Science+Business Media, USA New York, pp. 1-36.
  • Gao, Y., Ren, X., Qian, J., Li, Q., Tao, H., Chen, J., 2019. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): Identification, evolution, and expression analysis. Acta Physiologiae Plantarum, 41(1): 1-7.
  • Han, X., Tohge, T., Lalor, P., Dockery, P., Devaney, N., Esteves-Ferreira, A.A., Fernie, A.R., Sulpice, R., 2017. Phytochrome A and B regulate primary metabolism in Arabidopsis leaves in response to light. Frontiers in Plant Science, 8: 1394.
  • Hangen, L., Bennink, M.R., 2002. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutrition and Cancer, 44(1): 60-65.
  • Hao, Y., Zong, X., Ren, P., Qian, Y., Fu, A., 2021. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences, 22(13): 7152.
  • Hiz, M.C., Canher, B., Niron, H., Turet, M., 2014. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. Plos One, 9(3): e92598.
  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K., 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(Suppl_2): W585-W587.
  • Hosmani, P.S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L.V., Schijlen, E., Haarst, J.V., Cordewener, J., Sanchez-Perez, G., Peters, S., Fei, Z., Giovannoni, J.J., Mueller, L.A., Saha, S., 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. BioRxiv, 767764.
  • Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., Gao, G., 2015. GSDS 2.0: an upgraded again feature visualization server. Bioinformatics, 31(8): 1296-1297.
  • Inoue, K., Nishihama, R., Kataoka, H., Hosaka, M., Manabe, R., Nomoto, M., Tada, Y., Ishizaki, K., Kohchi, T., 2016. Phytochrome signaling is mediated by phytochrome interacting factor in the liverwort Marchantia polymorpha. The Plant Cell, 28(6): 1406-1421.
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F,, Pè, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quétier, F., Wincker, P., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463-467.
  • Juretic, N., Hoen, D.R., Huynh, M.L., Harrison, P.M., Bureau, T.E., 2005. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Research, 15(9): 1292-1297.
  • Kalefetoğlu, T., Ekmekçi, Y., 2005. The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18(4): 723-740. (In Turkish).
  • Kasapoğlu, A.G., İlhan, E., Kızılkaya, D., Hossein Pour, A., Haliloğlu, K., 2020. Genome-wide analysis of BES1 transcription factor family in sorghum [Sorghum bicolor (L.) Moench] genome. Turkish Journal of Agricultural Research, 7(1): 85-95. (In Turkish).
  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.E., 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6): 845-858.
  • Lamesch, P., Berardini, T.Z., Li, D.H., Swarbreck, D., Wilk, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., Huala, E., 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research, 40(D1): D1202-D1210.
  • Lee, N., Choi, G., 2017. Phytochrome-interacting factor from Arabidopsis to liverwort. Current Opinion in Plant Biology, 35: 54-60.
  • Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., Rombauts, S., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325-327.
  • Letunic, I., Bork, P., 2011. Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39 (suppl_2): W475-W478.
  • Li, W., Liu, Y., Wang, W., Liu, J., Yao, M., Guan, M., He, X., 2021. Phytochrome-interacting factor (PIF) in rapeseed (Brassica napus L.): Genome-wide identification, evolution and expression analyzes during abiotic stress, light quality and vernalization. International Journal of Biological Macromolecules, 180: 14-27.
  • Lin, L., Liu, X., Yin, R., 2018. PIF3 integrates light and low temperature signaling. Trends in Plant Science, 23(2): 93-95.
  • Lynch, M., Conery, J.S., 2003. The evolutionary demography of duplicate genes. Journal of Structural and Functional Genomics, 3: 35-44.
  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7): 621-628.
  • Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R. L., Lee, Y., Zheng, L., Orvis, J., Haas, B., Wortman, J., Buell, C.R., 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research, 35(Suppl_1): D883-D887.
  • Örs, S., Ekinci, M., 2015. Drought stress and plant physiology. Derim, 32(2): 237-250. (In Turkish).
  • Paik, I., Huq, E., 2019. Rapid examination of phytochrome-phytochrome interacting factor (PIF) interaction by in vitro coimmunoprecipitation assay. In: A. Hiltbrunner, (Eds.), Phytochromes, Methods in Molecular Biology, Humana, USA New York, NY, pp. 21-28.
  • Park Williams, A., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3): 292-297.
  • Peng, C., Ma., Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., Zhou, X., 2011. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 1(9): 467-471.
  • Pham, V.N., Kathare, P.K., Huq, E., 2018. Phytochromes and phytochrome interacting factors. Plant Physiology, 176(2): 1025-1038.
  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., Lopez, R., 2005. InterProScan: Protein domains identifier. Nucleic Acids Research, 33(Suppl_2): W116-W120.
  • Rosado, D., Gramegna, G., Cruz, A., Lira, B.S., Freschi, L., de Setta, N., Rossi, M., 2016. Phytochrome Interacting Factors (PIFs) in Solanum lycopersicum: Diversity, evolutionary history and expression profiling during different developmental processes. PLoS One, 11(11): e0165929.
  • Ruiz-Lozano, J.M., Porcel, R., Azcón, C., Aroca, R., 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63(11): 4033-4044.
  • Schmutz, J., McClean, P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S.M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M.A., Chovatia, M., Gepts, P., Goodstein, D.M., Gonzales, M., Hellsten, U., Hyten, D.L., Jia, G., Kelly, J.D., Kudrna, D., Lee, R., Richard, M.M., Miklas, P.N., Osorno, J.M., Rodrigues, J., Thareau, V., Urrea, C.A., Wang, M., Yu, Y., Zhang, M., Wing, R.A., Cregan, P.B., Rokhsar, D.S., Jackson, S.A., 2014. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7): 707-713.
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498-2504.
  • Shi, Q., Zhang, H., Song, X., Jiang, Y.E., Liang, R., Li, G., 2018. Functional characterization of the maize phytochrome-interacting factors PIF4 and PIF5. Frontiers in Plant Science, 8: 2273.
  • Shin, A.Y., Han, Y.J., Baek, A., Ahn, T., Kim, S.Y., Nguyen, T.S., Son, M., Lee, K.W., Shen, Y, Song, P.S., Kim, J.I., 2016. Evidence that phytochrome functions as a protein kinase in plant light signaling. Nature Communications, 7(1): 1-13.
  • Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34(Suppl_2): W609-W612.
  • Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7): 3022-3027.
  • Teuling, A.J., van Loon, A., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., Spank, U., 2013. Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10): 2071-2075.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.
  • Thompson, M.D., Brick, M.A., McGinley, J.N., Thompson, H.J., 2009. Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Science, 49(1): 179-186.
  • Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R.R., Bhalerao, R.P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.L., Cooper, D., Coutinho, P.M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Déjardin, A., Depamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., ........Rokhsar, D., 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793): 1596-1604.
  • Valliyodan, B., Cannon, S.B., Bayer, P.E., Shu, S., Brown, A.V., Ren, L., Jenkins, J., Chung, C.Y.L., Chan, T.F., Daum, C.G., Plott, C., Hastie, A., Baruch, K., Barry, K.W., Huang, W., Patil, G., Varshney, R.K., Hu, H., Batley, J., Yuan, Y., Song, Q., Stupar, R.M., Goodstein, D.M., Stacey, G., Lam, H.M., Jackson, S.A., Schmutz, J., Grimwood, J., Edwards, D., Nguyen, H.T., 2019. Construction and comparison of three reference‐quality genome assemblies for soybean. The Plant Journal, 100(5): 1066-1082.
  • Vicente-Serrano, S.M., Lopez-Moreno, J., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J.M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., Espejo, F., 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4): 044001.
  • Voorrips, R.E., 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1): 77-78.
  • Wang, X., Liu, Y., Huai, D., Chen, Y., Jiang, Y., Ding, Y., Liao, B., 2021. Genome-wide identification of peanut PIF family genes and their potential roles in early pod development. Gene, 781: 145539.
  • Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., Kissinger, J.C., Paterson, A.H., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7): e49.
  • Wu, G., Zhao, Y., Shen, R., Wang, B., Xie, Y., Ma, X., Zheng, Z., Wang, H., 2019. Characterization of maize Phytochrome-Interacting Factors in light signaling and photomorphogenesis. Plant Physiology, 181(2): 789-803.
  • Xu, D., 2018. Multifaceted roles of PIF4 in plants. Trends in Plant Science, 23(9): 749-751.
  • Xu, X., Paik, I., Zhu, L., Huq, E., 2015. Illuminating progress in phytochrome-mediated light signaling pathways. Trends in Plant Science, 20(10): 641-650.
  • Yang, Z.H., 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586-1591.
  • Yang, Z.H., Nielsen, R., 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution, 17(1): 32-43.
  • Zhang, K., Zheng, T., Zhu, X., Jiu, S., Liu, Z., Guan, L., Jia, H., Fang, J., 2018. Genome-wide identification of PIFs in grapes (Vitis vinifera L.) and their transcriptional analysis under lighting/shading conditions. Genes, 9(9): 451.

Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.)

Year 2022, , 274 - 285, 31.10.2022
https://doi.org/10.19159/tutad.1109558

Abstract

The purpose of this study was to identify and describe members of the phytochrome-interacting factors (PIFs) gene family including the basic helix loop helix (bHLH) binding site in Phaseolus vulgaris plants, as well as to investigate their responses to salt and drought stress. Various tools of in silico approaches were used to identify five Pvul-PIF gene families in the P. vulgaris genome. This gene family contained 324 to 726 amino acids and has molecular weights ranging from 35.11 kDa to 77.67 kDa. The theoretical isoelectric points range from 6.03 (Pvul-PIF-3.3) to 8.30 (Pvul-PIF-3.2). Pvul-PIF proteins were shown to be clustered in three main groups with Arabidopsis thaliana, Populus trichocarpa, Solanum lycopersicum, Zea mays, Arachis hypogaea L., Oryza sativa, Vitis vinifera, Glycine max, and Phaseolus vulgaris species as a result of the phylogenetic study. Segmental duplication was detected between Pvul-PIF-3.2, Pvul-PIF-3.3 and Pvul-PIF-3.1 genes, Pvul-PIF-4.1 and Pvul-PIF-4.2 genes and Pvul-PIF-3.3 and Pvul-PIF-3.1 genes. When the expression patterns of the Pvul-PIF genes were examined, it was observed that they had different levels of expression under salt and drought stress and that they may be involved in specific biological and molecular processes in response to different abiotic and biotic stresses. The results of this research, which were established for the first time in response to salt and drought stress in P. vulgaris of the PIF gene family, will be a valuable source of knowledge and additional information in the fields of plant biotechnology, agricultural biotechnology, and molecular biology.

References

  • Anonymous, 2021a. Phytozome Database. (https://phytozome-next.jgi.doe.gov/), (Accessed: 20.11.2021).
  • Anonymous, 2021b. Pfam Database. (http://pfam.xfam.org/family/PF00010), (Accessed: 21.11.2021).
  • Anonymous, 2021c. Hidden Markov Model (HMM). (http://www.ebi.ac.uk), (Accessed: 21.11.2021).
  • Anonymous, 2021d. HMMER. (http://www.ebi.ac.uk), (Accessed: 21.11.2021).
  • Anonymous, 2021e. The ProtParam Tool. (https://web. expasy.org/protparam/), (Accessed: 22.11.2021).
  • Anonymous, 2021f. String Database. (https://string-db.org/), (Accessed: 20.12.2021).
  • Anonymous, 2021g. Sequence Read Archive. (https://www.ncbi.nlm.nih.gov/bioproject-/PRJNA 508605), (Accessed: 21.12.2021).
  • Anonymous, 2021h. CIMMiner. (http://discover.nci.nih. gov/cimminer), (Accessed: 25.12.2021).
  • Arya, H., Singh, M.B., Bhalla, P.L., 2018. Genomic and molecular analysis of conserved and unique features of soybean PIF4. Scientific Reports, 8: 12569.
  • Ashraf, M.P.J.C., Harris, P.J.C., 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.
  • Bailey, T.L., Williams, N., Misleh, C., Li, W.W., 2006. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34: W369-W373.
  • Bertioli, D.J., Jenkins, J., Clevenger, J., Dudchenko, O., Gao, D., Seijo, G., Leal-Bertioli, S.C.M., Ren, L., Farmer, A.D., Pandey, M.K., Samoluk, S.S., Abernathy, B., Agarwal, G., Ballén-Taborda, C., Cameron, C., Campbell, J., Chavarro, C., Chitikineni, A., Chu, Y., Dash, S., El Baidouri, M., Guo, B., Huang, W., Kim, K.D., Korani, W., Lanciano, S., Lui, C.G., Mirouze, M., Moretzsohn, M.C., Pham, M., Shin, J.H., Shirasawa, K., Sinharoy, S., Sreedasyam, A., Weeks, N.T., Zhang, X., Zheng, Z., Sun, Z., Froenicke, L., Aiden, E.L., Michelmore, R., Varshney, R.K., Holbrook, C.C., Cannon, E.K.S., Scheffler, B.E., Grimwood, J., Ozias-Akins, P., Cannon, S.B., Jackson, S.A., Schmutz, J., 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51(5): 877-884.
  • Blair, M.W., González, L.F., Kimani, P.M., Butare, L., 2010. Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theoretical and Applied Genetic, 121(2): 237-248.
  • Bornowski, N., Michel, K.J., Hamilton, J.P., Ou, S., Seetharam, A.S., Jenkins, J., Grimwood, J., Plott, C., Shu, S., Talag, J., Kennedy, M., Hundley, H., Singan, V.R., Barry, K., Daum, C., Yoshinaga, Y., Schmutz, J., Hirsch, C.N., Hufford, M.B., de Leon, N., Kaeppler, S.M., Buell, C.R., 2021. Genomic variation within the maize stiff‐stalk heterotic germplasm pool. The Plant Genome, 14: e20114.
  • Büyük, I., 2014. Investigation of Lea-3 Gene mRNA expression levels in different bean (Phaseolus vulgaris L.) cultivars developed under salt and drought stress by quantitative Real-Time PCR method. PhD thesis, Ankara University (Unpublished), Ankara, Türkiye. (In Turkish).
  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sánchez, G., Peñuelas, J., 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences, 108(4): 1474-1478.
  • Casal, J.J., Candia, A.N., Sellaro, R., 2014. Light perception and signaling by phytochrome A. Journal of Experimental Botany, 65(11): 2835-2845.
  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyzes of Big Biological Data. Molecular Plant, 13(8): 1194-1202.
  • Correa, P., 1981. Epidemiological correlations between diet and cancer frequency. Cancer Research, 41: 3685-3690.
  • Crooks, G.E., Hon, G., Chandonia, J.M., Brenner, S.E., 2004. WebLogo: A sequence logo generator. Genome Research, 14(6): 1188-1190.
  • de Lucas, M., Prat, S., 2014. PIFs get BRright: Phytochrome interacting factors as integrators of light and hormonal signals. New Phytologist, 202(4): 1126-1141.
  • De Ron, A.M., Papa, R., Bitocchi, E., González, A.M., Debouck, D.G., Brick, M.A., Fourie, D., Marsolais, F., Beaver, J., Geffroy, V., McClean, P., Santalla, M., Lozano, R., Yuste-Lisbona, F.J., Casquero, P.A., 2015. Common bean. In: A.M. De Ron (Eds.), Grain Legumes, Springer Science+Business Media, USA New York, pp. 1-36.
  • Gao, Y., Ren, X., Qian, J., Li, Q., Tao, H., Chen, J., 2019. The phytochrome-interacting family of transcription factors in maize (Zea mays L.): Identification, evolution, and expression analysis. Acta Physiologiae Plantarum, 41(1): 1-7.
  • Han, X., Tohge, T., Lalor, P., Dockery, P., Devaney, N., Esteves-Ferreira, A.A., Fernie, A.R., Sulpice, R., 2017. Phytochrome A and B regulate primary metabolism in Arabidopsis leaves in response to light. Frontiers in Plant Science, 8: 1394.
  • Hangen, L., Bennink, M.R., 2002. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutrition and Cancer, 44(1): 60-65.
  • Hao, Y., Zong, X., Ren, P., Qian, Y., Fu, A., 2021. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences, 22(13): 7152.
  • Hiz, M.C., Canher, B., Niron, H., Turet, M., 2014. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. Plos One, 9(3): e92598.
  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K., 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(Suppl_2): W585-W587.
  • Hosmani, P.S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker, L.V., Schijlen, E., Haarst, J.V., Cordewener, J., Sanchez-Perez, G., Peters, S., Fei, Z., Giovannoni, J.J., Mueller, L.A., Saha, S., 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. BioRxiv, 767764.
  • Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., Gao, G., 2015. GSDS 2.0: an upgraded again feature visualization server. Bioinformatics, 31(8): 1296-1297.
  • Inoue, K., Nishihama, R., Kataoka, H., Hosaka, M., Manabe, R., Nomoto, M., Tada, Y., Ishizaki, K., Kohchi, T., 2016. Phytochrome signaling is mediated by phytochrome interacting factor in the liverwort Marchantia polymorpha. The Plant Cell, 28(6): 1406-1421.
  • Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyère, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F,, Pè, M.E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.F., Weissenbach, J., Quétier, F., Wincker, P., 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449: 463-467.
  • Juretic, N., Hoen, D.R., Huynh, M.L., Harrison, P.M., Bureau, T.E., 2005. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Research, 15(9): 1292-1297.
  • Kalefetoğlu, T., Ekmekçi, Y., 2005. The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18(4): 723-740. (In Turkish).
  • Kasapoğlu, A.G., İlhan, E., Kızılkaya, D., Hossein Pour, A., Haliloğlu, K., 2020. Genome-wide analysis of BES1 transcription factor family in sorghum [Sorghum bicolor (L.) Moench] genome. Turkish Journal of Agricultural Research, 7(1): 85-95. (In Turkish).
  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., Sternberg, M.J.E., 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6): 845-858.
  • Lamesch, P., Berardini, T.Z., Li, D.H., Swarbreck, D., Wilk, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., Huala, E., 2012. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research, 40(D1): D1202-D1210.
  • Lee, N., Choi, G., 2017. Phytochrome-interacting factor from Arabidopsis to liverwort. Current Opinion in Plant Biology, 35: 54-60.
  • Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., Rombauts, S., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1): 325-327.
  • Letunic, I., Bork, P., 2011. Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39 (suppl_2): W475-W478.
  • Li, W., Liu, Y., Wang, W., Liu, J., Yao, M., Guan, M., He, X., 2021. Phytochrome-interacting factor (PIF) in rapeseed (Brassica napus L.): Genome-wide identification, evolution and expression analyzes during abiotic stress, light quality and vernalization. International Journal of Biological Macromolecules, 180: 14-27.
  • Lin, L., Liu, X., Yin, R., 2018. PIF3 integrates light and low temperature signaling. Trends in Plant Science, 23(2): 93-95.
  • Lynch, M., Conery, J.S., 2003. The evolutionary demography of duplicate genes. Journal of Structural and Functional Genomics, 3: 35-44.
  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7): 621-628.
  • Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R. L., Lee, Y., Zheng, L., Orvis, J., Haas, B., Wortman, J., Buell, C.R., 2007. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research, 35(Suppl_1): D883-D887.
  • Örs, S., Ekinci, M., 2015. Drought stress and plant physiology. Derim, 32(2): 237-250. (In Turkish).
  • Paik, I., Huq, E., 2019. Rapid examination of phytochrome-phytochrome interacting factor (PIF) interaction by in vitro coimmunoprecipitation assay. In: A. Hiltbrunner, (Eds.), Phytochromes, Methods in Molecular Biology, Humana, USA New York, NY, pp. 21-28.
  • Park Williams, A., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3): 292-297.
  • Peng, C., Ma., Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., Zhou, X., 2011. A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 1(9): 467-471.
  • Pham, V.N., Kathare, P.K., Huq, E., 2018. Phytochromes and phytochrome interacting factors. Plant Physiology, 176(2): 1025-1038.
  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., Lopez, R., 2005. InterProScan: Protein domains identifier. Nucleic Acids Research, 33(Suppl_2): W116-W120.
  • Rosado, D., Gramegna, G., Cruz, A., Lira, B.S., Freschi, L., de Setta, N., Rossi, M., 2016. Phytochrome Interacting Factors (PIFs) in Solanum lycopersicum: Diversity, evolutionary history and expression profiling during different developmental processes. PLoS One, 11(11): e0165929.
  • Ruiz-Lozano, J.M., Porcel, R., Azcón, C., Aroca, R., 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63(11): 4033-4044.
  • Schmutz, J., McClean, P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S.M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M.A., Chovatia, M., Gepts, P., Goodstein, D.M., Gonzales, M., Hellsten, U., Hyten, D.L., Jia, G., Kelly, J.D., Kudrna, D., Lee, R., Richard, M.M., Miklas, P.N., Osorno, J.M., Rodrigues, J., Thareau, V., Urrea, C.A., Wang, M., Yu, Y., Zhang, M., Wing, R.A., Cregan, P.B., Rokhsar, D.S., Jackson, S.A., 2014. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7): 707-713.
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498-2504.
  • Shi, Q., Zhang, H., Song, X., Jiang, Y.E., Liang, R., Li, G., 2018. Functional characterization of the maize phytochrome-interacting factors PIF4 and PIF5. Frontiers in Plant Science, 8: 2273.
  • Shin, A.Y., Han, Y.J., Baek, A., Ahn, T., Kim, S.Y., Nguyen, T.S., Son, M., Lee, K.W., Shen, Y, Song, P.S., Kim, J.I., 2016. Evidence that phytochrome functions as a protein kinase in plant light signaling. Nature Communications, 7(1): 1-13.
  • Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34(Suppl_2): W609-W612.
  • Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7): 3022-3027.
  • Teuling, A.J., van Loon, A., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., Spank, U., 2013. Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10): 2071-2075.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.
  • Thompson, M.D., Brick, M.A., McGinley, J.N., Thompson, H.J., 2009. Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Science, 49(1): 179-186.
  • Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R.R., Bhalerao, R.P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G.L., Cooper, D., Coutinho, P.M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Déjardin, A., Depamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., ........Rokhsar, D., 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793): 1596-1604.
  • Valliyodan, B., Cannon, S.B., Bayer, P.E., Shu, S., Brown, A.V., Ren, L., Jenkins, J., Chung, C.Y.L., Chan, T.F., Daum, C.G., Plott, C., Hastie, A., Baruch, K., Barry, K.W., Huang, W., Patil, G., Varshney, R.K., Hu, H., Batley, J., Yuan, Y., Song, Q., Stupar, R.M., Goodstein, D.M., Stacey, G., Lam, H.M., Jackson, S.A., Schmutz, J., Grimwood, J., Edwards, D., Nguyen, H.T., 2019. Construction and comparison of three reference‐quality genome assemblies for soybean. The Plant Journal, 100(5): 1066-1082.
  • Vicente-Serrano, S.M., Lopez-Moreno, J., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J.M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F., Espejo, F., 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9(4): 044001.
  • Voorrips, R.E., 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1): 77-78.
  • Wang, X., Liu, Y., Huai, D., Chen, Y., Jiang, Y., Ding, Y., Liao, B., 2021. Genome-wide identification of peanut PIF family genes and their potential roles in early pod development. Gene, 781: 145539.
  • Wang, Y., Tang, H., Debarry, J.D., Tan, X., Li, J., Wang, X., Lee, T.H., Jin, H., Marler, B., Guo, H., Kissinger, J.C., Paterson, A.H., 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7): e49.
  • Wu, G., Zhao, Y., Shen, R., Wang, B., Xie, Y., Ma, X., Zheng, Z., Wang, H., 2019. Characterization of maize Phytochrome-Interacting Factors in light signaling and photomorphogenesis. Plant Physiology, 181(2): 789-803.
  • Xu, D., 2018. Multifaceted roles of PIF4 in plants. Trends in Plant Science, 23(9): 749-751.
  • Xu, X., Paik, I., Zhu, L., Huq, E., 2015. Illuminating progress in phytochrome-mediated light signaling pathways. Trends in Plant Science, 20(10): 641-650.
  • Yang, Z.H., 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586-1591.
  • Yang, Z.H., Nielsen, R., 2000. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution, 17(1): 32-43.
  • Zhang, K., Zheng, T., Zhu, X., Jiu, S., Liu, Z., Guan, L., Jia, H., Fang, J., 2018. Genome-wide identification of PIFs in grapes (Vitis vinifera L.) and their transcriptional analysis under lighting/shading conditions. Genes, 9(9): 451.
There are 74 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ahmed Sidar Aygören 0000-0002-6264-9935

Recep Aydınyurt 0000-0003-3743-1835

Sümeyra Uçar 0000-0002-7629-0206

Ayşe Gül Kasapoğlu 0000-0002-6447-4921

Esra Yaprak 0000-0002-8753-494X

Burak Muhammed Öner 0000-0003-2785-2089

Selman Muslu 0000-0003-4777-0726

Murat Isıyel 0000-0003-4157-2729

Emre İlhan 0000-0002-8404-7900

Murat Aydın 0000-0003-1091-0609

Murat Turan 0000-0003-2900-1755

Publication Date October 31, 2022
Published in Issue Year 2022

Cite

APA Aygören, A. S., Aydınyurt, R., Uçar, S., Kasapoğlu, A. G., et al. (2022). Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.). Türkiye Tarımsal Araştırmalar Dergisi, 9(3), 274-285. https://doi.org/10.19159/tutad.1109558
AMA Aygören AS, Aydınyurt R, Uçar S, Kasapoğlu AG, Yaprak E, Öner BM, Muslu S, Isıyel M, İlhan E, Aydın M, Turan M. Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.). TÜTAD. October 2022;9(3):274-285. doi:10.19159/tutad.1109558
Chicago Aygören, Ahmed Sidar, Recep Aydınyurt, Sümeyra Uçar, Ayşe Gül Kasapoğlu, Esra Yaprak, Burak Muhammed Öner, Selman Muslu, Murat Isıyel, Emre İlhan, Murat Aydın, and Murat Turan. “Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus Vulgaris L.)”. Türkiye Tarımsal Araştırmalar Dergisi 9, no. 3 (October 2022): 274-85. https://doi.org/10.19159/tutad.1109558.
EndNote Aygören AS, Aydınyurt R, Uçar S, Kasapoğlu AG, Yaprak E, Öner BM, Muslu S, Isıyel M, İlhan E, Aydın M, Turan M (October 1, 2022) Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.). Türkiye Tarımsal Araştırmalar Dergisi 9 3 274–285.
IEEE A. S. Aygören, “Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.)”, TÜTAD, vol. 9, no. 3, pp. 274–285, 2022, doi: 10.19159/tutad.1109558.
ISNAD Aygören, Ahmed Sidar et al. “Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus Vulgaris L.)”. Türkiye Tarımsal Araştırmalar Dergisi 9/3 (October 2022), 274-285. https://doi.org/10.19159/tutad.1109558.
JAMA Aygören AS, Aydınyurt R, Uçar S, Kasapoğlu AG, Yaprak E, Öner BM, Muslu S, Isıyel M, İlhan E, Aydın M, Turan M. Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.). TÜTAD. 2022;9:274–285.
MLA Aygören, Ahmed Sidar et al. “Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus Vulgaris L.)”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 9, no. 3, 2022, pp. 274-85, doi:10.19159/tutad.1109558.
Vancouver Aygören AS, Aydınyurt R, Uçar S, Kasapoğlu AG, Yaprak E, Öner BM, Muslu S, Isıyel M, İlhan E, Aydın M, Turan M. Genome-Wide Analysis and Characterization of the PIF Gene Family Under Salt and Drought Stress in Common Beans (Phaseolus vulgaris L.). TÜTAD. 2022;9(3):274-85.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667