Review
BibTex RIS Cite

Types of Dispersal in Mites

Year 2024, , 367 - 374, 09.12.2024
https://doi.org/10.19159/tutad.1513264

Abstract

Acari belong to the class Arachnida of the Arthropoda, which includes ticks and mites. Although they are not a group that can actively travel very long distances, they are present in almost all terrestrial habitats and have a significant impact on ecosystem functioning. Most mites live in temporary habitats. Mite populations other than soil mites are formed from separate colonies, regularly moving from an aging or depleted source to a new source. Mites’ dispersal occurs in two ways: active and passive. Active dispersal ability is limited for these species due to their morphological characteristics. Because mites lack wings, active dispersal is usually on foot, although some families can move over short distances by spinning webs. Passive dispersal is realized by water dispersal, wind dispersal and phoresy. Phoresy is certainly one of the most effective methods of dispersal for mites, as it allows long distances to be covered and suitable habitats to be reached. In conclusion, more information on the dispersal types of mites will not only help us to better recognize these small organisms, but will also contribute to the development of new strategies, especially in the control of economically damaging species. This review aims to provide an overview of the mechanisms of mite dispersal.

References

  • Alves, E.B., Casarin, N.F., Omoto, C., 2005. Dispersal mechanisms of Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) in citrus groves. Neotropical Entomology, 34(1): 89-96.
  • Athias-Binche, F., 1995. Phenotypic plasticity, polymorphisms in variable environments and some evolutionary consequences in phoretic mites (Acarina): A review. Ecologie, 26(4): 225-241.
  • Athias-Binche, F., Schwarz, H.H., Meierhofer, I., 1993. Phoretic association of Neoseius novus (Ouds., 1902) (Acari: Uropodina) with Nicrophorus spp. (Coleoptera: Silphidae): A case of sympatric speciation? International Journal of Acarology, 19(1): 75-86.
  • Bajerlein, D., Bloszyk, J., 2004. Phoresy of Uropoda orbicularis (Acari: Mesostigmata) by beetles (Coleoptera) associated with cattle dung in Poland. European Journal of Entomology, 101(1): 185-188.
  • Bajerlein, D., Witaliński, W., Adamski, Z., 2013. Morphological diversity of pedicels in phoretic deutonymphs of Uropodina mites (Acari: Mesostigmata). Arthropod Structure & Development, 42(3): 185-196.
  • Bartlow, A.W., Agosta, S.J., 2021. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biological Reviews, 96(1): 223-246.
  • Baumann, J., 2021. Patterns of intraspecific morphological variability in soil mites reflect their dispersal ability. Experimental and Applied Acarology, 83(2): 241-255.
  • Behura, B.K., 1956. The relationships of the Tyroglyphoid mite, Histiostoma polypori (Oud.) with the earwig, Forficula auricularia Linn. Journal of the New York Entomological Society, 64: 85-94.
  • Bergh, J.C., McCoy, C.W., 1997. Aerial dispersal of citrus rust mite (Acari: Eriophyidae) from Florida citrus groves. Environmental Entomology, 26(2): 256-264.
  • Binns, E.S., 1982. Phoresy as migration-some functional aspects of phoresy in mites. Biological Reviews, 57(4): 571-620.
  • Bitume, E.V., Bonte, D., Ronce, O., Bach, F., Flaven, E., Olivieri, I., Nieberding, C.M., 2013. Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecology Letters, 16(4): 430-437.
  • Bonte, D., Dahirel, M., 2017. Dispersal: A central and independent trait in life history. Oikos, 126(4): 472-479.
  • Bowler, D.E., Benton, T.G., 2005. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews, 80(2): 205-225.
  • Bradie, J.N., Bailey, S.A., van Der Velde, G., MacIsaac, H.J., 2010. Brine-induced mortality of non-indigenous invertebrates in residual ballast water. Marine Environmental Research, 70(5): 395-401.
  • Chatterjee, D., Kundu, A., 2022. Role of mites in insect fungus association. Just Agriculture, 2(9): 45.
  • Clift, A.D., Larsson, S.F., 1987. Phoretic dispersal of Brennandania lambi (Kcrzal) (Acari: Tarsonemida: Pygmephoridae) by mushroom flies (Diptera: Sciaridae and Phoridae) in New South Wales, Australia. Experimental & Applied Acarology, 3(1): 11-20.
  • Colwell, R.K., Naeem, S., 1999. Sexual sorting in hummingbird flower mites (Mesostigmata: Ascidae). Annals of the Entomological Society of America, 92(6): 952-959.
  • Conradt, L., Roper, T.J., Thomas, C.D., 2001. Dispersal behaviour of individuals in metapopulations of two British butterflies. Oikos, 95(3): 416-424.
  • Coulson, S.J., Hodkinson, I.D., Webb, N.R., Harrison, J.A., 2002. Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Functional Ecology, 16(3): 353-356.
  • Cross, E.A., Bohart, G.E., 1969. Phoretic behavior of four species of alkali bee mites as influenced by season and host sex. Journal of the Kansas Entomological Society, 49(2): 195-219.
  • Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbić, M., Clark, R.M., Feyereisen, R., Van Leeuwen, T., 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences, 110(2): E113-E122.
  • Domrow, R., 1981. Small lizard stifled by phoretic deutonymphal mites (Uropodina). Acarologia, 22(3): 247-252.
  • Duffner, K., Schruft, G., Guggenheim, R., 2001. Passive dispersal of the grape rust mite Calepitrimerus vitis Nalepa 1905 (Acari, Eriophyoidea) in vineyards. Anzeiger Für Schädlingskunde, 74(1): 1-6.
  • Farish, D.J., Axtell, R.C., 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia, 13(1): 16-29.
  • Gerson, U., 2008. The Tenuipalpidae: An under-explored family of plant-feeding mites. Systematic and Applied Acarology, 13(2): 83-101.
  • Hamilton, W.D., May, R.M., 1977. Dispersal in stable habitats. Nature, 269: 578-581.
  • Holt, R.D., Barfield, M., 2011. Theoretical perspectives on the statics and dynamics of species’ borders in patchy environments. The American Naturalist, 178(S1): S6-S25.
  • Houck, M.A., OConnor, B.M., 1991. Ecological and evolutionary significance of phoresy in the astigmata. Annual Review of Entomology, 36(1): 611-636.
  • Howard, W.E., 1960. Innate and environmental dispersal of ındividual vertebrates. The American Midland Naturalist, 63(1): 152-161.
  • Hunter, P.E., Rosario, R.M.T., 1988. Associations of mesostigmata with other arthropods. Annual Review of Entomology, 33(1): 393-417.
  • Jenkins, D.G., Brescacin, C.R., Duxbury, C.V., Elliott, J.A., Evans, J.A., Grablow, K.R., Hillegass, M., Lyon, B.N., Metzger, G.A., Olandese, M.L., Pepe, D., Silvers, G.A., Suresch, H.N., Thompson, T.N., Trexler, C.M., Williams, G.E., Williams, N.C., Williams, S.E., 2007. Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4): 415-425.
  • Jeppson, L.R., Keifer, H.H., Baker, E.W., 1975. Mites Injurious to Economic Plants. University of California Press. Klompen, H., Lekveishvili, M., Black IV, W. C., 2007. Phylogeny of parasitiform mites (Acari) based on rRNA. Molecular Phylogenetics and Evolution, 43(3): 936-951.
  • Krantz, G.W., Walter, D.E., 2009. A Manual of Acarology. 3rd Edn., Texas Tech University Press, Lubbock. Kuussaari, M., Nieminen, M., Hanski, I., 1996. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. Journal of animal Ecology, 65(6): 791-801.
  • Lehmitz, R., Russell, D., Hohberg, K., Christian, A., Xylander, W.E.R., 2011. Wind dispersal of oribatid mites as a mode of migration. Pedobiologia, 54(3): 201-207.
  • Lehmitz, R., Russell, D., Hohberg, K., Christian, A., Xylander, W.E.R., 2012. Active dispersal of oribatid mites into young soils. Applied Soil Ecology, 55: 10-19.
  • Lindquist, E.E., Oldfield, G.N., 1996. Evolution and phylogeny: Evolution of eriophyoid mites in relation to their host plants. In: E.E. Lindquist, M.W. Sabelis and J. Bruin (Eds.), World Crop Pests, pp. 277-300.
  • Lokela, J.C.M., Le Goff, G.J., Kayisu, K., Hance, T., 2021. Phoretic mites associated with Rhynchophorus phoenicis Fabricius (1880) (Coleoptera: Curculionidae) in the Kisangani region, DR Congo. Acarologia, 61(2): 291-296.
  • Lozano-Fernandez, J., Tanner, A.R., Giacomelli, M., Carton, R., Vinther, J., Edgecombe, G.D., Pisani, D., 2019. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Communications, 10: 2295.
  • Macchioni, F., 2007. Importance of phoresy in the transmission of Acarina. Parassitologia, 49(1-2): 17-22.
  • Majer, A., Laska, A., Hein, G., Kuczyński, L., Skoracka, A., 2021a. Hitchhiking or hang gliding? Dispersal strategies of two cereal-feeding eriophyoid mite species. Experimental and Applied Acarology, 85(2-4): 131-146.
  • Majer, A., Laska, A., Hein, G., Kuczyński, L., Skoracka, A., 2021b. Propagule pressure rather than population growth determines colonisation ability: a case study using two phytophagous mite species differing in their invasive potential. Ecological Entomology, 46(5): 1136-1147.
  • Melo, J.W.S., Lima, D.B., Sabelis, M.W., Pallini, A., Gondim, M.G.C., 2014. Limits to ambulatory displacement of coconut mites in absence and presence of food-related cues. Experimental and Applied Acarology, 62(4): 449-461.
  • Mertins, J.W., Hartdegen, R.W., 2003. The ground skink, Scincella lateralis, an unusual host for phoretic deutonymphs of a uropodine mite, Fuscuropoda marginata, with a review of analogous mite-host interactions. The Texas Journal of Science, 55(1): 33-43.
  • Miko, L., Stanko, M., 1991. Small mammals as carriers of non-parasitic mites (Oribatida, Uropodina). Modern acarology. Proceedings of the VIII International Congress of Acarology, Held in České Budějovice, Czechoslovakia, 6-11 August, pp. 395-402
  • Mitchell, R., 1970. An analysis of dispersal in mites. The American Naturalist, 104(939): 425-431.
  • Moser, J.C., Konrad, H., Kirisits, T., Carta, L.K., 2005. Phoretic mites and nematode associates of Scolytus multistriatus and Scolytus pygmaeus (Coleoptera: Scolytidae) in Austria. Agricultural and Forest Entomology, 7(2): 169-177.
  • Nault, L.R., Styer, W.E., 1969. The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio. Annals of the Entomological Society of America, 62(6): 1446-1455.
  • Norton, R.A., 1980. Observations on phoresy by oribatid mites (Acari: Oribatei). International Journal of Acarology, 6(2): 121-130.
  • Osakabe, Mh., Isobe, H., Kasai, A., Masuda, R., Kubota, S., Umeda, M., 2008. Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Experimental and Applied Acarology, 44(3): 165-183.
  • Otronen, M., Hanski, I., 1983. Movement patterns in Sphaeridium: Differences between species, sexes, and feeding and breeding individuals. The Journal of Animal Ecology, 52(3): 663-680.
  • Pels, B., 2001. Evolutionary dynamics of dispersal in predatory mites. PhD Dissertation, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands.
  • Peter, C., 1989. A note on the mites associated with the red palm weevil, Rhynchophorus ferrugineus in Tami Nadu. Journal of Insect Science, 2(2): 160-161.
  • Pfingstl, T., 2013. Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): Implications for ecology and hydrochorous dispersal. Experimental and Applied Acarology, 61(1): 87-96.
  • Poinar Jr, G.O., Curcic, B.P., Cokendolpher, J.C., 1998. Arthropod phoresy involving pseudoscorpions in the past and present. Acta Arachnologica, 47(2): 79-96.
  • Pusey, A., Wolf, M., 1996. Inbreeding avoidance in animals. Trends in Ecology & Evolution, 11(5): 201-206.
  • Revynthi, A.M., Egas, M., Janssen, A., Sabelis, M.W., 2018. Prey exploitation and dispersal strategies vary among natural populations of a predatory mite. Ecology and Evolution, 8(21): 10384-10394.
  • Reynolds, A.M., Bohan, D.A., Bell, J.R., 2007. Ballooning dispersal in arthropod taxa: Conditions at take-off. Biology Letters, 3(3): 237-240.
  • Rigby, M.C., 1996. Association of a juvenile phoretic uropodid mite with the beach hopper Traskorchestia traskiana (Stimpson, 1857) (Crustacea: Talitridae). Journal of Natural History, 30(11): 1617-1624.
  • Salmane, I., Telnov, D., 2009. Mesostigmata mites (Acari: Parasitiformes) associated with beetles (Insecta: Coleoptera) in Latvia. Latvijas Entomologs, 47(1): 58-70.
  • Schatz, H., 1991. Arrival and establishment of Acari on oceanic islands. In: F. Dusbábek and V. Bukva (Eds.), Modern Acarology Prague: Academia Prague and SPB Academic Publishing, The Hague, pp. 613- 618.
  • Schatz, H., 1998. Review Oribatid mites of the Galápagos Islands–faunistics, ecology and speciation. Experimental & Applied Acarology, 22: 373-409.
  • Seeman, O.D., Walter, D.E., 1995. Life history of Afrocypholaelaps africana (Evans) (Acari: Ameroseiidae), a mite ınhabiting mangrove flowers and phoretic on honeybees. Australian Journal of Entomology, 34(1): 45-50.
  • Seeman, O.D., Walter, D.E., 2023. Phoresy and mites: More than just a free ride. Annual Review of Entomology, 68(1): 69-88.
  • Shvanderov, F.A., 1975. The role of phoresy in the transference of Eriophyoidea. Zoologicheskii Zhurnal, 54(3): 458-461.
  • Smith, I.M., Cook, D.R., Smith, B.P., 2010. Water mites (Hydrachnidiae) and other Arachnids. In: J.H. Thorp and A.P. Covich (Eds.), Ecology and Classification of North American Freshwater Invertebrates, 3rd Edition, London, Academic Press, pp. 485-586.
  • Szymkowiak, P., Górski, G., Bajerlein, D., 2007. Passive dispersal in arachnids. Biological Letters, 44(2): 75-101.
  • Toft, S., 1995. Two functions of gossamer dispersal in spiders? Acta Jutlandica, 70: 257-268.
  • Washburn, J.O., Washburn, L., 1984. Active aerial dispersal of minute wingless arthropods: Exploitation of boundary-layer velocity gradients. Science, 223(4640): 1088-1089.
  • Weisser W.W., McCoy, K.D., Boulinier, T., 2001. Parasitism and predation as causes of dispersal. In: J. Clobert, E. Danchin, A.A. Dhondt and J.D. Nichols (Eds.), Dispersal, Oxford: Oxford University Press, pp. 168-188.
  • White, P.S., Morran, L., de Roode, J., 2017. Phoresy. Current Biology, 27(12): R578-R580.
  • Zhang, Z.Q., 2013. Animal biodiversity: An update of classification and diversity in 2013. Zootaxa, 3703(1): 5-11.

Akarlarda Yayılım Tipleri

Year 2024, , 367 - 374, 09.12.2024
https://doi.org/10.19159/tutad.1513264

Abstract

Acari, Arthropoda şubesi Arachnida sınıfına bağlı olup, kene ve akarları içerisinde bulundurmaktadır. Aktif olarak çok uzun mesafeler kat edebilen bir grup olmasa da neredeyse tüm karasal habitatlarda bulunarak ekosistem işlevlerine önemli ölçüde etkileri bulunmaktadır. Akarların çoğu geçici habitatlarda yaşamaktadır. Toprak akarları dışındaki akar popülasyonları, yaşlanan veya tükenen bir kaynaktan yeni bir kaynağa düzenli olarak taşınarak ayrı kolonilerden oluşmaktadır. Akarlar, aktif ve pasif olmak üzere iki şekilde yayılım göstermektedirler. Aktif yayılım yetenekleri morfolojik özellikleri sebebiyle bu canlılar için sınırlıdır. Akarların kanatlarının bulunmaması nedeniyle, aktif yayılım genellikle yürüyerek gerçekleşmekte, bazı familyalar ise ağ örerek kısa mesafelerde hareket edebilmektedir. Pasif yayılım ise su ile yayılım, rüzgârla yayılım ve forezi (phoresy) olarak gerçekleşmektedir. Forezi, uzun mesafelerin kat edilmesine ve uygun habitatlara ulaşılmasına olanak sağladığından, akarlar için kesinlikle en etkili yayılma yöntemlerinden biridir. Sonuç olarak, akarların yayılım tipleri hakkında daha fazla bilgi sahibi olmak, bu küçük canlıları daha iyi tanımamıza yardımcı olacağı gibi, özellikle ekonomik zarar veren türlerle mücadelede yeni stratejilerin geliştirilmesine de katkı sağlayacaktır. Bu derlemede, akarların yayılım mekanizmaları hakkında genel bir bilgi sunulması amaçlanmıştır.

References

  • Alves, E.B., Casarin, N.F., Omoto, C., 2005. Dispersal mechanisms of Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) in citrus groves. Neotropical Entomology, 34(1): 89-96.
  • Athias-Binche, F., 1995. Phenotypic plasticity, polymorphisms in variable environments and some evolutionary consequences in phoretic mites (Acarina): A review. Ecologie, 26(4): 225-241.
  • Athias-Binche, F., Schwarz, H.H., Meierhofer, I., 1993. Phoretic association of Neoseius novus (Ouds., 1902) (Acari: Uropodina) with Nicrophorus spp. (Coleoptera: Silphidae): A case of sympatric speciation? International Journal of Acarology, 19(1): 75-86.
  • Bajerlein, D., Bloszyk, J., 2004. Phoresy of Uropoda orbicularis (Acari: Mesostigmata) by beetles (Coleoptera) associated with cattle dung in Poland. European Journal of Entomology, 101(1): 185-188.
  • Bajerlein, D., Witaliński, W., Adamski, Z., 2013. Morphological diversity of pedicels in phoretic deutonymphs of Uropodina mites (Acari: Mesostigmata). Arthropod Structure & Development, 42(3): 185-196.
  • Bartlow, A.W., Agosta, S.J., 2021. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biological Reviews, 96(1): 223-246.
  • Baumann, J., 2021. Patterns of intraspecific morphological variability in soil mites reflect their dispersal ability. Experimental and Applied Acarology, 83(2): 241-255.
  • Behura, B.K., 1956. The relationships of the Tyroglyphoid mite, Histiostoma polypori (Oud.) with the earwig, Forficula auricularia Linn. Journal of the New York Entomological Society, 64: 85-94.
  • Bergh, J.C., McCoy, C.W., 1997. Aerial dispersal of citrus rust mite (Acari: Eriophyidae) from Florida citrus groves. Environmental Entomology, 26(2): 256-264.
  • Binns, E.S., 1982. Phoresy as migration-some functional aspects of phoresy in mites. Biological Reviews, 57(4): 571-620.
  • Bitume, E.V., Bonte, D., Ronce, O., Bach, F., Flaven, E., Olivieri, I., Nieberding, C.M., 2013. Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecology Letters, 16(4): 430-437.
  • Bonte, D., Dahirel, M., 2017. Dispersal: A central and independent trait in life history. Oikos, 126(4): 472-479.
  • Bowler, D.E., Benton, T.G., 2005. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biological Reviews, 80(2): 205-225.
  • Bradie, J.N., Bailey, S.A., van Der Velde, G., MacIsaac, H.J., 2010. Brine-induced mortality of non-indigenous invertebrates in residual ballast water. Marine Environmental Research, 70(5): 395-401.
  • Chatterjee, D., Kundu, A., 2022. Role of mites in insect fungus association. Just Agriculture, 2(9): 45.
  • Clift, A.D., Larsson, S.F., 1987. Phoretic dispersal of Brennandania lambi (Kcrzal) (Acari: Tarsonemida: Pygmephoridae) by mushroom flies (Diptera: Sciaridae and Phoridae) in New South Wales, Australia. Experimental & Applied Acarology, 3(1): 11-20.
  • Colwell, R.K., Naeem, S., 1999. Sexual sorting in hummingbird flower mites (Mesostigmata: Ascidae). Annals of the Entomological Society of America, 92(6): 952-959.
  • Conradt, L., Roper, T.J., Thomas, C.D., 2001. Dispersal behaviour of individuals in metapopulations of two British butterflies. Oikos, 95(3): 416-424.
  • Coulson, S.J., Hodkinson, I.D., Webb, N.R., Harrison, J.A., 2002. Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Functional Ecology, 16(3): 353-356.
  • Cross, E.A., Bohart, G.E., 1969. Phoretic behavior of four species of alkali bee mites as influenced by season and host sex. Journal of the Kansas Entomological Society, 49(2): 195-219.
  • Dermauw, W., Wybouw, N., Rombauts, S., Menten, B., Vontas, J., Grbić, M., Clark, R.M., Feyereisen, R., Van Leeuwen, T., 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences, 110(2): E113-E122.
  • Domrow, R., 1981. Small lizard stifled by phoretic deutonymphal mites (Uropodina). Acarologia, 22(3): 247-252.
  • Duffner, K., Schruft, G., Guggenheim, R., 2001. Passive dispersal of the grape rust mite Calepitrimerus vitis Nalepa 1905 (Acari, Eriophyoidea) in vineyards. Anzeiger Für Schädlingskunde, 74(1): 1-6.
  • Farish, D.J., Axtell, R.C., 1971. Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia, 13(1): 16-29.
  • Gerson, U., 2008. The Tenuipalpidae: An under-explored family of plant-feeding mites. Systematic and Applied Acarology, 13(2): 83-101.
  • Hamilton, W.D., May, R.M., 1977. Dispersal in stable habitats. Nature, 269: 578-581.
  • Holt, R.D., Barfield, M., 2011. Theoretical perspectives on the statics and dynamics of species’ borders in patchy environments. The American Naturalist, 178(S1): S6-S25.
  • Houck, M.A., OConnor, B.M., 1991. Ecological and evolutionary significance of phoresy in the astigmata. Annual Review of Entomology, 36(1): 611-636.
  • Howard, W.E., 1960. Innate and environmental dispersal of ındividual vertebrates. The American Midland Naturalist, 63(1): 152-161.
  • Hunter, P.E., Rosario, R.M.T., 1988. Associations of mesostigmata with other arthropods. Annual Review of Entomology, 33(1): 393-417.
  • Jenkins, D.G., Brescacin, C.R., Duxbury, C.V., Elliott, J.A., Evans, J.A., Grablow, K.R., Hillegass, M., Lyon, B.N., Metzger, G.A., Olandese, M.L., Pepe, D., Silvers, G.A., Suresch, H.N., Thompson, T.N., Trexler, C.M., Williams, G.E., Williams, N.C., Williams, S.E., 2007. Does size matter for dispersal distance? Global Ecology and Biogeography, 16(4): 415-425.
  • Jeppson, L.R., Keifer, H.H., Baker, E.W., 1975. Mites Injurious to Economic Plants. University of California Press. Klompen, H., Lekveishvili, M., Black IV, W. C., 2007. Phylogeny of parasitiform mites (Acari) based on rRNA. Molecular Phylogenetics and Evolution, 43(3): 936-951.
  • Krantz, G.W., Walter, D.E., 2009. A Manual of Acarology. 3rd Edn., Texas Tech University Press, Lubbock. Kuussaari, M., Nieminen, M., Hanski, I., 1996. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. Journal of animal Ecology, 65(6): 791-801.
  • Lehmitz, R., Russell, D., Hohberg, K., Christian, A., Xylander, W.E.R., 2011. Wind dispersal of oribatid mites as a mode of migration. Pedobiologia, 54(3): 201-207.
  • Lehmitz, R., Russell, D., Hohberg, K., Christian, A., Xylander, W.E.R., 2012. Active dispersal of oribatid mites into young soils. Applied Soil Ecology, 55: 10-19.
  • Lindquist, E.E., Oldfield, G.N., 1996. Evolution and phylogeny: Evolution of eriophyoid mites in relation to their host plants. In: E.E. Lindquist, M.W. Sabelis and J. Bruin (Eds.), World Crop Pests, pp. 277-300.
  • Lokela, J.C.M., Le Goff, G.J., Kayisu, K., Hance, T., 2021. Phoretic mites associated with Rhynchophorus phoenicis Fabricius (1880) (Coleoptera: Curculionidae) in the Kisangani region, DR Congo. Acarologia, 61(2): 291-296.
  • Lozano-Fernandez, J., Tanner, A.R., Giacomelli, M., Carton, R., Vinther, J., Edgecombe, G.D., Pisani, D., 2019. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Communications, 10: 2295.
  • Macchioni, F., 2007. Importance of phoresy in the transmission of Acarina. Parassitologia, 49(1-2): 17-22.
  • Majer, A., Laska, A., Hein, G., Kuczyński, L., Skoracka, A., 2021a. Hitchhiking or hang gliding? Dispersal strategies of two cereal-feeding eriophyoid mite species. Experimental and Applied Acarology, 85(2-4): 131-146.
  • Majer, A., Laska, A., Hein, G., Kuczyński, L., Skoracka, A., 2021b. Propagule pressure rather than population growth determines colonisation ability: a case study using two phytophagous mite species differing in their invasive potential. Ecological Entomology, 46(5): 1136-1147.
  • Melo, J.W.S., Lima, D.B., Sabelis, M.W., Pallini, A., Gondim, M.G.C., 2014. Limits to ambulatory displacement of coconut mites in absence and presence of food-related cues. Experimental and Applied Acarology, 62(4): 449-461.
  • Mertins, J.W., Hartdegen, R.W., 2003. The ground skink, Scincella lateralis, an unusual host for phoretic deutonymphs of a uropodine mite, Fuscuropoda marginata, with a review of analogous mite-host interactions. The Texas Journal of Science, 55(1): 33-43.
  • Miko, L., Stanko, M., 1991. Small mammals as carriers of non-parasitic mites (Oribatida, Uropodina). Modern acarology. Proceedings of the VIII International Congress of Acarology, Held in České Budějovice, Czechoslovakia, 6-11 August, pp. 395-402
  • Mitchell, R., 1970. An analysis of dispersal in mites. The American Naturalist, 104(939): 425-431.
  • Moser, J.C., Konrad, H., Kirisits, T., Carta, L.K., 2005. Phoretic mites and nematode associates of Scolytus multistriatus and Scolytus pygmaeus (Coleoptera: Scolytidae) in Austria. Agricultural and Forest Entomology, 7(2): 169-177.
  • Nault, L.R., Styer, W.E., 1969. The dispersal of Aceria tulipae and three other grass-infesting eriophyid mites in Ohio. Annals of the Entomological Society of America, 62(6): 1446-1455.
  • Norton, R.A., 1980. Observations on phoresy by oribatid mites (Acari: Oribatei). International Journal of Acarology, 6(2): 121-130.
  • Osakabe, Mh., Isobe, H., Kasai, A., Masuda, R., Kubota, S., Umeda, M., 2008. Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Experimental and Applied Acarology, 44(3): 165-183.
  • Otronen, M., Hanski, I., 1983. Movement patterns in Sphaeridium: Differences between species, sexes, and feeding and breeding individuals. The Journal of Animal Ecology, 52(3): 663-680.
  • Pels, B., 2001. Evolutionary dynamics of dispersal in predatory mites. PhD Dissertation, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands.
  • Peter, C., 1989. A note on the mites associated with the red palm weevil, Rhynchophorus ferrugineus in Tami Nadu. Journal of Insect Science, 2(2): 160-161.
  • Pfingstl, T., 2013. Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): Implications for ecology and hydrochorous dispersal. Experimental and Applied Acarology, 61(1): 87-96.
  • Poinar Jr, G.O., Curcic, B.P., Cokendolpher, J.C., 1998. Arthropod phoresy involving pseudoscorpions in the past and present. Acta Arachnologica, 47(2): 79-96.
  • Pusey, A., Wolf, M., 1996. Inbreeding avoidance in animals. Trends in Ecology & Evolution, 11(5): 201-206.
  • Revynthi, A.M., Egas, M., Janssen, A., Sabelis, M.W., 2018. Prey exploitation and dispersal strategies vary among natural populations of a predatory mite. Ecology and Evolution, 8(21): 10384-10394.
  • Reynolds, A.M., Bohan, D.A., Bell, J.R., 2007. Ballooning dispersal in arthropod taxa: Conditions at take-off. Biology Letters, 3(3): 237-240.
  • Rigby, M.C., 1996. Association of a juvenile phoretic uropodid mite with the beach hopper Traskorchestia traskiana (Stimpson, 1857) (Crustacea: Talitridae). Journal of Natural History, 30(11): 1617-1624.
  • Salmane, I., Telnov, D., 2009. Mesostigmata mites (Acari: Parasitiformes) associated with beetles (Insecta: Coleoptera) in Latvia. Latvijas Entomologs, 47(1): 58-70.
  • Schatz, H., 1991. Arrival and establishment of Acari on oceanic islands. In: F. Dusbábek and V. Bukva (Eds.), Modern Acarology Prague: Academia Prague and SPB Academic Publishing, The Hague, pp. 613- 618.
  • Schatz, H., 1998. Review Oribatid mites of the Galápagos Islands–faunistics, ecology and speciation. Experimental & Applied Acarology, 22: 373-409.
  • Seeman, O.D., Walter, D.E., 1995. Life history of Afrocypholaelaps africana (Evans) (Acari: Ameroseiidae), a mite ınhabiting mangrove flowers and phoretic on honeybees. Australian Journal of Entomology, 34(1): 45-50.
  • Seeman, O.D., Walter, D.E., 2023. Phoresy and mites: More than just a free ride. Annual Review of Entomology, 68(1): 69-88.
  • Shvanderov, F.A., 1975. The role of phoresy in the transference of Eriophyoidea. Zoologicheskii Zhurnal, 54(3): 458-461.
  • Smith, I.M., Cook, D.R., Smith, B.P., 2010. Water mites (Hydrachnidiae) and other Arachnids. In: J.H. Thorp and A.P. Covich (Eds.), Ecology and Classification of North American Freshwater Invertebrates, 3rd Edition, London, Academic Press, pp. 485-586.
  • Szymkowiak, P., Górski, G., Bajerlein, D., 2007. Passive dispersal in arachnids. Biological Letters, 44(2): 75-101.
  • Toft, S., 1995. Two functions of gossamer dispersal in spiders? Acta Jutlandica, 70: 257-268.
  • Washburn, J.O., Washburn, L., 1984. Active aerial dispersal of minute wingless arthropods: Exploitation of boundary-layer velocity gradients. Science, 223(4640): 1088-1089.
  • Weisser W.W., McCoy, K.D., Boulinier, T., 2001. Parasitism and predation as causes of dispersal. In: J. Clobert, E. Danchin, A.A. Dhondt and J.D. Nichols (Eds.), Dispersal, Oxford: Oxford University Press, pp. 168-188.
  • White, P.S., Morran, L., de Roode, J., 2017. Phoresy. Current Biology, 27(12): R578-R580.
  • Zhang, Z.Q., 2013. Animal biodiversity: An update of classification and diversity in 2013. Zootaxa, 3703(1): 5-11.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Acarology in Agriculture
Journal Section Review
Authors

Gizem Berber Tortop 0000-0003-3090-3705

Sibel Yorulmaz 0000-0003-3836-5673

Publication Date December 9, 2024
Submission Date July 10, 2024
Acceptance Date November 6, 2024
Published in Issue Year 2024

Cite

APA Berber Tortop, G., & Yorulmaz, S. (2024). Akarlarda Yayılım Tipleri. Türkiye Tarımsal Araştırmalar Dergisi, 11(3), 367-374. https://doi.org/10.19159/tutad.1513264
AMA Berber Tortop G, Yorulmaz S. Akarlarda Yayılım Tipleri. TÜTAD. December 2024;11(3):367-374. doi:10.19159/tutad.1513264
Chicago Berber Tortop, Gizem, and Sibel Yorulmaz. “Akarlarda Yayılım Tipleri”. Türkiye Tarımsal Araştırmalar Dergisi 11, no. 3 (December 2024): 367-74. https://doi.org/10.19159/tutad.1513264.
EndNote Berber Tortop G, Yorulmaz S (December 1, 2024) Akarlarda Yayılım Tipleri. Türkiye Tarımsal Araştırmalar Dergisi 11 3 367–374.
IEEE G. Berber Tortop and S. Yorulmaz, “Akarlarda Yayılım Tipleri”, TÜTAD, vol. 11, no. 3, pp. 367–374, 2024, doi: 10.19159/tutad.1513264.
ISNAD Berber Tortop, Gizem - Yorulmaz, Sibel. “Akarlarda Yayılım Tipleri”. Türkiye Tarımsal Araştırmalar Dergisi 11/3 (December 2024), 367-374. https://doi.org/10.19159/tutad.1513264.
JAMA Berber Tortop G, Yorulmaz S. Akarlarda Yayılım Tipleri. TÜTAD. 2024;11:367–374.
MLA Berber Tortop, Gizem and Sibel Yorulmaz. “Akarlarda Yayılım Tipleri”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 11, no. 3, 2024, pp. 367-74, doi:10.19159/tutad.1513264.
Vancouver Berber Tortop G, Yorulmaz S. Akarlarda Yayılım Tipleri. TÜTAD. 2024;11(3):367-74.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667