Research Article
BibTex RIS Cite

Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.)

Year 2022, Volume: 9 Issue: 3, 342 - 351, 31.10.2022
https://doi.org/10.19159/tutad.1168393

Abstract

Environmental and climatic fluctuations as well as abiotic stress factors affect agricultural production and cause a loss in quality and yield. It is important to find alternative solutions for the sustainability of agricultural production to feed the increasing population. Salt stress is one of the most devastating abiotic stress factors and tomato (Solanum lycopersicum L.) production is also affected by salt stress since it needs extensive irrigation for high yield. The exogenous application of some plant inducers showed promising results in the induction and improvement of plant tolerance to stress factors. Chitosan (2-amino-2-deoxy-b-D-glucosamine), one of the organic compounds, is getting significant attention in agriculture with its potential. Here, we evaluated the potential of chitosan application for salt stress tolerance on tomato. 0.03% and 0.05% chitosan solutions were applied as a foliar spray to the plant and salt tolerance improvement were investigated under untreated (0 mM NaCl) and 100 mM NaCl conditions. The growth-related (root and shoot diameters, above and below-ground biomass, number of leaves and branches, and plant height), photosynthetic parameters (chlorophyll a, b, total carotenoid content), and ion leakage were investigated. According to the results, chitosan application improves plant development in both untreated and salt-stress conditions and improved plant growth. Also, photosynthetic parameters showed that the application of chitosan increased chlorophyll contents under untreated conditions. Our result suggests that the application of chitosan may have a promising effect on salt stress tolerance and further research may shed light on its molecular mechanisms.

References

  • Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., Costa De Oliveira, A., Cseke, L.J., Dempewolf, H., De Pace, C., Edwards, D., Gepts, P., Greenland, A., Hall, A.E., Henry, R., Hori, K., Howe, G.T., Hughes, S., Humphreys, M., Lightfoot, D., Marshall, A., Mayes, S., Nguyen, H.T., Ogbonnaya, F.C., Ortiz, R., Paterson, A.H., Tuberosa, R., Valliyodan, B., Varshney, R.K., Yano, M., 2015. Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal, 14(4): 1095-1098.
  • Abd El-Daim, I.A., Bejai, S., Meijer, J., 2014. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant and Soil, 379(1-2): 337-350.
  • Acosta-Motos, J.R., Penella, C., Hernandez, J.A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Navarro, J.M., Gomez-Bellot, M.J., Barba-Espin, G., 2020. Towards a sustainable agriculture: strategies involving phytoprotectants against salt stress. Agronomy-Basel, 10(2): 1-32.
  • Al-Tawaha, A.R., Turk, M.A., Al-Tawaha, A.R.M., Alu'datt, M.H., Wedyan, M., Al-Ramamneh, E., Hoang, A.T., 2018. Using chitosan to improve growth of maize cultivars under salinity conditions. Bulgarian Journal of Agricultural Science, 24(3): 437-442.
  • Al-Tawaha, A.R.M., Jahan, N., Odat, N., Al-Ramamneh, E.A., Al-Tawaha, A.R., Abu-Zaitoon, Y.M., Fandi, K., Alhawatema, M., Amanullah, Rauf, A., Wedyan, M., Shariati, M.A., Qaisi, A.M., Imran, Tawaha, K., Turk, M., Khanum, S., 2020. Growth, yield and biochemical responses in barley to dap and chitosan application under water stress. Journal of Ecological Engineering, 21(6): 86-93.
  • Anonymous, 2021. Worldwide Tomato Production Statistics. Agriculture Organization of the United Nations. FAOSTAT, 2021 [Online]. (https://www.fao.org/faostat/en/#data/QCL/visualize), (Accessed: 15.08.2022).
  • Ashour, H.A., Esmail, S.E.A., Kotb, M.S., 2021. Alleviative effects of chitosan or humic acid on Vitex trifolia 'Purpurea' grown under salinity stress. Ornamental Horticulture-Revista Brasileira De Horticultura Ornamental, 27(1): 88-102.
  • Ashraf, M., Harris, P.J.C., 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.
  • Attia, M.S., Osman, M.S., Mohamed, A.S., Mahgoub, H.A., Garada, M.O., Abdelmouty, E.S., Latef, A., 2021. Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants-Basel, 10(2): 1-23.
  • Ayed, S., Bouhaouel, I., Jebari, H., Hamada, W., 2022. Use of biostimulants: towards sustainable approach to enhance durum wheat performances. Plants-Basel, 11(1): 1-19.
  • Babalola, O.O., 2010. Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11): 1559-1570.
  • Balusamy, S.R., Rahimi, S., Sukweenadhi, J., Sunderraj, S., Shanmugam, R., Thangavelu, L., Mijakovic, I., Perumalsamy, H., 2022. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers, 284: 1-19.
  • Behera, T.K., Krishna, R., Ansari, W.A., Aamir, M., Kumar, P., Kashyap, S.P., Pandey, S., Kole, C., 2022. Approaches involved in the vegetable crops salt stress tolerance improvement: present status and way ahead. Frontiers in Plant Science, 12: 1-20.
  • Bektas, Y., Eulgem, T., 2015. Synthetic plant defense elicitors. Frontiers in Plant Science, 5(804): 1-17.
  • Bektas, Y., Rodriguez-Salus, M., Schroeder, M., Gomez, A., Kaloshian, I., Eulgem, T., 2016. The synthetic elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxy phenyl)imino]methyl}phenol) triggers strong immunity in Arabidopsis thaliana and tomato. Scientific Reports, 6(1): 1-16.
  • Borlaug, N.E., 1983. Contributions of conventional plant breeding to food production. Science (Washington D C), 219(4585): 689-693.
  • Borlaug, N.E., 2002. Feeding a world of 10 billion people: The miracle ahead. In Vitro Cellular and Developmental Biology Plant, 38(2): 221-228.
  • Bulgari, R., Franzoni, G., Ferrante, A., 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy-Basel, 9(6): 1-30.
  • Cuartero, J., Fernandez-Munoz, R., 1999. Tomato and salinity. Scientia Horticulturae, 78(1-4): 83-125.
  • Elansary, H.O., Abdel-Hamid, A.M.E., Yessoufou, K., Al-Mana, F.A., El-Ansary, D.O., Mahmoud, E.A., Al-Yafrasi, M.A., 2020. Physiological and molecular characterization of water-stressed Chrysanthemum under robinin and chitosan treatment. Acta Physiologiae Plantarum, 42(3): 1-14.
  • Farooq, T., Nisa, Z.U., Hameed, A., Ahmed, T., Hameed, A., 2022. Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat. BMC Chemistry, 16(1): 1-13.
  • Flowers, T.J., 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55(396): 307-319.
  • Foolad, M.R., 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue and Organ Culture, 76(2): 101-119.
  • Geng, W., Li, Z., Hassan, M.J., Peng, Y., 2020. Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20(1): 1-15.
  • Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812-818.
  • Gully, K., 2019. The plant immune system: induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors. PhD dissertation, Université d'Angers, Beaucouzé, France.
  • Gully, K., Celton, J.M., Degrave, A., Pelletier, S., Brisset, M.N., Bucher, E., 2019. Biotic stress-induced priming and de-priming of transcriptional memory in Arabidopsis and apple. Epigenomes, 3(1): 1-20.
  • Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., Abdelaal, K., 2020. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy-Basel, 10(5): 1-18.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68(1): 14-25.
  • Hernandez-Hernandez, H., Gonzalez-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Juarez-Maldonado, A., 2018a. Effects of Chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1): 1-15.
  • Hernandez-Hernandez, H., Juarez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sanchez-Aspeytia, D., Gonzalez-Morales, S., 2018b. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato Plants under Salt Stress. Agronomy-Basel, 8(9): 1-10.
  • Hidangmayum, A., Dwivedi, P., 2022. Chitosan based nanoformulation for sustainable agriculture with special reference to abiotic stress: A Review. Journal of Polymers and the Environment, 30(4): 1264-1283.
  • Jabeen, N., Ahmad, R., 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93(7): 1699-1705.
  • Kociecka, J., Liberacki, D., 2021. The potential of using chitosan on cereal crops in the face of climate change. Plants-Basel, 10(6): 1-27.
  • Li, J.C., Han, A.H., Zhang, L., Meng, Y., Xu, L., Ma, F.X., Liu, R.Q., 2022. Chitosan oligosaccharide alleviates the growth inhibition caused by physcion and synergistically enhances resilience in maize seedlings. Scientific Reports, 12(1): 1-12.
  • Liang, W., Ma, X., Wan, P., Liu, L., 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
  • Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592.
  • Machado, R.M.A., Serralheiro, R.P., 2017. Soil Salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2): 1-13.
  • Mahajan, S., Tuteja, N., 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2): 139-58.
  • Mal, D., Verma, J., Levan, A., Reddy, M., Avinash, A., Velaga, P.K., 2019. Seed priming in vegetable crops: a review. International Journal of Current Microbiology and Applied Sciences, 8(06): 868-874.
  • Massel, K., Lam, Y., Wong, A.C.S., Hickey, L.T., Borrell, A.K., Godwin, I.D., 2021. Hotter, drier, CRISPR: the latest edit on climate change. Theoretical and Applied Genetics, 134(6): 1691-709.
  • Mayak, S., Tirosh, T., Glick, B.R., 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6): 565-572.
  • Mehmood, S., Ahmed, W., Ikram, M., Imtiaz, M., Mahmood, S., Tu, S.X., Chen, D.Y., 2020. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants-Basel, 9(9): 1-25.
  • Moolphuerk, N., Lawson, T., Pattanagul, W., 2021. Chitosan mitigates the adverse effects and improves photosynthetic activity in rice (Oryza sativa L.) seedlings under drought condition. Journal of Crop Improvement, 36(5): 638-55.
  • Moolphuerk, N., Pattanagul, W., 2020. Pretreatment with different molecular weight chitosans encourages drought tolerance in rice (Oryza sativa L.) seedling. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2072-2084.
  • Munns, R., 2011. Plant adaptations to salt and water stress: differences and commonalities. In: I. Turkan (Ed.), Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era, London, Academic Press Ltd-Elsevier Science Ltd., pp. 1-32.
  • Oliveira, H.C., Gomes, B.C.R., Pelegrino, M.T., Seabra, A.B., 2016. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide-Biology and Chemistry, 61: 10-19.
  • Pawar, V., Laware, S., 2018. Seed priming a critical review. International Journal of Advanced Research in Biological Sciences, 5(5): 94-101.
  • Rashidi, N., Khavari-Nejad, R.A., Ramak, P., Saadatmand, S., 2020. The effect of chitosan on gene expression, some morphological and physiological traits of sweet basil (Ocimum basilicum L.) under salinity stress. Acta Scientiarum Polonorum-Hortorum Cultus, 19(4): 21-30.
  • Safikhan, S., Khoshbakht, K., Chaichi, M. R., Amini, A., Motesharezadeh, B., 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10: 49-58.
  • Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., Kumar, P., Martins, N., Sharifi-Rad, J., 2019. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition, 62: 201-208.
  • Sen, S.K., Chouhan, D., Das, D., Ghosh, R., Mandal, P., 2020. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145: 108-123.
  • Seraj, R.G.M., Behnamian, M., Ahmadikhah, A., Shariati, V., Dezhsetan, S., 2021. Chitosan and salicylic acid regulate morpho-physiological and phytochemical parameters and improve water-deficit tolerance in milk thistle (Silybum marianum L.). Acta Physiologiae Plantarum, 43(7): 1-17.
  • Shahbaz, M., Ashraf, M., Al-Qurainy, F., Harris, P.J.C., 2012. Salt tolerance in selected vegetable crops. Critical Reviews in Plant Sciences, 31(4): 303-320.
  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M.T., Vachova, P., Rastogi, A., Brestic, M., Skalicky, M., 2021. Chitosan-Selenium Nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11(3): 1-22.
  • Singh, N.B., Singh, D., Singh, A., 2015. Biological seed priming mitigates the effects of water stress in sunflower seedlings. Physiology and Molecular Biology of Plants, 21(2): 207-214.
  • Turk, H., 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry, 141: 415-422.
  • Valluru, R., Davies, W.J., Reynolds, M.P., Dodd, I.C., 2016. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Frontiers in Plant Science, 7(461): 1-13.
  • Vijayakumari, K., Jisha, K.C., Puthur, J.T., 2016. GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiologiae Plantarum, 38(9): 1-14.
  • Yasemin, S., Köksal, N., Özkaya, A., Yener, M., 2017. Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. Journal of Biological and Environmental Sciences, 11(32): 59-66.
  • Zhang, G., Wang, Y.H., Wu, K., Zhang, Q., Feng, Y.N., Miao, Y., Yan, Z.M., 2021. Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10): 1-17.
  • Zulfiqar, F., 2021. Effect of seed priming on horticultural crops. Scientia Horticulturae, 286: 110197.

Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.)

Year 2022, Volume: 9 Issue: 3, 342 - 351, 31.10.2022
https://doi.org/10.19159/tutad.1168393

Abstract

Environmental and climatic fluctuations as well as abiotic stress factors affect agricultural production and cause a loss in quality and yield. It is important to find alternative solutions for the sustainability of agricultural production to feed the increasing population. Salt stress is one of the most devastating abiotic stress factors and tomato (Solanum lycopersicum L.) production is also affected by salt stress since it needs extensive irrigation for high yield. The exogenous application of some plant inducers showed promising results in the induction and improvement of plant tolerance to stress factors. Chitosan (2-amino-2-deoxy-b-D-glucosamine), one of the organic compounds, is getting significant attention in agriculture with its potential. Here, we evaluated the potential of chitosan application for salt stress tolerance on tomato. 0.03% and 0.05% chitosan solutions were applied as a foliar spray to the plant and salt tolerance improvement were investigated under untreated (0 mM NaCl) and 100 mM NaCl conditions. The growth-related (root and shoot diameters, above and below-ground biomass, number of leaves and branches, and plant height), photosynthetic parameters (chlorophyll a, b, total carotenoid content), and ion leakage were investigated. According to the results, chitosan application improves plant development in both untreated and salt-stress conditions and improved plant growth. Also, photosynthetic parameters showed that the application of chitosan increased chlorophyll contents under untreated conditions. Our result suggests that the application of chitosan may have a promising effect on salt stress tolerance and further research may shed light on its molecular mechanisms.

References

  • Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., Costa De Oliveira, A., Cseke, L.J., Dempewolf, H., De Pace, C., Edwards, D., Gepts, P., Greenland, A., Hall, A.E., Henry, R., Hori, K., Howe, G.T., Hughes, S., Humphreys, M., Lightfoot, D., Marshall, A., Mayes, S., Nguyen, H.T., Ogbonnaya, F.C., Ortiz, R., Paterson, A.H., Tuberosa, R., Valliyodan, B., Varshney, R.K., Yano, M., 2015. Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal, 14(4): 1095-1098.
  • Abd El-Daim, I.A., Bejai, S., Meijer, J., 2014. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant and Soil, 379(1-2): 337-350.
  • Acosta-Motos, J.R., Penella, C., Hernandez, J.A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., Navarro, J.M., Gomez-Bellot, M.J., Barba-Espin, G., 2020. Towards a sustainable agriculture: strategies involving phytoprotectants against salt stress. Agronomy-Basel, 10(2): 1-32.
  • Al-Tawaha, A.R., Turk, M.A., Al-Tawaha, A.R.M., Alu'datt, M.H., Wedyan, M., Al-Ramamneh, E., Hoang, A.T., 2018. Using chitosan to improve growth of maize cultivars under salinity conditions. Bulgarian Journal of Agricultural Science, 24(3): 437-442.
  • Al-Tawaha, A.R.M., Jahan, N., Odat, N., Al-Ramamneh, E.A., Al-Tawaha, A.R., Abu-Zaitoon, Y.M., Fandi, K., Alhawatema, M., Amanullah, Rauf, A., Wedyan, M., Shariati, M.A., Qaisi, A.M., Imran, Tawaha, K., Turk, M., Khanum, S., 2020. Growth, yield and biochemical responses in barley to dap and chitosan application under water stress. Journal of Ecological Engineering, 21(6): 86-93.
  • Anonymous, 2021. Worldwide Tomato Production Statistics. Agriculture Organization of the United Nations. FAOSTAT, 2021 [Online]. (https://www.fao.org/faostat/en/#data/QCL/visualize), (Accessed: 15.08.2022).
  • Ashour, H.A., Esmail, S.E.A., Kotb, M.S., 2021. Alleviative effects of chitosan or humic acid on Vitex trifolia 'Purpurea' grown under salinity stress. Ornamental Horticulture-Revista Brasileira De Horticultura Ornamental, 27(1): 88-102.
  • Ashraf, M., Harris, P.J.C., 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1): 3-16.
  • Attia, M.S., Osman, M.S., Mohamed, A.S., Mahgoub, H.A., Garada, M.O., Abdelmouty, E.S., Latef, A., 2021. Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants-Basel, 10(2): 1-23.
  • Ayed, S., Bouhaouel, I., Jebari, H., Hamada, W., 2022. Use of biostimulants: towards sustainable approach to enhance durum wheat performances. Plants-Basel, 11(1): 1-19.
  • Babalola, O.O., 2010. Beneficial bacteria of agricultural importance. Biotechnology Letters, 32(11): 1559-1570.
  • Balusamy, S.R., Rahimi, S., Sukweenadhi, J., Sunderraj, S., Shanmugam, R., Thangavelu, L., Mijakovic, I., Perumalsamy, H., 2022. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers, 284: 1-19.
  • Behera, T.K., Krishna, R., Ansari, W.A., Aamir, M., Kumar, P., Kashyap, S.P., Pandey, S., Kole, C., 2022. Approaches involved in the vegetable crops salt stress tolerance improvement: present status and way ahead. Frontiers in Plant Science, 12: 1-20.
  • Bektas, Y., Eulgem, T., 2015. Synthetic plant defense elicitors. Frontiers in Plant Science, 5(804): 1-17.
  • Bektas, Y., Rodriguez-Salus, M., Schroeder, M., Gomez, A., Kaloshian, I., Eulgem, T., 2016. The synthetic elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxy phenyl)imino]methyl}phenol) triggers strong immunity in Arabidopsis thaliana and tomato. Scientific Reports, 6(1): 1-16.
  • Borlaug, N.E., 1983. Contributions of conventional plant breeding to food production. Science (Washington D C), 219(4585): 689-693.
  • Borlaug, N.E., 2002. Feeding a world of 10 billion people: The miracle ahead. In Vitro Cellular and Developmental Biology Plant, 38(2): 221-228.
  • Bulgari, R., Franzoni, G., Ferrante, A., 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy-Basel, 9(6): 1-30.
  • Cuartero, J., Fernandez-Munoz, R., 1999. Tomato and salinity. Scientia Horticulturae, 78(1-4): 83-125.
  • Elansary, H.O., Abdel-Hamid, A.M.E., Yessoufou, K., Al-Mana, F.A., El-Ansary, D.O., Mahmoud, E.A., Al-Yafrasi, M.A., 2020. Physiological and molecular characterization of water-stressed Chrysanthemum under robinin and chitosan treatment. Acta Physiologiae Plantarum, 42(3): 1-14.
  • Farooq, T., Nisa, Z.U., Hameed, A., Ahmed, T., Hameed, A., 2022. Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat. BMC Chemistry, 16(1): 1-13.
  • Flowers, T.J., 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55(396): 307-319.
  • Foolad, M.R., 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue and Organ Culture, 76(2): 101-119.
  • Geng, W., Li, Z., Hassan, M.J., Peng, Y., 2020. Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20(1): 1-15.
  • Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science, 327(5967): 812-818.
  • Gully, K., 2019. The plant immune system: induction, memory and de-priming of defense responses by endogenous, exogenous and synthetic elicitors. PhD dissertation, Université d'Angers, Beaucouzé, France.
  • Gully, K., Celton, J.M., Degrave, A., Pelletier, S., Brisset, M.N., Bucher, E., 2019. Biotic stress-induced priming and de-priming of transcriptional memory in Arabidopsis and apple. Epigenomes, 3(1): 1-20.
  • Hafez, Y., Attia, K., Alamery, S., Ghazy, A., Al-Doss, A., Ibrahim, E., Rashwan, E., El-Maghraby, L., Awad, A., Abdelaal, K., 2020. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy-Basel, 10(5): 1-18.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68(1): 14-25.
  • Hernandez-Hernandez, H., Gonzalez-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Juarez-Maldonado, A., 2018a. Effects of Chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1): 1-15.
  • Hernandez-Hernandez, H., Juarez-Maldonado, A., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G., Sanchez-Aspeytia, D., Gonzalez-Morales, S., 2018b. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato Plants under Salt Stress. Agronomy-Basel, 8(9): 1-10.
  • Hidangmayum, A., Dwivedi, P., 2022. Chitosan based nanoformulation for sustainable agriculture with special reference to abiotic stress: A Review. Journal of Polymers and the Environment, 30(4): 1264-1283.
  • Jabeen, N., Ahmad, R., 2013. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93(7): 1699-1705.
  • Kociecka, J., Liberacki, D., 2021. The potential of using chitosan on cereal crops in the face of climate change. Plants-Basel, 10(6): 1-27.
  • Li, J.C., Han, A.H., Zhang, L., Meng, Y., Xu, L., Ma, F.X., Liu, R.Q., 2022. Chitosan oligosaccharide alleviates the growth inhibition caused by physcion and synergistically enhances resilience in maize seedlings. Scientific Reports, 12(1): 1-12.
  • Liang, W., Ma, X., Wan, P., Liu, L., 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
  • Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592.
  • Machado, R.M.A., Serralheiro, R.P., 2017. Soil Salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2): 1-13.
  • Mahajan, S., Tuteja, N., 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2): 139-58.
  • Mal, D., Verma, J., Levan, A., Reddy, M., Avinash, A., Velaga, P.K., 2019. Seed priming in vegetable crops: a review. International Journal of Current Microbiology and Applied Sciences, 8(06): 868-874.
  • Massel, K., Lam, Y., Wong, A.C.S., Hickey, L.T., Borrell, A.K., Godwin, I.D., 2021. Hotter, drier, CRISPR: the latest edit on climate change. Theoretical and Applied Genetics, 134(6): 1691-709.
  • Mayak, S., Tirosh, T., Glick, B.R., 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6): 565-572.
  • Mehmood, S., Ahmed, W., Ikram, M., Imtiaz, M., Mahmood, S., Tu, S.X., Chen, D.Y., 2020. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants-Basel, 9(9): 1-25.
  • Moolphuerk, N., Lawson, T., Pattanagul, W., 2021. Chitosan mitigates the adverse effects and improves photosynthetic activity in rice (Oryza sativa L.) seedlings under drought condition. Journal of Crop Improvement, 36(5): 638-55.
  • Moolphuerk, N., Pattanagul, W., 2020. Pretreatment with different molecular weight chitosans encourages drought tolerance in rice (Oryza sativa L.) seedling. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4): 2072-2084.
  • Munns, R., 2011. Plant adaptations to salt and water stress: differences and commonalities. In: I. Turkan (Ed.), Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era, London, Academic Press Ltd-Elsevier Science Ltd., pp. 1-32.
  • Oliveira, H.C., Gomes, B.C.R., Pelegrino, M.T., Seabra, A.B., 2016. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide-Biology and Chemistry, 61: 10-19.
  • Pawar, V., Laware, S., 2018. Seed priming a critical review. International Journal of Advanced Research in Biological Sciences, 5(5): 94-101.
  • Rashidi, N., Khavari-Nejad, R.A., Ramak, P., Saadatmand, S., 2020. The effect of chitosan on gene expression, some morphological and physiological traits of sweet basil (Ocimum basilicum L.) under salinity stress. Acta Scientiarum Polonorum-Hortorum Cultus, 19(4): 21-30.
  • Safikhan, S., Khoshbakht, K., Chaichi, M. R., Amini, A., Motesharezadeh, B., 2018. Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 10: 49-58.
  • Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., Kumar, P., Martins, N., Sharifi-Rad, J., 2019. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition, 62: 201-208.
  • Sen, S.K., Chouhan, D., Das, D., Ghosh, R., Mandal, P., 2020. Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. International Journal of Biological Macromolecules, 145: 108-123.
  • Seraj, R.G.M., Behnamian, M., Ahmadikhah, A., Shariati, V., Dezhsetan, S., 2021. Chitosan and salicylic acid regulate morpho-physiological and phytochemical parameters and improve water-deficit tolerance in milk thistle (Silybum marianum L.). Acta Physiologiae Plantarum, 43(7): 1-17.
  • Shahbaz, M., Ashraf, M., Al-Qurainy, F., Harris, P.J.C., 2012. Salt tolerance in selected vegetable crops. Critical Reviews in Plant Sciences, 31(4): 303-320.
  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M.T., Vachova, P., Rastogi, A., Brestic, M., Skalicky, M., 2021. Chitosan-Selenium Nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11(3): 1-22.
  • Singh, N.B., Singh, D., Singh, A., 2015. Biological seed priming mitigates the effects of water stress in sunflower seedlings. Physiology and Molecular Biology of Plants, 21(2): 207-214.
  • Turk, H., 2019. Chitosan-induced enhanced expression and activation of alternative oxidase confer tolerance to salt stress in maize seedlings. Plant Physiology and Biochemistry, 141: 415-422.
  • Valluru, R., Davies, W.J., Reynolds, M.P., Dodd, I.C., 2016. Foliar abscisic acid-to-ethylene accumulation and response regulate shoot growth sensitivity to mild drought in wheat. Frontiers in Plant Science, 7(461): 1-13.
  • Vijayakumari, K., Jisha, K.C., Puthur, J.T., 2016. GABA/BABA priming: a means for enhancing abiotic stress tolerance potential of plants with less energy investments on defence cache. Acta Physiologiae Plantarum, 38(9): 1-14.
  • Yasemin, S., Köksal, N., Özkaya, A., Yener, M., 2017. Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. Journal of Biological and Environmental Sciences, 11(32): 59-66.
  • Zhang, G., Wang, Y.H., Wu, K., Zhang, Q., Feng, Y.N., Miao, Y., Yan, Z.M., 2021. Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10): 1-17.
  • Zulfiqar, F., 2021. Effect of seed priming on horticultural crops. Scientia Horticulturae, 286: 110197.
There are 62 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nazlı Özkurt 0000-0003-4064-3740

Yasemin Bektaş 0000-0002-6884-2234

Publication Date October 31, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

APA Özkurt, N., & Bektaş, Y. (2022). Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.). Türkiye Tarımsal Araştırmalar Dergisi, 9(3), 342-351. https://doi.org/10.19159/tutad.1168393
AMA Özkurt N, Bektaş Y. Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.). TÜTAD. October 2022;9(3):342-351. doi:10.19159/tutad.1168393
Chicago Özkurt, Nazlı, and Yasemin Bektaş. “Alleviation of Salt Stress With Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum Lycopersicum L.)”. Türkiye Tarımsal Araştırmalar Dergisi 9, no. 3 (October 2022): 342-51. https://doi.org/10.19159/tutad.1168393.
EndNote Özkurt N, Bektaş Y (October 1, 2022) Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.). Türkiye Tarımsal Araştırmalar Dergisi 9 3 342–351.
IEEE N. Özkurt and Y. Bektaş, “Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.)”, TÜTAD, vol. 9, no. 3, pp. 342–351, 2022, doi: 10.19159/tutad.1168393.
ISNAD Özkurt, Nazlı - Bektaş, Yasemin. “Alleviation of Salt Stress With Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum Lycopersicum L.)”. Türkiye Tarımsal Araştırmalar Dergisi 9/3 (October 2022), 342-351. https://doi.org/10.19159/tutad.1168393.
JAMA Özkurt N, Bektaş Y. Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.). TÜTAD. 2022;9:342–351.
MLA Özkurt, Nazlı and Yasemin Bektaş. “Alleviation of Salt Stress With Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum Lycopersicum L.)”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 9, no. 3, 2022, pp. 342-51, doi:10.19159/tutad.1168393.
Vancouver Özkurt N, Bektaş Y. Alleviation of Salt Stress with Chitosan Foliar Application and Its Effects on Growth and Development in Tomato (Solanum lycopersicum L.). TÜTAD. 2022;9(3):342-51.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667