Review
BibTex RIS Cite

Treatment of Biogas Slurry by Microalgae

Year 2020, Volume: 3 Issue: 1, 34 - 42, 31.03.2020

Abstract

Global warming has become a current issue of concern in the world today. The main source of global climate change is the increasing amount of greenhouse gases released from fossil fuels that provide the energy needed for human activities. Scientists are seeking to find solutions to global warming through the mitigation of the greenhouse gases. Biofuels such as biodiesel, bioethanol and biogas have been considered as an environmentally friendly fuel source, are now being used and are intended to be widely used in the near future. Biogas slurry, also known as digestate during anaerobic processes, contains a significant proportion of nutrients. In recent years, numerous studies have been performed to treat biogas slurry, and to produce algal biomass, by removing nutrient from anaerobic effluents by microalgae-based technology. When micro algae are cultured in nutrient-rich effluents, this provides a source of food for the growth of microalgae. As a result, the produced biomass can be used for biofuel production. Furthermore, the biogas slurry with contaminants especially with nitrogen and phosphorus, which has the potential to contaminate underground and surface water resources can be treated by this way. In this study, the literature on biogas slurry and treatment of it’s by microalgae cultures have been reviewed taking into account the management of biogas slurry for water pollution and biomass production for biofuel.

References

  • [1] Ryckebosch, E., Drouillon, M. ve Vervaeren, H., Techniques for transformation of biogas to biomethane, Biomass and bioenergy, 35,5 (2011) 1633-1645.
  • [2] Yan, C., Zhang, L., Luo, X. ve Zheng, Z., Influence of influent methane concentration on biogas upgrading and biogas slurry purification under various LED (light-emitting diode) light wavelengths using Chlorella sp, Energy, 69 (2014) 419-426.
  • [3] Zhu, L., Yan, C. ve Li, Z., Microalgal cultivation with biogas slurry for biofuel production, Bioresource technology, 220 (2016) 629-636.
  • [4] Singh, A. ve Olsen, S.I., A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Applied Energy, 88,10 (2011) 3548-3555.
  • [5] Behera, B., Acharya, A., Gargey, I.A., Aly, N. ve Balasubramanian, P., Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production, Bioresource Technology Reports, 5 (2019) 297-316.
  • [6] Astals, S., Nolla-Ardèvol, V. ve Mata-Alvarez, J., Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate, Bioresource technology, 110 (2012) 63-70.
  • [7] Juárez, M.F.-D., Waldhuber, S., Knapp, A., Partl, C., Gómez-Brandón, M. ve Insam, H., Wood ash effects on chemical and microbiological properties of digestate-and manure-amended soils, Biology and fertility of soils, 49,5 (2013) 575-585.
  • [8] Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G. ve Oyler, G.A., Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure, Bioresource technology, 150 (2013) 377-386.
  • [9] Liu, J. ve Vyverman, W., Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions, Bioresource technology, 179 (2015) 234-242.
  • [10] Solmaz, A. ve Işık, M., Microalgae production with microalgal submerged membrane photo bioreactor (msmpbr) and examining the nutrient removal yield, Sigma Journal of Engineering and Natural Sciences-Sigma Mühendislik ve Fen Bilimleri Dergisi, (2017).
  • [11] Chisti, Y., Biodiesel from microalgae, Biotechnology Advances, 25,3 (2007) 294-306.
  • [12] Sharma, Y.C. ve Singh, V., Microalgal biodiesel: a possible solution for India’s energy security, Renewable and Sustainable Energy Reviews, 67 (2017) 72-88.
  • [13] Zhu, L., Microalgal culture strategies for biofuel production: a review, Biofuels, Bioproducts and Biorefining, 9,6 (2015) 801-814.
  • [14] Singh, A., Nigam, P.S. ve Murphy, J.D., Mechanism and challenges in commercialisation of algal biofuels, Bioresource technology, 102,1 (2011) 26-34.
  • [15] Medeiros, D.L., Sales, E.A. ve Kiperstok, A., Energy production from microalgae biomass: carbon footprint and energy balance, Journal of Cleaner Production, 96 (2015) 493-500.
  • [16] Xu, M., Bernards, M. ve Hu, Z., Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor, Bioresource technology, 153 (2014) 383-387.
  • [17] Elcik, H. ve Çakmakcı, M., Mikroalglerden Yenilenebilir Biyoyakıt Üretimi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32,3 (2017).
  • [18] Razzak, S.A., Ali, S.A.M., Hossain, M.M. ve De Lasa, H., Biological CO2 fixation with production of microalgae in wastewater–a review, Renewable and Sustainable Energy Reviews, 76 (2017) 379-390.
  • [19] Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J. ve Chang, J.-S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresource technology, 102,1 (2011) 71-81.
  • [20] Kim, S., Park, J.-e., Cho, Y.-B. ve Hwang, S.-J., Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions, Bioresource technology, 144 (2013) 8-13.
  • [21] McGinn, P.J., Dickinson, K.E., Bhatti, S., Frigon, J.-C., Guiot, S.R. ve O’Leary, S.J., Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations, Photosynthesis Research, 109,1-3 (2011) 231-247.
  • [22] Moreno-Garcia, L., Adjallé, K., Barnabé, S. ve Raghavan, G., Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability, Renewable and Sustainable Energy Reviews, 76 (2017) 493-506.
  • [23] Suali, E. ve Sarbatly, R., Conversion of microalgae to biofuel, Renewable and Sustainable Energy Reviews, 16,6 (2012) 4316-4342.
  • [24] Slegers, P., Lösing, M., Wijffels, R., Van Straten, G. ve Van Boxtel, A., Scenario evaluation of open pond microalgae production, Algal Research, 2,4 (2013) 358-368.
  • [25] Singh, R. ve Sharma, S., Development of suitable photobioreactor for algae production–A review, Renewable and Sustainable Energy Reviews, 16,4 (2012) 2347-2353.
  • [26] Bilad, M., Discart, V., Vandamme, D., Foubert, I., Muylaert, K. ve Vankelecom, I.F., Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR), Bioresource technology, 155 (2014) 410-417.
  • [27] Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W. ve Chang, J.-S., Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78 (2013) 1-10.
  • [28] Zhang, W., Wang, J., Wang, J. ve Liu, T., Attached cultivation of Haematococcus pluvialis for astaxanthin production, Bioresource technology, 158 (2014) 329-335.
  • [29] Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J. ve Li, S., The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation, Bioresource technology, 163 (2014) 26-32.
  • [30] Liu, T., Wang, J., Hu, Q., Cheng, P., Ji, B., Liu, J., Chen, Y., Zhang, W., Chen, X. ve Chen, L., Attached cultivation technology of microalgae for efficient biomass feedstock production, Bioresource technology, 127 (2013) 216-222.
  • [31] Blair, M.F., Kokabian, B. ve Gude, V.G., Light and growth medium effect on Chlorella vulgaris biomass production, Journal of Environmental Chemical Engineering, 2,1 (2014) 665-674.
  • [32] Kim, T.-H., Lee, Y., Han, S.-H. ve Hwang, S.-J., The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresource technology, 130 (2013) 75-80.
  • [33] Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. ve Das, K., Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature, International Journal of Molecular Sciences, 10,2 (2009) 518-532.
  • [34] Rashid, N., Rehman, M.S.U., Sadiq, M., Mahmood, T. ve Han, J.-I., Current status, issues and developments in microalgae derived biodiesel production, Renewable and Sustainable Energy Reviews, 40 (2014) 760-778.
  • [35] Wang, B., Li, Y., Wu, N. ve Lan, C.Q., CO2 bio-mitigation using microalgae, Applied Microbiology and Biotechnology, 79,5 (2008) 707-718.
  • [36] Jankowska, E., Sahu, A.K. ve Oleskowicz-Popiel, P., Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renewable and Sustainable Energy Reviews, 75 (2017) 692-709.
  • [37] Green, B.R. ve Durnford, D.G., The chlorophyll-carotenoid proteins of oxygenic photosynthesis, Annual Review of Plant Biology, 47,1 (2002) 685-714.
  • [38] Jin, H.-F., Lim, B.-R. ve Lee, K., Influence of nitrate feeding on carbon dioxide fixation by microalgae, Journal of Environmental Science and Health Part A, 41,12 (2006) 2813-2824.
  • [39] Larsdotter, K., Wastewater treatment with microalgae-a literature review, Vatten, 62,1 (2006) 31.
  • [40] Cai, T., Park, S.Y. ve Li, Y., Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable and Sustainable Energy Reviews, 19 (2013) 360-369.
  • [41] Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S. ve De Lasa, H., Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review, Renewable and Sustainable Energy Reviews, 27 (2013) 622-653.
  • [42] Bartley, M.L., Boeing, W.J., Dungan, B.N., Holguin, F.O. ve Schaub, T., pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms, Journal of applied phycology, 26,3 (2014) 1431-1437.
  • [43] Ying, K., Zimmerman, W. ve Gilmour, D., Effects of CO and pH on growth of the microalga Dunaliella salina, Journal of Microbial and Biochemical Technology, 6,3 (2014) 167-173.
  • [44] Zhu, J., Rong, J. ve Zong, B., Factors in mass cultivation of microalgae for biodiesel, Chinese Journal of Catalysis, 34,1 (2013) 80-100.
  • [45] Munoz, R. ve Guieysse, B., Algal–bacterial processes for the treatment of hazardous contaminants: a review, Water Research, 40,15 (2006) 2799-2815.
  • [46] Carlsson, A., van Beilen, J., Möller, R., Clayton, D. ve Bowles, D., Micro-and macro-algae: utility for industrial applications, outputs from the EPOBIO project, University of York. (2007).
  • [47] Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X. ve Van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, TRENDS in Biotechnology, 28,7 (2010) 371-380.
  • [48] Yan, C., Zhu, L. ve Wang, Y., Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods, Applied Energy, 178 (2016) 9-18.
  • [49] Zhao, Y., Sun, S., Hu, C., Zhang, H., Xu, J. ve Ping, L., Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths, Bioresource technology, 187 (2015) 338-345.
  • [50] Wang, X., Gao, S., Zhang, Y., Zhao, Y. ve Cao, W., Performance of different microalgae-based technologies in biogas slurry nutrient removal and biogas upgrading in response to various initial CO2 concentration and mixed light-emitting diode light wavelength treatments, Journal of Cleaner Production, 166 (2017) 408-416.
  • [51] Luo, L., Lin, X., Zeng, F., Luo, S., Chen, Z. ve Tian, G., Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: Operation parameters, microbial diversity and nutrient recovery potential, Bioresource technology, 272 (2019) 421-432.
  • [52] Pizzera, A., Scaglione, D., Bellucci, M., Marazzi, F., Mezzanotte, V., Parati, K. ve Ficara, E., Digestate treatment with algae-bacteria consortia: A field pilot-scale experimentation in a sub-optimal climate area, Bioresource technology, 274 (2019) 232-243.

Mikroalglerle Biyogaz Çamurunun Arıtımı

Year 2020, Volume: 3 Issue: 1, 34 - 42, 31.03.2020

Abstract

Küresel ısınma, bugün dünyada endişe veren sorun haline gelmiştir. Küresel iklim değişikliğinin temel kaynağı insan faaliyetleri için ihtiyaç duyulan enerjiyi sağlayan fosil yakıtlardan açığa çıkan sera gazlarının artan miktarlarıdır. Bilim adamları, sera gazlarının azaltılması yoluyla küresel ısınmaya çözüm bulmaya çalışmaktadır. Biyodizel, biyoetanol ve biyogaz gibi biyoyakıtlar çevre dostu bir yakıt kaynağı olarak düşünülmüş, günümüzde kullanılmaya başlanmış ve yakın gelecekte de yaygın olarak kullanılması hedeflenmektedir. Anaerobik prosesler sırasında oluşan digestate olarak da bilinen biyogaz çamuru önemli oranda besi elementi içermektedir. Son yıllarda, biyogaz çamurunun arttırılması ve algal biyokütle üretmek için mikroalgal bazlı teknoloji ile anaerobik olarak arıtılmış atık sulardan besi elementleri gideren birçok çalışma gerçekleştirilmiştir. Mikroalgler, besi elementlerince zengin atık sularda çoğaltıldığında, mikroalglerin büyümesi için bir besin kaynağı sağlanmış olur. Sonuç olarak, üretilen biyokütle, biyoyakıt üretiminde kullanılabilir. Ayrıca, özellikle azot ve fosfor başta olmak üzere içerdiği kirleticiler ile yeraltı ve yüzey su kaynaklarını kirletme potansiyeline sahip olan biyogaz çamuru bu yolla arıtılabilir. Bu çalışmada, biyogaz çamuru ve onun mikroalg kültürleri ile arıtılması ile ilgili literatür, su kirliliği ilgili biyogaz çamuru yönetimine ve biyoyakıt için biyokütle üretimi dikkate alınarak gözden geçirilmiştir.

References

  • [1] Ryckebosch, E., Drouillon, M. ve Vervaeren, H., Techniques for transformation of biogas to biomethane, Biomass and bioenergy, 35,5 (2011) 1633-1645.
  • [2] Yan, C., Zhang, L., Luo, X. ve Zheng, Z., Influence of influent methane concentration on biogas upgrading and biogas slurry purification under various LED (light-emitting diode) light wavelengths using Chlorella sp, Energy, 69 (2014) 419-426.
  • [3] Zhu, L., Yan, C. ve Li, Z., Microalgal cultivation with biogas slurry for biofuel production, Bioresource technology, 220 (2016) 629-636.
  • [4] Singh, A. ve Olsen, S.I., A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Applied Energy, 88,10 (2011) 3548-3555.
  • [5] Behera, B., Acharya, A., Gargey, I.A., Aly, N. ve Balasubramanian, P., Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production, Bioresource Technology Reports, 5 (2019) 297-316.
  • [6] Astals, S., Nolla-Ardèvol, V. ve Mata-Alvarez, J., Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate, Bioresource technology, 110 (2012) 63-70.
  • [7] Juárez, M.F.-D., Waldhuber, S., Knapp, A., Partl, C., Gómez-Brandón, M. ve Insam, H., Wood ash effects on chemical and microbiological properties of digestate-and manure-amended soils, Biology and fertility of soils, 49,5 (2013) 575-585.
  • [8] Kobayashi, N., Noel, E.A., Barnes, A., Watson, A., Rosenberg, J.N., Erickson, G. ve Oyler, G.A., Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure, Bioresource technology, 150 (2013) 377-386.
  • [9] Liu, J. ve Vyverman, W., Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions, Bioresource technology, 179 (2015) 234-242.
  • [10] Solmaz, A. ve Işık, M., Microalgae production with microalgal submerged membrane photo bioreactor (msmpbr) and examining the nutrient removal yield, Sigma Journal of Engineering and Natural Sciences-Sigma Mühendislik ve Fen Bilimleri Dergisi, (2017).
  • [11] Chisti, Y., Biodiesel from microalgae, Biotechnology Advances, 25,3 (2007) 294-306.
  • [12] Sharma, Y.C. ve Singh, V., Microalgal biodiesel: a possible solution for India’s energy security, Renewable and Sustainable Energy Reviews, 67 (2017) 72-88.
  • [13] Zhu, L., Microalgal culture strategies for biofuel production: a review, Biofuels, Bioproducts and Biorefining, 9,6 (2015) 801-814.
  • [14] Singh, A., Nigam, P.S. ve Murphy, J.D., Mechanism and challenges in commercialisation of algal biofuels, Bioresource technology, 102,1 (2011) 26-34.
  • [15] Medeiros, D.L., Sales, E.A. ve Kiperstok, A., Energy production from microalgae biomass: carbon footprint and energy balance, Journal of Cleaner Production, 96 (2015) 493-500.
  • [16] Xu, M., Bernards, M. ve Hu, Z., Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor, Bioresource technology, 153 (2014) 383-387.
  • [17] Elcik, H. ve Çakmakcı, M., Mikroalglerden Yenilenebilir Biyoyakıt Üretimi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32,3 (2017).
  • [18] Razzak, S.A., Ali, S.A.M., Hossain, M.M. ve De Lasa, H., Biological CO2 fixation with production of microalgae in wastewater–a review, Renewable and Sustainable Energy Reviews, 76 (2017) 379-390.
  • [19] Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J. ve Chang, J.-S., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresource technology, 102,1 (2011) 71-81.
  • [20] Kim, S., Park, J.-e., Cho, Y.-B. ve Hwang, S.-J., Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions, Bioresource technology, 144 (2013) 8-13.
  • [21] McGinn, P.J., Dickinson, K.E., Bhatti, S., Frigon, J.-C., Guiot, S.R. ve O’Leary, S.J., Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations, Photosynthesis Research, 109,1-3 (2011) 231-247.
  • [22] Moreno-Garcia, L., Adjallé, K., Barnabé, S. ve Raghavan, G., Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability, Renewable and Sustainable Energy Reviews, 76 (2017) 493-506.
  • [23] Suali, E. ve Sarbatly, R., Conversion of microalgae to biofuel, Renewable and Sustainable Energy Reviews, 16,6 (2012) 4316-4342.
  • [24] Slegers, P., Lösing, M., Wijffels, R., Van Straten, G. ve Van Boxtel, A., Scenario evaluation of open pond microalgae production, Algal Research, 2,4 (2013) 358-368.
  • [25] Singh, R. ve Sharma, S., Development of suitable photobioreactor for algae production–A review, Renewable and Sustainable Energy Reviews, 16,4 (2012) 2347-2353.
  • [26] Bilad, M., Discart, V., Vandamme, D., Foubert, I., Muylaert, K. ve Vankelecom, I.F., Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR), Bioresource technology, 155 (2014) 410-417.
  • [27] Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W. ve Chang, J.-S., Microalgae-based carbohydrates for biofuel production, Biochemical Engineering Journal, 78 (2013) 1-10.
  • [28] Zhang, W., Wang, J., Wang, J. ve Liu, T., Attached cultivation of Haematococcus pluvialis for astaxanthin production, Bioresource technology, 158 (2014) 329-335.
  • [29] Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J. ve Li, S., The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation, Bioresource technology, 163 (2014) 26-32.
  • [30] Liu, T., Wang, J., Hu, Q., Cheng, P., Ji, B., Liu, J., Chen, Y., Zhang, W., Chen, X. ve Chen, L., Attached cultivation technology of microalgae for efficient biomass feedstock production, Bioresource technology, 127 (2013) 216-222.
  • [31] Blair, M.F., Kokabian, B. ve Gude, V.G., Light and growth medium effect on Chlorella vulgaris biomass production, Journal of Environmental Chemical Engineering, 2,1 (2014) 665-674.
  • [32] Kim, T.-H., Lee, Y., Han, S.-H. ve Hwang, S.-J., The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment, Bioresource technology, 130 (2013) 75-80.
  • [33] Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. ve Das, K., Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature, International Journal of Molecular Sciences, 10,2 (2009) 518-532.
  • [34] Rashid, N., Rehman, M.S.U., Sadiq, M., Mahmood, T. ve Han, J.-I., Current status, issues and developments in microalgae derived biodiesel production, Renewable and Sustainable Energy Reviews, 40 (2014) 760-778.
  • [35] Wang, B., Li, Y., Wu, N. ve Lan, C.Q., CO2 bio-mitigation using microalgae, Applied Microbiology and Biotechnology, 79,5 (2008) 707-718.
  • [36] Jankowska, E., Sahu, A.K. ve Oleskowicz-Popiel, P., Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renewable and Sustainable Energy Reviews, 75 (2017) 692-709.
  • [37] Green, B.R. ve Durnford, D.G., The chlorophyll-carotenoid proteins of oxygenic photosynthesis, Annual Review of Plant Biology, 47,1 (2002) 685-714.
  • [38] Jin, H.-F., Lim, B.-R. ve Lee, K., Influence of nitrate feeding on carbon dioxide fixation by microalgae, Journal of Environmental Science and Health Part A, 41,12 (2006) 2813-2824.
  • [39] Larsdotter, K., Wastewater treatment with microalgae-a literature review, Vatten, 62,1 (2006) 31.
  • [40] Cai, T., Park, S.Y. ve Li, Y., Nutrient recovery from wastewater streams by microalgae: status and prospects, Renewable and Sustainable Energy Reviews, 19 (2013) 360-369.
  • [41] Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S. ve De Lasa, H., Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review, Renewable and Sustainable Energy Reviews, 27 (2013) 622-653.
  • [42] Bartley, M.L., Boeing, W.J., Dungan, B.N., Holguin, F.O. ve Schaub, T., pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms, Journal of applied phycology, 26,3 (2014) 1431-1437.
  • [43] Ying, K., Zimmerman, W. ve Gilmour, D., Effects of CO and pH on growth of the microalga Dunaliella salina, Journal of Microbial and Biochemical Technology, 6,3 (2014) 167-173.
  • [44] Zhu, J., Rong, J. ve Zong, B., Factors in mass cultivation of microalgae for biodiesel, Chinese Journal of Catalysis, 34,1 (2013) 80-100.
  • [45] Munoz, R. ve Guieysse, B., Algal–bacterial processes for the treatment of hazardous contaminants: a review, Water Research, 40,15 (2006) 2799-2815.
  • [46] Carlsson, A., van Beilen, J., Möller, R., Clayton, D. ve Bowles, D., Micro-and macro-algae: utility for industrial applications, outputs from the EPOBIO project, University of York. (2007).
  • [47] Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X. ve Van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, TRENDS in Biotechnology, 28,7 (2010) 371-380.
  • [48] Yan, C., Zhu, L. ve Wang, Y., Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods, Applied Energy, 178 (2016) 9-18.
  • [49] Zhao, Y., Sun, S., Hu, C., Zhang, H., Xu, J. ve Ping, L., Performance of three microalgal strains in biogas slurry purification and biogas upgrade in response to various mixed light-emitting diode light wavelengths, Bioresource technology, 187 (2015) 338-345.
  • [50] Wang, X., Gao, S., Zhang, Y., Zhao, Y. ve Cao, W., Performance of different microalgae-based technologies in biogas slurry nutrient removal and biogas upgrading in response to various initial CO2 concentration and mixed light-emitting diode light wavelength treatments, Journal of Cleaner Production, 166 (2017) 408-416.
  • [51] Luo, L., Lin, X., Zeng, F., Luo, S., Chen, Z. ve Tian, G., Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: Operation parameters, microbial diversity and nutrient recovery potential, Bioresource technology, 272 (2019) 421-432.
  • [52] Pizzera, A., Scaglione, D., Bellucci, M., Marazzi, F., Mezzanotte, V., Parati, K. ve Ficara, E., Digestate treatment with algae-bacteria consortia: A field pilot-scale experimentation in a sub-optimal climate area, Bioresource technology, 274 (2019) 232-243.
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Environmental Sciences
Journal Section Articles
Authors

Aydın Kaan Töre This is me

Mustafa Işık This is me

Publication Date March 31, 2020
Submission Date June 16, 2019
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Töre, A. K., & Işık, M. (2020). Mikroalglerle Biyogaz Çamurunun Arıtımı. Ulusal Çevre Bilimleri Araştırma Dergisi, 3(1), 34-42.
AMA Töre AK, Işık M. Mikroalglerle Biyogaz Çamurunun Arıtımı. UCBAD. March 2020;3(1):34-42.
Chicago Töre, Aydın Kaan, and Mustafa Işık. “Mikroalglerle Biyogaz Çamurunun Arıtımı”. Ulusal Çevre Bilimleri Araştırma Dergisi 3, no. 1 (March 2020): 34-42.
EndNote Töre AK, Işık M (March 1, 2020) Mikroalglerle Biyogaz Çamurunun Arıtımı. Ulusal Çevre Bilimleri Araştırma Dergisi 3 1 34–42.
IEEE A. K. Töre and M. Işık, “Mikroalglerle Biyogaz Çamurunun Arıtımı”, UCBAD, vol. 3, no. 1, pp. 34–42, 2020.
ISNAD Töre, Aydın Kaan - Işık, Mustafa. “Mikroalglerle Biyogaz Çamurunun Arıtımı”. Ulusal Çevre Bilimleri Araştırma Dergisi 3/1 (March 2020), 34-42.
JAMA Töre AK, Işık M. Mikroalglerle Biyogaz Çamurunun Arıtımı. UCBAD. 2020;3:34–42.
MLA Töre, Aydın Kaan and Mustafa Işık. “Mikroalglerle Biyogaz Çamurunun Arıtımı”. Ulusal Çevre Bilimleri Araştırma Dergisi, vol. 3, no. 1, 2020, pp. 34-42.
Vancouver Töre AK, Işık M. Mikroalglerle Biyogaz Çamurunun Arıtımı. UCBAD. 2020;3(1):34-42.

 ❤ UCBAD