Research Article
BibTex RIS Cite

Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability

Year 2025, Volume: 8 Issue: 2, 108 - 115, 27.06.2025
https://doi.org/10.32323/ujma.1681099

Abstract

This paper presents a novel perspective on established neutrosophic statistical convergence by utilizing ideals and proposing new ideas. Specifically, we explore the neutrosophic $\mathcal{I}$-statistical convergence of sequences of neutrosophic random variables (briefly, NRVs) in probability, as well as the neutrosophic $\mathcal{I}% $-lacunary statistical convergence and neutrosophic $\mathcal{I}$-$\lambda $-statistical convergence of such sequences in probability. Additionally, we investigate their interconnections and examine some fundamental properties of these concepts.

References

  • [1] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
  • [2] M. Bisher, A. Hatip, Neutrosophic random variables, Neutrosophic Sets Syst., 39 (2021), 44–52. http://dx.doi.org/10.5281/zenodo.4444987
  • [3] C. Granados, New results on neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 286-297. http://dx.doi.org/10.5281/zenodo.5775135
  • [4] C. Granados, J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 541-557. http://dx.doi.org/10.5281/zenodo.5775184
  • [5] C. Granados, A. K. Das, B. Das, Some continuous neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Adv. Theory Nonlinear Anal. Appl., 6(3) (2022), 380-389. http://dx.doi.org/10.31197/atnaa.1056480
  • [6] C. Granados, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Hacet. J. Math. Stat., 51(5) (2022), 1442-1457. http://dx.doi.org/10.15672/hujms.1099081
  • [7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
  • [9] M. Kirişci, N. Şimsek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059-1073. https://doi.org/10.1007/s41478-020-00234-0
  • [10] C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst., 42 (2021), 333-344. http://dx.doi.org/10.5281/zenodo.4718194
  • [11] O. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 41(2) (2021), 2581-2590. https://doi.org/10.3233/JIFS-201568
  • [12] V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 239-252.
  • [13] V. A. Khan, H. Fatima, M. D. Khan, A. Ahamd, Spaces of neutrosophic λ-statistical convergence sequences and their properties, J. Math. Comput. Sci., 23(1) (2021), 1-9. http://dx.doi.org/10.22436/jmcs.023.01.01
  • [14] U. Ali, I. Umar, A. Khaleel, Statistically convergent sequences in neutrosophic metric spaces, Sci Inquiry Rev., 6(1) (2022), 34-50. http://dx.doi.org/10.32350/sir.61.03
  • [15] R. K. Al-Hamido, A new approach of neutrosophic topological space, Int. J. Neutrosophic Sci., 7(1) (2020), 55-61. http://dx.doi.org/10.54216/IJNS.070105
  • [16] C. Granados, C. Choudhury, Quasi-statistical convergence in neutrosophic normed spaces for triple sequence spaces, Asian-Eur. J. Math., 6(3) (2023), 1-17, Article ID 2350034. https://doi.org/10.1142/S1793557123500341
  • [17] S. Ghosal, I-statistical convergence of a sequence of random variables in probability, Afr. Mat., 25 (2014), 681-692. https://doi.org/10.1007/s13370-013-0142-x
  • [18] S. K. Ghosal, Statistical convergence of a sequence of random variables and limit function, Appl. Math., 58(4) (2013), 423-437. https://doi.org/10.1007/s10492-013-0021-7
  • [19] V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, 1976.
  • [20] F. Smarandache, Neutrosophic Probability, Set, and Logic (first version), 2000. http://dx.doi.org/10.5281/zenodo.57726
  • [21] F. Smarandache, Neutrosophic set a generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24(3) (2005), 287–297.
  • [22] M. Ali, F. Smarandache, M. Shabir, L. Vladareanu, Generalization of neutrosophic rings and neutrosophic fields, Neutrosophic Sets Syst., 5 (2014), 9–14.
  • [23] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability, Craiova, Romania: Sitech - Education, 2013.
  • [24] K. Kuratowski, Topologie I, Monografie Matematyczne tom 3, PWN-Polish Scientific Publishers, Warszawa, 1933.
  • [25] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific. J. Math., 160 (1993), 43-51.
  • [26] V.A. Khan, M. Kamran, M. Arshad, A. Esi, A new type of g-neutrosophic metric spaces with order n, Afr. Mat., 36 (2025), Article ID 112. https://doi.org/10.1007/s13370-025-01328-3
  • [27] V.A. Khan, M. Arshad, Application of neutrosophic normed spaces to analyze the convergence of sequences involving neutrosophic operators, Math. Found. Comput., (2025), Early Access. https://doi.org/10.3934/mfc.2025010
  • [28] V.A. Khan, M.D. Khan, M. Arshad, M. Et, On some basic character of differentiation in neutrosophic normed spaces, Filomat, 39(2) (2025), 512–532.
  • [29] H. Ş. Kandemir, M. Et, N. D. Aral, Strongly λ-convergence of order α in neutrosophic normed spaces, Dera Natung Gov. Coll. Res. J., 7(1) (2022), 1-9. http://dx.doi.org/10.56405/dngcrj.2022.07.01.01
  • [30] T. Yaying, On Λ-Fibonacci difference sequence spaces of fractional order, Dera Natung Gov. Coll. Res. J., 6(1) (2021), 92-102. http://dx.doi.org/10. 56405/dngcrj.2021.06.01.10

Year 2025, Volume: 8 Issue: 2, 108 - 115, 27.06.2025
https://doi.org/10.32323/ujma.1681099

Abstract

References

  • [1] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
  • [2] M. Bisher, A. Hatip, Neutrosophic random variables, Neutrosophic Sets Syst., 39 (2021), 44–52. http://dx.doi.org/10.5281/zenodo.4444987
  • [3] C. Granados, New results on neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 286-297. http://dx.doi.org/10.5281/zenodo.5775135
  • [4] C. Granados, J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 541-557. http://dx.doi.org/10.5281/zenodo.5775184
  • [5] C. Granados, A. K. Das, B. Das, Some continuous neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Adv. Theory Nonlinear Anal. Appl., 6(3) (2022), 380-389. http://dx.doi.org/10.31197/atnaa.1056480
  • [6] C. Granados, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Hacet. J. Math. Stat., 51(5) (2022), 1442-1457. http://dx.doi.org/10.15672/hujms.1099081
  • [7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  • [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
  • [9] M. Kirişci, N. Şimsek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059-1073. https://doi.org/10.1007/s41478-020-00234-0
  • [10] C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst., 42 (2021), 333-344. http://dx.doi.org/10.5281/zenodo.4718194
  • [11] O. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 41(2) (2021), 2581-2590. https://doi.org/10.3233/JIFS-201568
  • [12] V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 239-252.
  • [13] V. A. Khan, H. Fatima, M. D. Khan, A. Ahamd, Spaces of neutrosophic λ-statistical convergence sequences and their properties, J. Math. Comput. Sci., 23(1) (2021), 1-9. http://dx.doi.org/10.22436/jmcs.023.01.01
  • [14] U. Ali, I. Umar, A. Khaleel, Statistically convergent sequences in neutrosophic metric spaces, Sci Inquiry Rev., 6(1) (2022), 34-50. http://dx.doi.org/10.32350/sir.61.03
  • [15] R. K. Al-Hamido, A new approach of neutrosophic topological space, Int. J. Neutrosophic Sci., 7(1) (2020), 55-61. http://dx.doi.org/10.54216/IJNS.070105
  • [16] C. Granados, C. Choudhury, Quasi-statistical convergence in neutrosophic normed spaces for triple sequence spaces, Asian-Eur. J. Math., 6(3) (2023), 1-17, Article ID 2350034. https://doi.org/10.1142/S1793557123500341
  • [17] S. Ghosal, I-statistical convergence of a sequence of random variables in probability, Afr. Mat., 25 (2014), 681-692. https://doi.org/10.1007/s13370-013-0142-x
  • [18] S. K. Ghosal, Statistical convergence of a sequence of random variables and limit function, Appl. Math., 58(4) (2013), 423-437. https://doi.org/10.1007/s10492-013-0021-7
  • [19] V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, 1976.
  • [20] F. Smarandache, Neutrosophic Probability, Set, and Logic (first version), 2000. http://dx.doi.org/10.5281/zenodo.57726
  • [21] F. Smarandache, Neutrosophic set a generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24(3) (2005), 287–297.
  • [22] M. Ali, F. Smarandache, M. Shabir, L. Vladareanu, Generalization of neutrosophic rings and neutrosophic fields, Neutrosophic Sets Syst., 5 (2014), 9–14.
  • [23] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability, Craiova, Romania: Sitech - Education, 2013.
  • [24] K. Kuratowski, Topologie I, Monografie Matematyczne tom 3, PWN-Polish Scientific Publishers, Warszawa, 1933.
  • [25] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific. J. Math., 160 (1993), 43-51.
  • [26] V.A. Khan, M. Kamran, M. Arshad, A. Esi, A new type of g-neutrosophic metric spaces with order n, Afr. Mat., 36 (2025), Article ID 112. https://doi.org/10.1007/s13370-025-01328-3
  • [27] V.A. Khan, M. Arshad, Application of neutrosophic normed spaces to analyze the convergence of sequences involving neutrosophic operators, Math. Found. Comput., (2025), Early Access. https://doi.org/10.3934/mfc.2025010
  • [28] V.A. Khan, M.D. Khan, M. Arshad, M. Et, On some basic character of differentiation in neutrosophic normed spaces, Filomat, 39(2) (2025), 512–532.
  • [29] H. Ş. Kandemir, M. Et, N. D. Aral, Strongly λ-convergence of order α in neutrosophic normed spaces, Dera Natung Gov. Coll. Res. J., 7(1) (2022), 1-9. http://dx.doi.org/10.56405/dngcrj.2022.07.01.01
  • [30] T. Yaying, On Λ-Fibonacci difference sequence spaces of fractional order, Dera Natung Gov. Coll. Res. J., 6(1) (2021), 92-102. http://dx.doi.org/10. 56405/dngcrj.2021.06.01.10
There are 30 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Carlos Granados 0000-0002-7754-1468

Ömer Kişi 0000-0001-6844-3092

Submission Date April 21, 2025
Acceptance Date June 26, 2025
Early Pub Date June 27, 2025
Publication Date June 27, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Granados, C., & Kişi, Ö. (2025). Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability. Universal Journal of Mathematics and Applications, 8(2), 108-115. https://doi.org/10.32323/ujma.1681099
AMA Granados C, Kişi Ö. Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability. Univ. J. Math. Appl. June 2025;8(2):108-115. doi:10.32323/ujma.1681099
Chicago Granados, Carlos, and Ömer Kişi. “Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability”. Universal Journal of Mathematics and Applications 8, no. 2 (June 2025): 108-15. https://doi.org/10.32323/ujma.1681099.
EndNote Granados C, Kişi Ö (June 1, 2025) Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability. Universal Journal of Mathematics and Applications 8 2 108–115.
IEEE C. Granados and Ö. Kişi, “Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability”, Univ. J. Math. Appl., vol. 8, no. 2, pp. 108–115, 2025, doi: 10.32323/ujma.1681099.
ISNAD Granados, Carlos - Kişi, Ömer. “Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability”. Universal Journal of Mathematics and Applications 8/2 (June2025), 108-115. https://doi.org/10.32323/ujma.1681099.
JAMA Granados C, Kişi Ö. Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability. Univ. J. Math. Appl. 2025;8:108–115.
MLA Granados, Carlos and Ömer Kişi. “Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability”. Universal Journal of Mathematics and Applications, vol. 8, no. 2, 2025, pp. 108-15, doi:10.32323/ujma.1681099.
Vancouver Granados C, Kişi Ö. Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability. Univ. J. Math. Appl. 2025;8(2):108-15.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.