Neutrosophic $\mathcal{I}$-Statistical Convergence of a Sequence of Neutrosophic Random Variables In Probability
Year 2025,
Volume: 8 Issue: 2, 108 - 115, 27.06.2025
Carlos Granados
,
Ömer Kişi
Abstract
This paper presents a novel perspective on established neutrosophic statistical convergence by utilizing ideals and proposing new ideas. Specifically, we explore the neutrosophic $\mathcal{I}$-statistical convergence of sequences of neutrosophic random variables (briefly, NRVs) in probability, as well as the neutrosophic $\mathcal{I}% $-lacunary statistical convergence and neutrosophic $\mathcal{I}$-$\lambda $-statistical convergence of such sequences in probability. Additionally, we investigate their interconnections and examine some fundamental properties of these concepts.
References
-
[1] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
-
[2] M. Bisher, A. Hatip, Neutrosophic random variables, Neutrosophic Sets Syst., 39 (2021), 44–52. http://dx.doi.org/10.5281/zenodo.4444987
-
[3] C. Granados, New results on neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 286-297. http://dx.doi.org/10.5281/zenodo.5775135
-
[4] C. Granados, J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 541-557. http://dx.doi.org/10.5281/zenodo.5775184
-
[5] C. Granados, A. K. Das, B. Das, Some continuous neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Adv. Theory Nonlinear Anal. Appl., 6(3) (2022), 380-389. http://dx.doi.org/10.31197/atnaa.1056480
-
[6] C. Granados, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Hacet. J. Math. Stat., 51(5) (2022), 1442-1457. http://dx.doi.org/10.15672/hujms.1099081
-
[7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
-
[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
-
[9] M. Kirişci, N. Şimsek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059-1073. https://doi.org/10.1007/s41478-020-00234-0
-
[10] C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst., 42 (2021), 333-344. http://dx.doi.org/10.5281/zenodo.4718194
-
[11] O. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 41(2) (2021), 2581-2590. https://doi.org/10.3233/JIFS-201568
-
[12] V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 239-252.
-
[13] V. A. Khan, H. Fatima, M. D. Khan, A. Ahamd, Spaces of neutrosophic λ-statistical convergence sequences and their properties, J. Math. Comput. Sci., 23(1) (2021), 1-9. http://dx.doi.org/10.22436/jmcs.023.01.01
-
[14] U. Ali, I. Umar, A. Khaleel, Statistically convergent sequences in neutrosophic metric spaces, Sci Inquiry Rev., 6(1) (2022), 34-50. http://dx.doi.org/10.32350/sir.61.03
-
[15] R. K. Al-Hamido, A new approach of neutrosophic topological space, Int. J. Neutrosophic Sci., 7(1) (2020), 55-61. http://dx.doi.org/10.54216/IJNS.070105
-
[16] C. Granados, C. Choudhury, Quasi-statistical convergence in neutrosophic normed spaces for triple sequence spaces, Asian-Eur. J. Math., 6(3) (2023), 1-17, Article ID 2350034. https://doi.org/10.1142/S1793557123500341
-
[17] S. Ghosal, I-statistical convergence of a sequence of random variables in probability, Afr. Mat., 25 (2014), 681-692. https://doi.org/10.1007/s13370-013-0142-x
-
[18] S. K. Ghosal, Statistical convergence of a sequence of random variables and limit function, Appl. Math., 58(4) (2013), 423-437. https://doi.org/10.1007/s10492-013-0021-7
-
[19] V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, 1976.
-
[20] F. Smarandache, Neutrosophic Probability, Set, and Logic (first version), 2000. http://dx.doi.org/10.5281/zenodo.57726
-
[21] F. Smarandache, Neutrosophic set a generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24(3) (2005), 287–297.
-
[22] M. Ali, F. Smarandache, M. Shabir, L. Vladareanu, Generalization of neutrosophic rings and neutrosophic fields, Neutrosophic Sets Syst., 5 (2014), 9–14.
-
[23] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability, Craiova, Romania: Sitech - Education, 2013.
-
[24] K. Kuratowski, Topologie I, Monografie Matematyczne tom 3, PWN-Polish Scientific Publishers, Warszawa, 1933.
-
[25] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific. J. Math., 160 (1993), 43-51.
-
[26] V.A. Khan, M. Kamran, M. Arshad, A. Esi, A new type of g-neutrosophic metric spaces with order n, Afr. Mat., 36 (2025), Article ID 112. https://doi.org/10.1007/s13370-025-01328-3
-
[27] V.A. Khan, M. Arshad, Application of neutrosophic normed spaces to analyze the convergence of sequences involving neutrosophic operators, Math. Found. Comput., (2025), Early Access. https://doi.org/10.3934/mfc.2025010
-
[28] V.A. Khan, M.D. Khan, M. Arshad, M. Et, On some basic character of differentiation in neutrosophic normed spaces, Filomat, 39(2) (2025), 512–532.
-
[29] H. Ş. Kandemir, M. Et, N. D. Aral, Strongly λ-convergence of order α in neutrosophic normed spaces, Dera Natung Gov. Coll. Res. J., 7(1) (2022), 1-9. http://dx.doi.org/10.56405/dngcrj.2022.07.01.01
-
[30] T. Yaying, On Λ-Fibonacci difference sequence spaces of fractional order, Dera Natung Gov. Coll. Res. J., 6(1) (2021), 92-102. http://dx.doi.org/10. 56405/dngcrj.2021.06.01.10
Year 2025,
Volume: 8 Issue: 2, 108 - 115, 27.06.2025
Carlos Granados
,
Ömer Kişi
References
-
[1] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
-
[2] M. Bisher, A. Hatip, Neutrosophic random variables, Neutrosophic Sets Syst., 39 (2021), 44–52. http://dx.doi.org/10.5281/zenodo.4444987
-
[3] C. Granados, New results on neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 286-297. http://dx.doi.org/10.5281/zenodo.5775135
-
[4] C. Granados, J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets Syst., 47 (2021), 541-557. http://dx.doi.org/10.5281/zenodo.5775184
-
[5] C. Granados, A. K. Das, B. Das, Some continuous neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Adv. Theory Nonlinear Anal. Appl., 6(3) (2022), 380-389. http://dx.doi.org/10.31197/atnaa.1056480
-
[6] C. Granados, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random variables, Hacet. J. Math. Stat., 51(5) (2022), 1442-1457. http://dx.doi.org/10.15672/hujms.1099081
-
[7] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
-
[8] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
-
[9] M. Kirişci, N. Şimsek, Neutrosophic normed spaces and statistical convergence, J. Anal., 28 (2020), 1059-1073. https://doi.org/10.1007/s41478-020-00234-0
-
[10] C. Granados, A. Dhital, Statistical convergence of double sequences in neutrosophic normed spaces, Neutrosophic Sets Syst., 42 (2021), 333-344. http://dx.doi.org/10.5281/zenodo.4718194
-
[11] O. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst., 41(2) (2021), 2581-2590. https://doi.org/10.3233/JIFS-201568
-
[12] V. A. Khan, M. D. Khan, M. Ahmad, Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst., 42 (2021), 239-252.
-
[13] V. A. Khan, H. Fatima, M. D. Khan, A. Ahamd, Spaces of neutrosophic λ-statistical convergence sequences and their properties, J. Math. Comput. Sci., 23(1) (2021), 1-9. http://dx.doi.org/10.22436/jmcs.023.01.01
-
[14] U. Ali, I. Umar, A. Khaleel, Statistically convergent sequences in neutrosophic metric spaces, Sci Inquiry Rev., 6(1) (2022), 34-50. http://dx.doi.org/10.32350/sir.61.03
-
[15] R. K. Al-Hamido, A new approach of neutrosophic topological space, Int. J. Neutrosophic Sci., 7(1) (2020), 55-61. http://dx.doi.org/10.54216/IJNS.070105
-
[16] C. Granados, C. Choudhury, Quasi-statistical convergence in neutrosophic normed spaces for triple sequence spaces, Asian-Eur. J. Math., 6(3) (2023), 1-17, Article ID 2350034. https://doi.org/10.1142/S1793557123500341
-
[17] S. Ghosal, I-statistical convergence of a sequence of random variables in probability, Afr. Mat., 25 (2014), 681-692. https://doi.org/10.1007/s13370-013-0142-x
-
[18] S. K. Ghosal, Statistical convergence of a sequence of random variables and limit function, Appl. Math., 58(4) (2013), 423-437. https://doi.org/10.1007/s10492-013-0021-7
-
[19] V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York, 1976.
-
[20] F. Smarandache, Neutrosophic Probability, Set, and Logic (first version), 2000. http://dx.doi.org/10.5281/zenodo.57726
-
[21] F. Smarandache, Neutrosophic set a generalization of the intuitionistic fuzzy sets, Inter. J. Pure Appl. Math., 24(3) (2005), 287–297.
-
[22] M. Ali, F. Smarandache, M. Shabir, L. Vladareanu, Generalization of neutrosophic rings and neutrosophic fields, Neutrosophic Sets Syst., 5 (2014), 9–14.
-
[23] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability, Craiova, Romania: Sitech - Education, 2013.
-
[24] K. Kuratowski, Topologie I, Monografie Matematyczne tom 3, PWN-Polish Scientific Publishers, Warszawa, 1933.
-
[25] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific. J. Math., 160 (1993), 43-51.
-
[26] V.A. Khan, M. Kamran, M. Arshad, A. Esi, A new type of g-neutrosophic metric spaces with order n, Afr. Mat., 36 (2025), Article ID 112. https://doi.org/10.1007/s13370-025-01328-3
-
[27] V.A. Khan, M. Arshad, Application of neutrosophic normed spaces to analyze the convergence of sequences involving neutrosophic operators, Math. Found. Comput., (2025), Early Access. https://doi.org/10.3934/mfc.2025010
-
[28] V.A. Khan, M.D. Khan, M. Arshad, M. Et, On some basic character of differentiation in neutrosophic normed spaces, Filomat, 39(2) (2025), 512–532.
-
[29] H. Ş. Kandemir, M. Et, N. D. Aral, Strongly λ-convergence of order α in neutrosophic normed spaces, Dera Natung Gov. Coll. Res. J., 7(1) (2022), 1-9. http://dx.doi.org/10.56405/dngcrj.2022.07.01.01
-
[30] T. Yaying, On Λ-Fibonacci difference sequence spaces of fractional order, Dera Natung Gov. Coll. Res. J., 6(1) (2021), 92-102. http://dx.doi.org/10. 56405/dngcrj.2021.06.01.10