Research Article
BibTex RIS Cite
Year 2021, , 76 - 81, 30.06.2021
https://doi.org/10.32323/ujma.917838

Abstract

References

  • [1] R. Abo-Zeid, On a fourth order rational difference equation, Tbilisi Math. J., 12 (4) (2019), 71-79.
  • [2] R. Abo-Zeid, Global behavior of a fourth order difference equation with quadratic term, Bol. Soc. Mat. Mexicana, 25 (2019), 187-194.
  • [3] R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (1) (2019), 147-158.
  • [4] R. Abo-Zeid, Behavior of solutions of a higher order difference equation, Alabama J. Math., 42 (2018), 1-10.
  • [5] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., DOI:10.1515/gmj-2018-0008.
  • [6] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl., 24 (2) (2018), 220-239.
  • [7] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat 30(12) (2016), 3265􀀀3276.
  • [8] R. Abo-Zeid, Global behavior of a fourth order difference equation, Acta Comment. Univ. Tartu. Math., 18(2) (2014), 211-220.
  • [9] R. P. Agarwal and E. M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math., 17 (2) (2008), 181–201.
  • [10] H. S. Alayachi, M. S. M. Noorani and E. M. Elsayed, Qualitative analysis of a fourth order difference equation, J. Appl. Anal. Comput., 10 (4) (2020), 1343–1354.
  • [11] A.M. Amleh, E. Camouzis and G. Ladas On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3(2) (2008), 195-225.
  • [12] A.M. Amleh, E. Camouzis and G. Ladas On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3(1) (2008), 1-35.
  • [13] F. Balibrea and A. Cascales, On forbidden sets, J. Difference Equ. Appl. 21(10) (2015), 974􀀀996.
  • [14] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, 2008.
  • [15] H. El-Metwally and E. M. Elsayed, Qualitative study of solutions of some difference equations, Abstr. Appl. Anal., Volume 2012, Article ID 248291, 16 pages, 2012.
  • [16] M. G¨um¨us¸, The global asymptotic stability of a system of difference equations, J. Difference Equ. Appl., 24 (6) (2018), 976-991.
  • [17] M. Gu¨mu¨s¸ and O¨ . O¨ calan, Global asymptotic stability of a nonautonomous difference equation, J. Appl. Math., Volume 2014, Article ID 395954, 5 pages, 2014.
  • [18] E.A. Jankowski and M.R.S. Kulenovi´c, Attractivity and global stability for linearizable difference equations, Comput. Math. Appl. 57 (2009), 1592􀀀1607.
  • [19] C.M. Kent and H. Sedaghat, Global attractivity in a quadratic-linear rational difference equation with delay, J. Difference Equ. Appl., 15 (10) (2009), 913􀀀925.
  • [20] R. Khalaf-Allah, Asymptotic behavior and periodic nature of two difference equations, Ukrainian Math. J., 61 (6) (2009), 988-993.
  • [21] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
  • [22] M. R. S. Kulenovi´c and M. Mehulji´c, Global behavior of some rational second order difference equations, Int. J. Difference Equ., 7 (2) (2012), 153–162.
  • [23] M.R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, 2002.
  • [24] S. Stevic, Boundedness character of a fourth order nonlinear difference equation, Chaos, Sol. Frac., 40 (2009), 2364–2369.

On the Solutions of a Fourth Order Difference Equation

Year 2021, , 76 - 81, 30.06.2021
https://doi.org/10.32323/ujma.917838

Abstract

In this paper, we solve and study the global behavior of the well defined solutions of the difference equation $$x_{n+1}=\frac{x_{n}x_{n-3}}{Ax_{n-2}+Bx_{n-3}}, \quad n=0,1,...,$$ where $A, B>0$ and the initial values $x_{-i}$, $i\in\{0,1,2,3\}$ are real numbers.

References

  • [1] R. Abo-Zeid, On a fourth order rational difference equation, Tbilisi Math. J., 12 (4) (2019), 71-79.
  • [2] R. Abo-Zeid, Global behavior of a fourth order difference equation with quadratic term, Bol. Soc. Mat. Mexicana, 25 (2019), 187-194.
  • [3] R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (1) (2019), 147-158.
  • [4] R. Abo-Zeid, Behavior of solutions of a higher order difference equation, Alabama J. Math., 42 (2018), 1-10.
  • [5] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., DOI:10.1515/gmj-2018-0008.
  • [6] R. Abo-Zeid, Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl., 24 (2) (2018), 220-239.
  • [7] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat 30(12) (2016), 3265􀀀3276.
  • [8] R. Abo-Zeid, Global behavior of a fourth order difference equation, Acta Comment. Univ. Tartu. Math., 18(2) (2014), 211-220.
  • [9] R. P. Agarwal and E. M. Elsayed, Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math., 17 (2) (2008), 181–201.
  • [10] H. S. Alayachi, M. S. M. Noorani and E. M. Elsayed, Qualitative analysis of a fourth order difference equation, J. Appl. Anal. Comput., 10 (4) (2020), 1343–1354.
  • [11] A.M. Amleh, E. Camouzis and G. Ladas On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3(2) (2008), 195-225.
  • [12] A.M. Amleh, E. Camouzis and G. Ladas On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3(1) (2008), 1-35.
  • [13] F. Balibrea and A. Cascales, On forbidden sets, J. Difference Equ. Appl. 21(10) (2015), 974􀀀996.
  • [14] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, 2008.
  • [15] H. El-Metwally and E. M. Elsayed, Qualitative study of solutions of some difference equations, Abstr. Appl. Anal., Volume 2012, Article ID 248291, 16 pages, 2012.
  • [16] M. G¨um¨us¸, The global asymptotic stability of a system of difference equations, J. Difference Equ. Appl., 24 (6) (2018), 976-991.
  • [17] M. Gu¨mu¨s¸ and O¨ . O¨ calan, Global asymptotic stability of a nonautonomous difference equation, J. Appl. Math., Volume 2014, Article ID 395954, 5 pages, 2014.
  • [18] E.A. Jankowski and M.R.S. Kulenovi´c, Attractivity and global stability for linearizable difference equations, Comput. Math. Appl. 57 (2009), 1592􀀀1607.
  • [19] C.M. Kent and H. Sedaghat, Global attractivity in a quadratic-linear rational difference equation with delay, J. Difference Equ. Appl., 15 (10) (2009), 913􀀀925.
  • [20] R. Khalaf-Allah, Asymptotic behavior and periodic nature of two difference equations, Ukrainian Math. J., 61 (6) (2009), 988-993.
  • [21] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
  • [22] M. R. S. Kulenovi´c and M. Mehulji´c, Global behavior of some rational second order difference equations, Int. J. Difference Equ., 7 (2) (2012), 153–162.
  • [23] M.R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and Hall/HRC, Boca Raton, 2002.
  • [24] S. Stevic, Boundedness character of a fourth order nonlinear difference equation, Chaos, Sol. Frac., 40 (2009), 2364–2369.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

R Abo-zeıd

Publication Date June 30, 2021
Submission Date April 16, 2021
Acceptance Date June 18, 2021
Published in Issue Year 2021

Cite

APA Abo-zeıd, R. (2021). On the Solutions of a Fourth Order Difference Equation. Universal Journal of Mathematics and Applications, 4(2), 76-81. https://doi.org/10.32323/ujma.917838
AMA Abo-zeıd R. On the Solutions of a Fourth Order Difference Equation. Univ. J. Math. Appl. June 2021;4(2):76-81. doi:10.32323/ujma.917838
Chicago Abo-zeıd, R. “On the Solutions of a Fourth Order Difference Equation”. Universal Journal of Mathematics and Applications 4, no. 2 (June 2021): 76-81. https://doi.org/10.32323/ujma.917838.
EndNote Abo-zeıd R (June 1, 2021) On the Solutions of a Fourth Order Difference Equation. Universal Journal of Mathematics and Applications 4 2 76–81.
IEEE R. Abo-zeıd, “On the Solutions of a Fourth Order Difference Equation”, Univ. J. Math. Appl., vol. 4, no. 2, pp. 76–81, 2021, doi: 10.32323/ujma.917838.
ISNAD Abo-zeıd, R. “On the Solutions of a Fourth Order Difference Equation”. Universal Journal of Mathematics and Applications 4/2 (June 2021), 76-81. https://doi.org/10.32323/ujma.917838.
JAMA Abo-zeıd R. On the Solutions of a Fourth Order Difference Equation. Univ. J. Math. Appl. 2021;4:76–81.
MLA Abo-zeıd, R. “On the Solutions of a Fourth Order Difference Equation”. Universal Journal of Mathematics and Applications, vol. 4, no. 2, 2021, pp. 76-81, doi:10.32323/ujma.917838.
Vancouver Abo-zeıd R. On the Solutions of a Fourth Order Difference Equation. Univ. J. Math. Appl. 2021;4(2):76-81.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.