Research Article
BibTex RIS Cite

Elektrik Piyasasında Sanal Güç Santrali İşletiminin Optimizasyonu için Modelleme Önerisi

Year 2018, Volume: 10 Issue: 3, 12 - 19, 31.12.2018
https://doi.org/10.29137/umagd.477839

Abstract

Elektrik piyasalarının serbestleşmesi ve çevresel sorunların artması sebebiyle yenilenebilir üretime dayalı dağıtık enerji kaynakları, güç sistemlerinde önemli bir yere sahip olmuştur. Yenilenebilir enerji kaynaklarının (YEK) enerji piyasasında yer alması YEK sahipleri için ciddi bir zorluk oluşturmaktadır. Bunun temel nedeni, yenilenebilir enerji kaynaklarının güç çıkışlarının belirsizliğidir. Örneğin, rüzgâr güç santrallerinin (RGS) güç çıkışı rüzgâr hızına, güneş enerji santrallerinin (GES) güç çıkışı güneş ışınımına ve bulutlanmaya göre değişmektedir. Bu da uzun veya orta vadeli elektrik dağıtım sözleşmelerini yerine getirememe riski taşımaktadır. Bu riski ortadan kaldırmak için, farklı türde yenilenebilen ve yenilenemeyen üretim birimleri ve depolama sistemleri birleştirilerek,
elektrik piyasasında tek yönlü bir birim oluşturulur. Bu birim Sanal Güç Santralleri (SGS) olarak tanımlanmaktadır. Bu çalışmada, gün öncesi piyasasında elektrik satarak veya satın alarak faaliyet gösteren bir SGS sahibinin maksimum kâr elde edebilmesi amacıyla saatlik işletim planlaması modellenmiştir. Çalışmada ele alınan SGS, rüzgâr güç santrali, güneş enerji santrali, konvansiyonel güç santrali ve bir enerji depolama sisteminden oluşmaktadır. Problem, karışık tamsayı doğrusal olmayan problem olarak formülleştirilip, 24 saat zaman aralığı için uygulanmıştır ve GAMS yazılımında test edilmiştir. Önerilen yöntemin, gün öncesi piyasasında optimum satım/satın alma tekliflerini nasıl vereceği yönünde SGS sahibine yardımcı olacağı gösterilerek yöntemin uygulanabilirliği kanıtlanmıştır.

References

  • Lazaroiu, G. C., Dumbrava, V., Roscia, M. & Zaninelli D. (2015). Energy trading optimization of a Virual Power Plant on electricity market, The 9th Internationl Symposium on Advanced Topics in Electrical Engineering, 7-9 Mayıs 2015, Bükreş, Romanya. doi:10.1109/ATEE.2015.7133932
  • Kasaei, M. J., Gandomkar, M. & Nikoukar, J. (2017). Optimal management of renewable energy sources by virtual power plant, Renewable Energy, 114(2017), 1180-1188. doi:10.1016/j.renene.2017.08.010
  • Kasaei, M. J., Gandomkar, M. & Nikoukar, J. (2017). Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant, Journal of Energy Resources Technology, Vol. 139 / 062003. doi: 10.1115/1.4037371
  • Pandzic, H., Kuzle, I. & Capuder, T. (2013). Virtual power plant mid-term dispatch optimization, Applied Energy, 101(2013), 134-141. doi:10.1016/j.apenergy.2012.05.039
  • Zamani, A. G., Zakariazadeh, A. & Jadid, S. (2016). Day-ahead resource scheduling of a renewable energy based virtual power plant, Applied Energy, 169(2016), 324-340. doi: 10.1016/j.apenergy.2016.02.011
  • Al-Awami, A. T., Amleh, N. A. & Muqbel, A. (2016). Optimal Demand Response Bidding and Pricing Mechanism with Fuzzy Optimization: Application for a Virtual Power Plant, 2016 Clemson University Power Systems Conference (PSC), 8-11 Mart 2016, Clemson, SC, USA. doi: 10.1109/PSC.2016.7462855
  • Baringo, A. & Baringo, L. (2017). A Stochastic Adaptive Robust Optimization Approach for the Offering Strategy of a Virtual Power Plant, IEEE Transactions on Power Systems, Vol. 32, No. 5, 3492-3504. doi: 10.1109/TPWRS.2016.2633546
  • Samakoosh, H. M., Ghasemi, J. & Kazemitabar, J. (2017). Optimized neural network based thermal and electrical scheduling of virtual power plant in the presence of energy storage, Journal of Renewable and Sustainable Energy, Vol. 9, 025903 (2017), doi: 10.1063/1.4979500.
  • Xia, Y. & Liu, J. (2016). Optimal Scheduling of Virtual Power Plant with Risk Management, Journal of Power Technologies, 96 (1) (2016), 49–56.
  • Ferruzzi, G., Cervone, G., Monache, L. D., Graditi, G. & Jacobone, F. (2016). Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production, Energy, 106(2016), 194-202. doi: 10.1016/j.energy.2016.02.166
  • Enerji Piyasaları İşletme A.Ş (EPİAŞ)., https://seffaflik.epias.com.tr/transparency/ (Erişim tarihi: 01.11.2018).
  • Shayegan-Rad, A., Badri, A. & Zanganeh, A. (2017). Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties, Energy, Volume 121, 114-125. doi: 10.1016/j.energy.2017.01.006

Offering Model for Optimization of Virtual Power Plant Operation in Electricity Market

Year 2018, Volume: 10 Issue: 3, 12 - 19, 31.12.2018
https://doi.org/10.29137/umagd.477839

Abstract

Distributed Energy Sources based on renewable
generation have an important place in power systems due to liberalization of
electricity markets and increase of environmental problems. The involvement of
renewable energy sources (RES) in the energy market poses a serious challenge
for RES owners. The main reason for this is the uncertainty about the power
output of RES. For example, the power output of wind power plants (WPP) depends
on the wind speed and the power output of solar power plants (SPS) depends on
the solar radiation and clouds. This brings the risk of not meeting long-term
or medium-term electricity delivery contracts. To remove this risk, a
single-acting unit in electricity market is formed by combining different types
of renewable and non-renewable generation units and storage systems. This unit
is defined as Virtual Power Plants (VPP). In this study, an hourly operation
scheduling is modeled to get maximum profit for VPP owner participating in day
ahead market by saling or purchasing electricity. The VPP in the study consists
of wind power plant, conventional power plant and energy storage system. The
problem is formulated as a mixed-integer non-linear problem, applied for
24-hours time horizon and tested in GAMS software. The applicability of the
method has been demonstrated by showing that the proposed method helps VPP
owner about how to provide optimum sale/purchase bids in the day ahead market.

References

  • Lazaroiu, G. C., Dumbrava, V., Roscia, M. & Zaninelli D. (2015). Energy trading optimization of a Virual Power Plant on electricity market, The 9th Internationl Symposium on Advanced Topics in Electrical Engineering, 7-9 Mayıs 2015, Bükreş, Romanya. doi:10.1109/ATEE.2015.7133932
  • Kasaei, M. J., Gandomkar, M. & Nikoukar, J. (2017). Optimal management of renewable energy sources by virtual power plant, Renewable Energy, 114(2017), 1180-1188. doi:10.1016/j.renene.2017.08.010
  • Kasaei, M. J., Gandomkar, M. & Nikoukar, J. (2017). Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant, Journal of Energy Resources Technology, Vol. 139 / 062003. doi: 10.1115/1.4037371
  • Pandzic, H., Kuzle, I. & Capuder, T. (2013). Virtual power plant mid-term dispatch optimization, Applied Energy, 101(2013), 134-141. doi:10.1016/j.apenergy.2012.05.039
  • Zamani, A. G., Zakariazadeh, A. & Jadid, S. (2016). Day-ahead resource scheduling of a renewable energy based virtual power plant, Applied Energy, 169(2016), 324-340. doi: 10.1016/j.apenergy.2016.02.011
  • Al-Awami, A. T., Amleh, N. A. & Muqbel, A. (2016). Optimal Demand Response Bidding and Pricing Mechanism with Fuzzy Optimization: Application for a Virtual Power Plant, 2016 Clemson University Power Systems Conference (PSC), 8-11 Mart 2016, Clemson, SC, USA. doi: 10.1109/PSC.2016.7462855
  • Baringo, A. & Baringo, L. (2017). A Stochastic Adaptive Robust Optimization Approach for the Offering Strategy of a Virtual Power Plant, IEEE Transactions on Power Systems, Vol. 32, No. 5, 3492-3504. doi: 10.1109/TPWRS.2016.2633546
  • Samakoosh, H. M., Ghasemi, J. & Kazemitabar, J. (2017). Optimized neural network based thermal and electrical scheduling of virtual power plant in the presence of energy storage, Journal of Renewable and Sustainable Energy, Vol. 9, 025903 (2017), doi: 10.1063/1.4979500.
  • Xia, Y. & Liu, J. (2016). Optimal Scheduling of Virtual Power Plant with Risk Management, Journal of Power Technologies, 96 (1) (2016), 49–56.
  • Ferruzzi, G., Cervone, G., Monache, L. D., Graditi, G. & Jacobone, F. (2016). Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production, Energy, 106(2016), 194-202. doi: 10.1016/j.energy.2016.02.166
  • Enerji Piyasaları İşletme A.Ş (EPİAŞ)., https://seffaflik.epias.com.tr/transparency/ (Erişim tarihi: 01.11.2018).
  • Shayegan-Rad, A., Badri, A. & Zanganeh, A. (2017). Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties, Energy, Volume 121, 114-125. doi: 10.1016/j.energy.2017.01.006
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Özge Pinar Akkaş 0000-0001-5704-4678

Yağmur Arıkan 0000-0003-0947-2832

Ertuğrul Çam 0000-0001-6491-9225

Publication Date December 31, 2018
Submission Date November 2, 2018
Published in Issue Year 2018 Volume: 10 Issue: 3

Cite

APA Akkaş, Ö. P., Arıkan, Y., & Çam, E. (2018). Elektrik Piyasasında Sanal Güç Santrali İşletiminin Optimizasyonu için Modelleme Önerisi. International Journal of Engineering Research and Development, 10(3), 12-19. https://doi.org/10.29137/umagd.477839

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.