Research Article
BibTex RIS Cite

Matlab Based Electrical Circuit Simulation Of Hodgkin-Huxley Neuron Model

Year 2020, Volume: 12 Issue: 2, 711 - 723, 30.06.2020
https://doi.org/10.29137/umagd.775360

Abstract

Various neuron models have been developed to understand the working principles of nerve cells and their physiological properties and behavior, some of such models are Hodgkin-Huxley (HH), FitzHugh-Nagumo, Morris-Lecar, Hindmarsh-Rose, Izhikevich, Integrate & Fire and Adaptive Exponential Integrate-Fire models. Especially in recent years, research studies on neuron structure, behavior and inter-neuronal phenomenas have become an important research area. HH neuron model has been simulated a number of times by numerical methods in order to better understand the physiology and behavior of the neurons. However, when the literature is looked at, it could easily be observed that the electrical equivalent circuit of the HH neuron model had not been simulated. In this paper, equivalent circuit of HH neuron model is simulated using the range of parameter values of numerical simulation methods, via MATLAB / Simulink and electronic circuit elements such as resistor, capacitor and voltage sources. And it is observed that the expected all stages of the action potential were not formed. But, it has been shown that resting, depolarization and repolarization phases of the action potential were obtained provided that the excitation current applied to the circuit and the change of capacitor values of the circuit but the hyperpolarization state was not fully formed. Therefore, it has been verified that the expected membrane voltages generated by electrical equivalent circuits are directly related to the excitation currents and capacitive values of variable capacitance.

References

  • Cinal, Ş., Ekmekci, N. H., & Özer, M. Stokastik Nöron Modellerinin Simulink İle Benzetimi. Elektrik-Elektronik-Bilgisayar Müh, 11, 458-461.
  • Coşkun, Ö., Kahriman, M., Çömlekçi, S., & Özkorucuklu, S. (2012). SİNİR HÜCRESİNİN PASİF KABLO MODELLEMESİ VE SİMÜLASYONU. Journal of the Faculty of Engineering & Architecture of Gazi University, 27(1).
  • Dahasert N., “Biyolojik Nöron Modellerinin Elektronik Donanımlarının İncelenmesi,” Yüksek Lisans Tezi, Erciyes Üniversitesi, 2012.
  • Dayan, P., & Abbott, L. F. (2003). Theoretical neuroscience: computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience, 15(1), 154-155.
  • Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences, 221(1222), 87-102.
  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
  • Izhikevich, E. M. (2003). Simple Model of Spiking Neurons IEEE Transactions on Neural Networks.
  • Kirigeeganage, S., Jackson, D., Zurada, J. M., & Naber, J. (2018, December). Modeling the bursting behavior of the Hodgkin-Huxley neurons using genetic algorithm based parameter search. In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 470-475). IEEE.
  • Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.
  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical journal, 35(1), 193-213.
  • Nagumo, J., & Sato, S. (1972). On a response characteristic of a mathematical neuron model. Kybernetik, 10(3), 155-164.
  • Özer M.,Tutkun N., “Pasif Dentritlerde Kablo teoremi,” ELECO`2002 Elektrik - Elektronik - Bilgisayar Mühendisliği Sempozyumu Ve Fuarı bildirileri, Bursa, 2002.
  • Parangan, M., Aravind, C., Parasuraman, H., Achuthan, K., Nair, B., & Diwakar, S. (2010). Action potential and bursting phenomena using analog electrical neuron. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India (pp. 1-7).
  • Ruzov, V. (2014). Neuromodulation: action potential modeling, Degree Master of Science in Biomedical Engineering, Faculty of California Polytechnic State University.
  • Szlavik, R. B. (2003). Strategies for improving neural signal detection using a neural-electronic interface. IEEE Transactions on neural systems and rehabilitation engineering, 11(1), 1-8.
  • Tahayori, B., & Dokos, S. (2012). Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4627-4630). IEEE.
  • Thanapitak, S., & Toumazou, C. (2012). A bionics chemical synapse. IEEE transactions on biomedical circuits and systems, 7(3), 296-306.
  • Turhan A. and Kayıkçıoğlu T., “Hodgkin-Huxley Sinir Hücresi Modelinin Doğru, Alternatif ve Rastlantısal Akım Uyarılarına Tepkisinin İncelenmesi,” Ordu Üniv. Bil. Tek. Derg.,vol.6, no. 2, pp. 170-183, 2016.
  • Van Schaik, A. (2001). Building blocks for electronic spiking neural networks. Neural networks, 14(6-7), 617-628.
  • Vazifehkhah Ghaffari, B., Kouhnavard, M., Aihara, T., & Kitajima, T. (2015). Mathematical modeling of subthreshold resonant properties in pyloric dilator neurons. BioMed research international, 2015.
  • Yalcinkaya, F., & Unsal, H. Matlab/Simulink Based Comparative Analysis of the Effect of Ion Concentration on Action Potantial by Using Hodgkin-Huxley and Morris-Lecar Neuron Models. In 2017 21st National Biomedical Engineering Meeting (BIYOMUT) (pp. i-iv). IEEE.

Hodgkin-Huxley Nöron Modelinin Matlab Temelli Elektriksel Devre Benzetimi

Year 2020, Volume: 12 Issue: 2, 711 - 723, 30.06.2020
https://doi.org/10.29137/umagd.775360

Abstract

Sinir hücrelerinin çalışmasını anlamak, fizyolojik özelliklerini ve davranışlarını incelemek için geliştirilen Hodgkin-Huxley, FitzHugh-Nagumo, Morris-Lecar, Hindmarsh-Rose, Izhikevich, Integrate & Fire ve Adaptive Exponential Integrate-Fire gibi birçok modelleme mevcuttur. Bu nedenle özellikle son yıllarda nöron yapısı, davranışı ve nöronlar arası fenomenler üzerine yapılan çalışmalar önemli bir alan haline gelmiştir. Nöron fizyolojisinin ve davranışlarının daha iyi anlaşılması için Hodgkin-Huxley (HH) nöron modeli, nümerik metotlar ile birçok kez simüle edilmiştir. Fakat literatür incelendiğinde Hodgkin-Huxley nöron modelinin elektriksel eş devresinin simüle edilmediği görülmüştür. Bu çalışmada, Hodgkin-Huxley nöron modeli eşdeğer devresi temel alınmış ve MATLAB/Simulink ortamında temel elektronik devre elemanları kullanılarak, nümerik metot benzetimlerinde kullanılan parametre değer aralıkları ile simüle edilmiş ve aksiyon potansiyelinin sadece dinlenme aşamasının oluştuğu diğer aşamaların oluşmadığı gözlemlenmiştir. Ancak devreye uygulanan uyarı akımı ve devrenin kapasite parametreleri değiştirildiğinde aksiyon potansiyelinin dinlenme, depolarizasyon ve repolarizasyon aşamalarının oluştuğu fakat hiperpolarizasyon durumunun tam olarak oluşmadığı gözlemlenmiştir. Böylece, nöron elektriksel eş devresinin oluşturduğu membran geriliminin, uyarı akımlarıyla ve kapasitans değerleriyle doğrudan ilişkili olduğu anlaşılmıştır.

References

  • Cinal, Ş., Ekmekci, N. H., & Özer, M. Stokastik Nöron Modellerinin Simulink İle Benzetimi. Elektrik-Elektronik-Bilgisayar Müh, 11, 458-461.
  • Coşkun, Ö., Kahriman, M., Çömlekçi, S., & Özkorucuklu, S. (2012). SİNİR HÜCRESİNİN PASİF KABLO MODELLEMESİ VE SİMÜLASYONU. Journal of the Faculty of Engineering & Architecture of Gazi University, 27(1).
  • Dahasert N., “Biyolojik Nöron Modellerinin Elektronik Donanımlarının İncelenmesi,” Yüksek Lisans Tezi, Erciyes Üniversitesi, 2012.
  • Dayan, P., & Abbott, L. F. (2003). Theoretical neuroscience: computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience, 15(1), 154-155.
  • Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences, 221(1222), 87-102.
  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
  • Izhikevich, E. M. (2003). Simple Model of Spiking Neurons IEEE Transactions on Neural Networks.
  • Kirigeeganage, S., Jackson, D., Zurada, J. M., & Naber, J. (2018, December). Modeling the bursting behavior of the Hodgkin-Huxley neurons using genetic algorithm based parameter search. In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 470-475). IEEE.
  • Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.
  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical journal, 35(1), 193-213.
  • Nagumo, J., & Sato, S. (1972). On a response characteristic of a mathematical neuron model. Kybernetik, 10(3), 155-164.
  • Özer M.,Tutkun N., “Pasif Dentritlerde Kablo teoremi,” ELECO`2002 Elektrik - Elektronik - Bilgisayar Mühendisliği Sempozyumu Ve Fuarı bildirileri, Bursa, 2002.
  • Parangan, M., Aravind, C., Parasuraman, H., Achuthan, K., Nair, B., & Diwakar, S. (2010). Action potential and bursting phenomena using analog electrical neuron. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India (pp. 1-7).
  • Ruzov, V. (2014). Neuromodulation: action potential modeling, Degree Master of Science in Biomedical Engineering, Faculty of California Polytechnic State University.
  • Szlavik, R. B. (2003). Strategies for improving neural signal detection using a neural-electronic interface. IEEE Transactions on neural systems and rehabilitation engineering, 11(1), 1-8.
  • Tahayori, B., & Dokos, S. (2012). Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4627-4630). IEEE.
  • Thanapitak, S., & Toumazou, C. (2012). A bionics chemical synapse. IEEE transactions on biomedical circuits and systems, 7(3), 296-306.
  • Turhan A. and Kayıkçıoğlu T., “Hodgkin-Huxley Sinir Hücresi Modelinin Doğru, Alternatif ve Rastlantısal Akım Uyarılarına Tepkisinin İncelenmesi,” Ordu Üniv. Bil. Tek. Derg.,vol.6, no. 2, pp. 170-183, 2016.
  • Van Schaik, A. (2001). Building blocks for electronic spiking neural networks. Neural networks, 14(6-7), 617-628.
  • Vazifehkhah Ghaffari, B., Kouhnavard, M., Aihara, T., & Kitajima, T. (2015). Mathematical modeling of subthreshold resonant properties in pyloric dilator neurons. BioMed research international, 2015.
  • Yalcinkaya, F., & Unsal, H. Matlab/Simulink Based Comparative Analysis of the Effect of Ion Concentration on Action Potantial by Using Hodgkin-Huxley and Morris-Lecar Neuron Models. In 2017 21st National Biomedical Engineering Meeting (BIYOMUT) (pp. i-iv). IEEE.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Electrical Engineering
Journal Section Articles
Authors

Fikret Yalçınkaya This is me 0000-0002-2174-918X

Burak Temel This is me 0000-0002-8874-5407

Ahmet Sami Doğru This is me 0000-0002-2383-8960

Ramazan Güngüneş This is me 0000-0001-6722-7275

Publication Date June 30, 2020
Submission Date May 13, 2020
Published in Issue Year 2020 Volume: 12 Issue: 2

Cite

APA Yalçınkaya, F., Temel, B., Doğru, A. S., Güngüneş, R. (2020). Hodgkin-Huxley Nöron Modelinin Matlab Temelli Elektriksel Devre Benzetimi. International Journal of Engineering Research and Development, 12(2), 711-723. https://doi.org/10.29137/umagd.775360

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.