Research Article
PDF Mendeley EndNote BibTex Cite

Input Constraints in Formation Control of Mobile Robots

Year 2021, Volume 13, Issue 2, 680 - 689, 18.06.2021
https://doi.org/10.29137/umagd.908696

Abstract

The paper investigates the better possible combined initial conditions of leader-follower formations of nonholonomic mobile robots for Input/Output Linearization Technique. Initial conditions are applied to two followers and one leader robot. The first follower tries to maintain desired distance and angle towards the leader while the second follower tries to maintain desired distances to the first follower and the leader. In simulations, it is observed that, changing initial relative positions and velocities as well as angles can cause robots act differently throughout the whole leader- follower trajectory. At the end, optimum initial conditions are proposed for the best trajectory.

References

  • Desai, J. P., Ostrowski, J., & Kumar, V. (1998). Controlling formations of multiple mobile robots. Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 4, 2864–2869 c.4. https://doi.org/10.1109/ROBOT.1998.680621
  • Desai, J. P., Ostrowski, J. P., & Kumar, V. (2001). Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 17(6), 905–908. https://doi.org/10.1109/70.976023
  • Edwards, D. B., Bean, T. A., Odell, D. L., & Anderson, M. J. (2004). A leader-follower algorithm for multiple AUV formations. 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578), 40–46. https://doi.org/10.1109/AUV.2004.1431191
  • Eren, T, Whiteley, W., Anderson, B. D. O., Morse, A. S., & Belhumeur, P. N. (2005). Information structures to secure control of rigid formations with leader-follower architecture. Proceedings of the 2005, American Control Conference, 2005., 2966–2971 c. 4. https://doi.org/10.1109/ACC.2005.1470425
  • Eren, Tolga. (2012). Formation shape control based on bearing rigidity. International Journal of Control, 85(9), 1361–1379. https://doi.org/10.1080/00207179.2012.685183
  • Fierro, R., Belta, C., Desai, J. P., & Kumar, V. (2001). On controlling aircraft formations. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), 2, 1065–1070 c.2. https://doi.org/10.1109/CDC.2001.981026
  • Flores-Resendiz, J. F., & Aranda-Bricaire, E. (2020). A General Solution to the Formation Control Problem Without Collisions for First-Order Multi-Agent Systems. Robotica, 38(6), 1123–1137. https://doi.org/10.1017/S0263574719001280
  • Giulietti, F., Pollini, L., & Innocenti, M. (2000). Autonomous formation flight. IEEE Control Systems Magazine, 20(6), 34–44. https://doi.org/10.1109/37.887447
  • Gosiewski, Z., & Ambroziak, L. (2012). Formation Flight Control Scheme for Unmanned Aerial Vehicles. Içinde K. Kozłowski (Ed.), Robot Motion and Control 2011 (ss. 331–340). Springer London.
  • Hirzinger, G., Brunner, B., Dietrich, J., & Heindl, J. (1994). ROTEX-the first remotely controlled robot in space. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 2604–2611 c.3. https://doi.org/10.1109/ROBOT.1994.351121
  • Hua, Y., Dong, X., Hu, G., Li, Q., & Ren, Z. (2019). Distributed Time-Varying Output Formation Tracking for Heterogeneous Linear Multiagent Systems With a Nonautonomous Leader of Unknown Input. IEEE Transactions on Automatic Control, 64(10), 4292–4299. https://doi.org/10.1109/TAC.2019.2893978
  • Li, Z., Tang, Y., Huang, T., & Kurths, J. (2019). Formation Control with Mismatched Orientation in Multi-Agent Systems. IEEE Transactions on Network Science and Engineering, 6(3), 314–325. https://doi.org/10.1109/TNSE.2018.2851199
  • Ma, H.-J., Yang, G.-H., & Chen, T. (2021). Event-Triggered Optimal Dynamic Formation of Heterogeneous Affine Nonlinear Multiagent Systems. IEEE Transactions on Automatic Control, 66(2), 497–512. https://doi.org/10.1109/TAC.2020.2983108
  • Meng, Y., Chen, Q., Chu, X., & Rahmani, A. (2019). Maneuver Guidance and Formation Maintenance for Control of Leaderless Space-Robot Teams. IEEE Transactions on Aerospace and Electronic Systems, 55(1), 289–302. https://doi.org/10.1109/TAES.2018.2850382
  • Skjetne, R., Moi, S., & Fossen, T. I. (2002). Nonlinear formation control of marine craft. Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2, 1699–1704 c.2. https://doi.org/10.1109/CDC.2002.1184765
  • Wang, D., & Fu, M. (2019). Adaptive Formation Control for Waterjet USV With Input and Output Constraints Based on Bioinspired Neurodynamics. IEEE Access, 7, 165852–165861. https://doi.org/10.1109/ACCESS.2019.2953563
  • Wang, X., Ni, W., & Wang, X. (2012). Leader-Following Formation of Switching Multirobot Systems via Internal Model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3), 817–826. https://doi.org/10.1109/TSMCB.2011.2178022
  • Wen, G., Chen, C. L. P., & Liu, Y. (2018). Formation Control With Obstacle Avoidance for a Class of Stochastic Multiagent Systems. IEEE Transactions on Industrial Electronics, 65(7), 5847–5855. https://doi.org/10.1109/TIE.2017.2782229
  • Yang, X., & Fan, X. (2019). Robust Formation Control for Uncertain Multiagent Systems With an Unknown Control Direction and Disturbances. IEEE Access, 7, 106439–106452. https://doi.org/10.1109/ACCESS.2019.2932234

Mobil Robotların Formasyon Kontrolünde Giriş Kısıtlamaları

Year 2021, Volume 13, Issue 2, 680 - 689, 18.06.2021
https://doi.org/10.29137/umagd.908696

Abstract

Bu çalışmada, Giriş/Çıkış Doğrusallaştırma Tekniği ile, holonomik olmayan mobil robotlara Lider-Takipçi Formasyon Kontrolü uygulandığında, daha iyi sonuçlar veren başlangıç koşulları araştırılmıştır. Başlangıç koşulları bir lider ve iki takipçi robotta denenmiştir. Kontrol kuralı, ilk takipçinin lidere göre istenilen mesafe ve açıyı; ikinci takipçinin lidere göre ve ilk takipçiye göre istenilen mesafeyi koruması şeklindedir. Simülasyonlarda başlangıç koordinatları, hızları ve açılarının değiştirilmesinin robotların tüm lider-takipçi yolculuğunda farklı davranmasına sebep olduğu gözlemlenmiştir. Makalenin sonunda, en iyi takip için optimal başlangıç koşulları önerilmiştir.

References

  • Desai, J. P., Ostrowski, J., & Kumar, V. (1998). Controlling formations of multiple mobile robots. Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 4, 2864–2869 c.4. https://doi.org/10.1109/ROBOT.1998.680621
  • Desai, J. P., Ostrowski, J. P., & Kumar, V. (2001). Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 17(6), 905–908. https://doi.org/10.1109/70.976023
  • Edwards, D. B., Bean, T. A., Odell, D. L., & Anderson, M. J. (2004). A leader-follower algorithm for multiple AUV formations. 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578), 40–46. https://doi.org/10.1109/AUV.2004.1431191
  • Eren, T, Whiteley, W., Anderson, B. D. O., Morse, A. S., & Belhumeur, P. N. (2005). Information structures to secure control of rigid formations with leader-follower architecture. Proceedings of the 2005, American Control Conference, 2005., 2966–2971 c. 4. https://doi.org/10.1109/ACC.2005.1470425
  • Eren, Tolga. (2012). Formation shape control based on bearing rigidity. International Journal of Control, 85(9), 1361–1379. https://doi.org/10.1080/00207179.2012.685183
  • Fierro, R., Belta, C., Desai, J. P., & Kumar, V. (2001). On controlling aircraft formations. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), 2, 1065–1070 c.2. https://doi.org/10.1109/CDC.2001.981026
  • Flores-Resendiz, J. F., & Aranda-Bricaire, E. (2020). A General Solution to the Formation Control Problem Without Collisions for First-Order Multi-Agent Systems. Robotica, 38(6), 1123–1137. https://doi.org/10.1017/S0263574719001280
  • Giulietti, F., Pollini, L., & Innocenti, M. (2000). Autonomous formation flight. IEEE Control Systems Magazine, 20(6), 34–44. https://doi.org/10.1109/37.887447
  • Gosiewski, Z., & Ambroziak, L. (2012). Formation Flight Control Scheme for Unmanned Aerial Vehicles. Içinde K. Kozłowski (Ed.), Robot Motion and Control 2011 (ss. 331–340). Springer London.
  • Hirzinger, G., Brunner, B., Dietrich, J., & Heindl, J. (1994). ROTEX-the first remotely controlled robot in space. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 2604–2611 c.3. https://doi.org/10.1109/ROBOT.1994.351121
  • Hua, Y., Dong, X., Hu, G., Li, Q., & Ren, Z. (2019). Distributed Time-Varying Output Formation Tracking for Heterogeneous Linear Multiagent Systems With a Nonautonomous Leader of Unknown Input. IEEE Transactions on Automatic Control, 64(10), 4292–4299. https://doi.org/10.1109/TAC.2019.2893978
  • Li, Z., Tang, Y., Huang, T., & Kurths, J. (2019). Formation Control with Mismatched Orientation in Multi-Agent Systems. IEEE Transactions on Network Science and Engineering, 6(3), 314–325. https://doi.org/10.1109/TNSE.2018.2851199
  • Ma, H.-J., Yang, G.-H., & Chen, T. (2021). Event-Triggered Optimal Dynamic Formation of Heterogeneous Affine Nonlinear Multiagent Systems. IEEE Transactions on Automatic Control, 66(2), 497–512. https://doi.org/10.1109/TAC.2020.2983108
  • Meng, Y., Chen, Q., Chu, X., & Rahmani, A. (2019). Maneuver Guidance and Formation Maintenance for Control of Leaderless Space-Robot Teams. IEEE Transactions on Aerospace and Electronic Systems, 55(1), 289–302. https://doi.org/10.1109/TAES.2018.2850382
  • Skjetne, R., Moi, S., & Fossen, T. I. (2002). Nonlinear formation control of marine craft. Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2, 1699–1704 c.2. https://doi.org/10.1109/CDC.2002.1184765
  • Wang, D., & Fu, M. (2019). Adaptive Formation Control for Waterjet USV With Input and Output Constraints Based on Bioinspired Neurodynamics. IEEE Access, 7, 165852–165861. https://doi.org/10.1109/ACCESS.2019.2953563
  • Wang, X., Ni, W., & Wang, X. (2012). Leader-Following Formation of Switching Multirobot Systems via Internal Model. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3), 817–826. https://doi.org/10.1109/TSMCB.2011.2178022
  • Wen, G., Chen, C. L. P., & Liu, Y. (2018). Formation Control With Obstacle Avoidance for a Class of Stochastic Multiagent Systems. IEEE Transactions on Industrial Electronics, 65(7), 5847–5855. https://doi.org/10.1109/TIE.2017.2782229
  • Yang, X., & Fan, X. (2019). Robust Formation Control for Uncertain Multiagent Systems With an Unknown Control Direction and Disturbances. IEEE Access, 7, 106439–106452. https://doi.org/10.1109/ACCESS.2019.2932234

Details

Primary Language Turkish
Subjects Engineering, Engineering, Electrical and Electronic
Journal Section Articles
Authors

Meral KILIÇARSLAN OUACH (Primary Author)
KIRIKKALE UNIVERSITY
0000-0002-1086-5273
Türkiye


Tolga EREN
KIRIKKALE UNIVERSITY
0000-0001-5577-6752
Türkiye

Publication Date June 18, 2021
Published in Issue Year 2021, Volume 13, Issue 2

Cite

APA Kılıçarslan Ouach, M. & Eren, T. (2021). Mobil Robotların Formasyon Kontrolünde Giriş Kısıtlamaları . International Journal of Engineering Research and Development , 13 (2) , 680-689 . DOI: 10.29137/umagd.908696

All Rights Reserved. Kırıkkale University, Faculty of Engineering.