Research Article
BibTex RIS Cite

A Novel Method for miRNA-Disease Association Prediction based on Space Projection and Label Propagation (SPLPMDA)

Year 2022, Volume: 14 Issue: 3, 234 - 243, 31.12.2022
https://doi.org/10.29137/umagd.1217754

Abstract

miRNAs, a subclass of non-coding small RNAs, are about 18-22 nucleotides long. It has been revealed that miRNAs are responsible many diseases such as cancer. Therefore, great efforts have been made recently by researchers to explore possible relationships between miRNAs and diseases. Experimental studies to identify new disease-associated miRNAs are very expensive and at the same time a long process. Therefore, to determine the relationships between miRNA and disease many computational methods have been developed. In this paper, a new method for the identification of miRNA-disease associations based on space projection and label propagation (SPLPMDA) is proposed. The forecast the precision of SPLPMDA was demonstrated using 5-fold cross-validation and LOOCV techniques. Values of 0.9333 in 5-fold cross validation and 0.9441 in LOOCV were obtained. Moreover, case studies on breast neoplasms and lymphoma were performed to further confirm the predictive reliability of SPLPMDA.

References

  • Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., . . . Hatzigeorgiou, A. G. (2009). miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Research, 38(suppl_1), D137-D141. doi:10.1093/nar/gkp888
  • Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., . . . Yu, X. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. nature, 403(6769), 503-511.
  • Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002
  • Cai, J., Liu, X., Cheng, J., Li, Y., Huang, X., Li, Y., . . . Wei, R. (2012). MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefe's Archive for Clinical and Experimental Ophthalmology, 250(4), 523-531.
  • Chandra, S., Vimal, D., Sharma, D., Rai, V., Gupta, S. C., & Chowdhuri, D. K. (2017). Role of miRNAs in development and disease: Lessons learnt from small organisms. Life Sci, 185, 8-14. doi:10.1016/j.lfs.2017.07.017
  • Chen, Q., Lai, D., Lan, W., Wu, X., Chen, B., Liu, J., . . . Wang, J. (2021). ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion. IEEE/ACM Trans Comput Biol Bioinform, 18(3), 1106-1112. doi:10.1109/TCBB.2019.2936476
  • Chen, X., Wang, L. Y., & Huang, L. (2018). NDAMDA: Network distance analysis for MiRNA-disease association prediction. Journal of Cellular and Molecular Medicine, 22(5), 2884-2895. doi:10.1111/jcmm.13583
  • Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z. H., & Liu, H. (2018). BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction. Bioinformatics, 34(18), 3178-3186. doi:10.1093/bioinformatics/bty333
  • Chen, X., Xie, D., Zhao, Q., & You, Z.-H. (2019). MicroRNAs and complex diseases: from experimental results to computational models. Briefings in Bioinformatics, 20(2), 515-539. doi:10.1093/bib/bbx130
  • Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., . . . Dai, Q. (2016). WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Scientific reports, 6, 21106. doi:10.1038/srep21106
  • Chen, X., Yin, J., Qu, J., & Huang, L. (2018). MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLoS Comput Biol, 14(8), e1006418. doi:10.1371/journal.pcbi.1006418
  • Chen, X., Zhou, Z., & Zhao, Y. (2018). ELLPMDA: ensemble learning and link prediction for miRNA-disease association prediction. RNA biology, 15(6), 807-818. doi:10.1080/15476286.2018.1460016
  • DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA: a cancer journal for clinicians, 66(1), 31-42.
  • DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A., & Jemal, A. (2017). Breast cancer statistics, 2017, racial disparity in mortality by state. CA: a cancer journal for clinicians, 67(6), 439-448.
  • Espinosa, C. E. S., & Slack, F. J. (2006). Cancer issue: the role of microRNAs in cancer. The Yale journal of biology and medicine, 79(3-4), 131-140.
  • Feber, A., Xi, L., Luketich, J. D., Pennathur, A., Landreneau, R. J., Wu, M., . . . Litle, V. R. (2008). MicroRNA expression profiles of esophageal cancer. The Journal of thoracic and cardiovascular surgery, 135(2), 255-260.
  • Gao, Y., Jia, K., Shi, J., Zhou, Y., & Cui, Q. (2019). A Computational Model to Predict the Causal miRNAs for Diseases. Front Genet, 10, 935. doi:10.3389/fgene.2019.00935
  • Iorio, M. V., Ferracin, M., Liu, C.-G., Veronese, A., Spizzo, R., Sabbioni, S., . . . Campiglio, M. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer research, 65(16), 7065-7070.
  • Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., . . . Liu, Y. (2009). miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res, 37(Database issue), D98-104. doi:10.1093/nar/gkn714
  • Kim, Y.-K. (2015). Extracellular microRNAs as biomarkers in human disease. Chonnam medical journal, 51(2), 51-57. doi:10.4068/cmj.2015.51.2.51
  • Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181
  • Lan, W., Wang, J., Li, M., Liu, J., Wu, F. X., & Pan, Y. (2018). Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(6), 1774-1782. doi:10.1109/TCBB.2016.2586190
  • Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell, 75(5), 843-854.
  • Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y., & You, Z.-H. (2017). MCMDA: Matrix completion for MiRNA-disease association prediction. Oncotarget, 8(13), 21187. doi:10.18632/oncotarget.15061
  • Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., & Cui, Q. (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Research, 42(Database issue), D1070-D1074. doi:10.1093/nar/gkt1023
  • McGirt, L. Y., Adams, C. M., Baerenwald, D. A., Zwerner, J. P., Zic, J. A., & Eischen, C. M. (2014). miR-223 regulates cell growth and targets proto-oncogenes in mycosis fungoides/cutaneous T-cell lymphoma. Journal of Investigative Dermatology, 134(4), 1101-1107.
  • Osada, H., & Takahashi, T. (2011). let‐7 and miR‐17‐92: Small‐sized major players in lung cancer development. Cancer science, 102(1), 9-17.
  • Pech, R., Lee, Y.-L., Hao, D., Po, M., & Zhou, T. (2019). LOMDA: Linear optimization for miRNA-disease association prediction. doi:10.1101/751651
  • Qu, J., Zhao, Y., & Yin, J. (2019). Identification and Analysis of Human Microbe-Disease Associations by Matrix Decomposition and Label Propagation. Front Microbiol, 10, 291. doi:10.3389/fmicb.2019.00291
  • Saydam, F., Değirmenci, İ., & Güneş, H. V. (2011). MikroRNA'lar ve kanser. Dicle Tıp Dergisi, 38(1). Selcuklu, S. D., Donoghue, M. T., & Spillane, C. (2009). miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans, 37(Pt 4), 918-925. doi:10.1042/BST0370918
  • Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., & Gong, C. (2018). MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett, 15(3), 2735-2742. doi:10.3892/ol.2017.7638
  • Tang, C., Zhou, H., Zheng, X., Zhang, Y., & Sha, X. (2019). Dual Laplacian regularized matrix completion for microRNA-disease associations prediction. RNA biology, 16(5), 601-611. doi:10.1080/15476286.2019.1570811
  • Toprak, A., & Eryilmaz Dogan, E. (2021). Prediction of Potential MicroRNA-Disease Association Using Kernelized Bayesian Matrix Factorization. Interdiscip Sci, 13(4), 595-602. doi:10.1007/s12539-021-00469-w
  • Toprak, A., & Eryilmaz, E. (2021). Prediction of miRNA-disease associations based on Weighted K-Nearest known neighbors and network consistency projection. J Bioinform Comput Biol, 19(1), 2050041. doi:10.1142/S0219720020500419
  • van Laarhoven, T., Nabuurs, S. B., & Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27(21), 3036-3043. doi:10.1093/bioinformatics/btr500
  • Vural, H., & Kaya, M. (2018). Prediction of new potential associations between LncRNAs and environmental factors based on KATZ measure. Computers in biology and medicine, 102, 120-125. doi:10.1016/j.compbiomed.2018.09.019
  • Wang, C. C., Chen, X., Yin, J., & Qu, J. (2019). An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy. RNA biology, 16(3), 257-269. doi:10.1080/15476286.2019.1568820
  • Wang, D., Wang, J., Lu, M., Song, F., & Cui, Q. (2010). Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 26(13), 1644-1650. doi:10.1093/bioinformatics/btq241
  • Watanabe, A., Tagawa, H., Yamashita, J., Teshima, K., Nara, M., Iwamoto, K., . . . Nakagawa, T. (2011). The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia, 25(8), 1324-1334.
  • Yan, F., Zheng, Y., Jia, W., Hou, S., & Xiao, R. (2019). MAMDA: Inferring microRNA-Disease associations with manifold alignment. Comput Biol Med, 110, 156-163. doi:10.1016/j.compbiomed.2019.05.014
  • Yang, J.-H., Shao, P., Zhou, H., Chen, Y.-Q., & Qu, L.-H. (2009). deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Research, 38(suppl_1), D123-D130. doi:10.1093/nar/gkp943
  • Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., . . . Zhao, H. (2010). dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics, 11 Suppl 4, S5. doi:10.1186/1471-2164-11-S4-S5
  • Yin, M. M., Liu, J. X., Gao, Y. L., Kong, X. Z., & Zheng, C. H. (2022). NCPLP: A Novel Approach for Predicting Microbe-Associated Diseases With Network Consistency Projection and Label Propagation. IEEE Trans Cybern, 52(6), 5079-5087. doi:10.1109/TCYB.2020.3026652
  • Yu, S. P., Liang, C., Xiao, Q., Li, G. H., Ding, P. J., & Luo, J. W. (2019). MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation. J Cell Mol Med, 23(2), 1427-1438. doi:10.1111/jcmm.14048

A Novel Method for miRNA-Disease Association Prediction based on Space Projection and Label Propagation (SPLPMDA)

Year 2022, Volume: 14 Issue: 3, 234 - 243, 31.12.2022
https://doi.org/10.29137/umagd.1217754

Abstract

miRNAs, a subclass of non-coding small RNAs, are about 18-22 nucleotides long. It has been revealed that miRNAs are responsible many diseases such as cancer. Therefore, great efforts have been made recently by researchers to explore possible relationships between miRNAs and diseases. Experimental studies to identify new disease-associated miRNAs are very expensive and at the same time a long process. Therefore, to determine the relationships between miRNA and disease many computational methods have been developed. In this paper, a new method for the identification of miRNA-disease associations based on space projection and label propagation (SPLPMDA) is proposed. The forecast the precision of SPLPMDA was demonstrated using 5-fold cross-validation and LOOCV techniques. Values of 0.9333 in 5-fold cross validation and 0.9441 in LOOCV were obtained. Moreover, case studies on breast neoplasms and lymphoma were performed to further confirm the predictive reliability of SPLPMDA.

References

  • Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., . . . Hatzigeorgiou, A. G. (2009). miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Research, 38(suppl_1), D137-D141. doi:10.1093/nar/gkp888
  • Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., . . . Yu, X. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. nature, 403(6769), 503-511.
  • Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002
  • Cai, J., Liu, X., Cheng, J., Li, Y., Huang, X., Li, Y., . . . Wei, R. (2012). MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefe's Archive for Clinical and Experimental Ophthalmology, 250(4), 523-531.
  • Chandra, S., Vimal, D., Sharma, D., Rai, V., Gupta, S. C., & Chowdhuri, D. K. (2017). Role of miRNAs in development and disease: Lessons learnt from small organisms. Life Sci, 185, 8-14. doi:10.1016/j.lfs.2017.07.017
  • Chen, Q., Lai, D., Lan, W., Wu, X., Chen, B., Liu, J., . . . Wang, J. (2021). ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion. IEEE/ACM Trans Comput Biol Bioinform, 18(3), 1106-1112. doi:10.1109/TCBB.2019.2936476
  • Chen, X., Wang, L. Y., & Huang, L. (2018). NDAMDA: Network distance analysis for MiRNA-disease association prediction. Journal of Cellular and Molecular Medicine, 22(5), 2884-2895. doi:10.1111/jcmm.13583
  • Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z. H., & Liu, H. (2018). BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction. Bioinformatics, 34(18), 3178-3186. doi:10.1093/bioinformatics/bty333
  • Chen, X., Xie, D., Zhao, Q., & You, Z.-H. (2019). MicroRNAs and complex diseases: from experimental results to computational models. Briefings in Bioinformatics, 20(2), 515-539. doi:10.1093/bib/bbx130
  • Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., . . . Dai, Q. (2016). WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Scientific reports, 6, 21106. doi:10.1038/srep21106
  • Chen, X., Yin, J., Qu, J., & Huang, L. (2018). MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLoS Comput Biol, 14(8), e1006418. doi:10.1371/journal.pcbi.1006418
  • Chen, X., Zhou, Z., & Zhao, Y. (2018). ELLPMDA: ensemble learning and link prediction for miRNA-disease association prediction. RNA biology, 15(6), 807-818. doi:10.1080/15476286.2018.1460016
  • DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA: a cancer journal for clinicians, 66(1), 31-42.
  • DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A., & Jemal, A. (2017). Breast cancer statistics, 2017, racial disparity in mortality by state. CA: a cancer journal for clinicians, 67(6), 439-448.
  • Espinosa, C. E. S., & Slack, F. J. (2006). Cancer issue: the role of microRNAs in cancer. The Yale journal of biology and medicine, 79(3-4), 131-140.
  • Feber, A., Xi, L., Luketich, J. D., Pennathur, A., Landreneau, R. J., Wu, M., . . . Litle, V. R. (2008). MicroRNA expression profiles of esophageal cancer. The Journal of thoracic and cardiovascular surgery, 135(2), 255-260.
  • Gao, Y., Jia, K., Shi, J., Zhou, Y., & Cui, Q. (2019). A Computational Model to Predict the Causal miRNAs for Diseases. Front Genet, 10, 935. doi:10.3389/fgene.2019.00935
  • Iorio, M. V., Ferracin, M., Liu, C.-G., Veronese, A., Spizzo, R., Sabbioni, S., . . . Campiglio, M. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer research, 65(16), 7065-7070.
  • Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., . . . Liu, Y. (2009). miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res, 37(Database issue), D98-104. doi:10.1093/nar/gkn714
  • Kim, Y.-K. (2015). Extracellular microRNAs as biomarkers in human disease. Chonnam medical journal, 51(2), 51-57. doi:10.4068/cmj.2015.51.2.51
  • Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181
  • Lan, W., Wang, J., Li, M., Liu, J., Wu, F. X., & Pan, Y. (2018). Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(6), 1774-1782. doi:10.1109/TCBB.2016.2586190
  • Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell, 75(5), 843-854.
  • Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y., & You, Z.-H. (2017). MCMDA: Matrix completion for MiRNA-disease association prediction. Oncotarget, 8(13), 21187. doi:10.18632/oncotarget.15061
  • Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., & Cui, Q. (2014). HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Research, 42(Database issue), D1070-D1074. doi:10.1093/nar/gkt1023
  • McGirt, L. Y., Adams, C. M., Baerenwald, D. A., Zwerner, J. P., Zic, J. A., & Eischen, C. M. (2014). miR-223 regulates cell growth and targets proto-oncogenes in mycosis fungoides/cutaneous T-cell lymphoma. Journal of Investigative Dermatology, 134(4), 1101-1107.
  • Osada, H., & Takahashi, T. (2011). let‐7 and miR‐17‐92: Small‐sized major players in lung cancer development. Cancer science, 102(1), 9-17.
  • Pech, R., Lee, Y.-L., Hao, D., Po, M., & Zhou, T. (2019). LOMDA: Linear optimization for miRNA-disease association prediction. doi:10.1101/751651
  • Qu, J., Zhao, Y., & Yin, J. (2019). Identification and Analysis of Human Microbe-Disease Associations by Matrix Decomposition and Label Propagation. Front Microbiol, 10, 291. doi:10.3389/fmicb.2019.00291
  • Saydam, F., Değirmenci, İ., & Güneş, H. V. (2011). MikroRNA'lar ve kanser. Dicle Tıp Dergisi, 38(1). Selcuklu, S. D., Donoghue, M. T., & Spillane, C. (2009). miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans, 37(Pt 4), 918-925. doi:10.1042/BST0370918
  • Tan, W., Liu, B., Qu, S., Liang, G., Luo, W., & Gong, C. (2018). MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett, 15(3), 2735-2742. doi:10.3892/ol.2017.7638
  • Tang, C., Zhou, H., Zheng, X., Zhang, Y., & Sha, X. (2019). Dual Laplacian regularized matrix completion for microRNA-disease associations prediction. RNA biology, 16(5), 601-611. doi:10.1080/15476286.2019.1570811
  • Toprak, A., & Eryilmaz Dogan, E. (2021). Prediction of Potential MicroRNA-Disease Association Using Kernelized Bayesian Matrix Factorization. Interdiscip Sci, 13(4), 595-602. doi:10.1007/s12539-021-00469-w
  • Toprak, A., & Eryilmaz, E. (2021). Prediction of miRNA-disease associations based on Weighted K-Nearest known neighbors and network consistency projection. J Bioinform Comput Biol, 19(1), 2050041. doi:10.1142/S0219720020500419
  • van Laarhoven, T., Nabuurs, S. B., & Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27(21), 3036-3043. doi:10.1093/bioinformatics/btr500
  • Vural, H., & Kaya, M. (2018). Prediction of new potential associations between LncRNAs and environmental factors based on KATZ measure. Computers in biology and medicine, 102, 120-125. doi:10.1016/j.compbiomed.2018.09.019
  • Wang, C. C., Chen, X., Yin, J., & Qu, J. (2019). An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy. RNA biology, 16(3), 257-269. doi:10.1080/15476286.2019.1568820
  • Wang, D., Wang, J., Lu, M., Song, F., & Cui, Q. (2010). Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 26(13), 1644-1650. doi:10.1093/bioinformatics/btq241
  • Watanabe, A., Tagawa, H., Yamashita, J., Teshima, K., Nara, M., Iwamoto, K., . . . Nakagawa, T. (2011). The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia, 25(8), 1324-1334.
  • Yan, F., Zheng, Y., Jia, W., Hou, S., & Xiao, R. (2019). MAMDA: Inferring microRNA-Disease associations with manifold alignment. Comput Biol Med, 110, 156-163. doi:10.1016/j.compbiomed.2019.05.014
  • Yang, J.-H., Shao, P., Zhou, H., Chen, Y.-Q., & Qu, L.-H. (2009). deepBase: a database for deeply annotating and mining deep sequencing data. Nucleic Acids Research, 38(suppl_1), D123-D130. doi:10.1093/nar/gkp943
  • Yang, Z., Ren, F., Liu, C., He, S., Sun, G., Gao, Q., . . . Zhao, H. (2010). dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics, 11 Suppl 4, S5. doi:10.1186/1471-2164-11-S4-S5
  • Yin, M. M., Liu, J. X., Gao, Y. L., Kong, X. Z., & Zheng, C. H. (2022). NCPLP: A Novel Approach for Predicting Microbe-Associated Diseases With Network Consistency Projection and Label Propagation. IEEE Trans Cybern, 52(6), 5079-5087. doi:10.1109/TCYB.2020.3026652
  • Yu, S. P., Liang, C., Xiao, Q., Li, G. H., Ding, P. J., & Luo, J. W. (2019). MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation. J Cell Mol Med, 23(2), 1427-1438. doi:10.1111/jcmm.14048
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering, Electrical Engineering
Journal Section Articles
Authors

Ahmet Toprak 0000-0003-3337-4917

Publication Date December 31, 2022
Submission Date December 12, 2022
Published in Issue Year 2022 Volume: 14 Issue: 3

Cite

APA Toprak, A. (2022). A Novel Method for miRNA-Disease Association Prediction based on Space Projection and Label Propagation (SPLPMDA). International Journal of Engineering Research and Development, 14(3), 234-243. https://doi.org/10.29137/umagd.1217754

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.