Review
BibTex RIS Cite

Current Developments in Ultra-Light Weight Concrete

Year 2023, Volume: 15 Issue: 2, 689 - 703, 14.07.2023
https://doi.org/10.29137/umagd.1286178

Abstract

Concrete, one of today's most important building materials, has different special types. One of them is lightweight concrete (LC). With the studies carried out on lightweight concretes (LWC), the unit weights tried to be reduced, and ultra-light concretes (ULWC) were tested. While reducing unit weights, it is tried to improve properties such as compressive strength, sound absorption feature, thermal conductivity, and fire and frost resistance. Aggregates used in the production of ULWC undergo changes over time. Sustainable and nature-friendly ULWC works continue by evaluating waste materials. Using waste instead of using natural resources increases the interest and demand for ULWC. Thus, its economic, environmental, and sustainability draw attention. According to the types and dimensions of the aggregates used, ULWCs are not only used as heat and sound insulation materials in buildings but also aim to reduce the effects of earthquake forces by increasing the strength properties of the building and reducing its own load. In this study, the latest developments in ultra-light concrete are tried to be investigated by examining the literature sources. Comparisons are made between ULWC, and their advantages and disadvantages are evaluated.

References

  • Abd Elrahman, M., El Madawy, M.E., Chung, S.Y., Sikora, P., Stephan, D. (2019). Preparation and characterization of ultralightweight foamed concrete incorporating lightweight aggregates. Applied Sciences, 9(7), 1447. doi:10.3390/app9071447
  • Adhikary, S. K., Rudžionis, Ž., Vaičiukynienė, D. (2020). Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 31, 101399. doi:10.1016/j.jobe.2020.101399
  • Ahmmad, R., Jumaat, M.Z., Alengaram, U.J., Bahri, S., Rehman, M.A., Hashim, H.B. (2016). Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. J. Cleaner Prod., 112, 566-574. doi:10.1016/j.jclepro.2015.08.043
  • Alexandre Bogas, J., Gomes, M. G., Real, S. (2014). Bonding of steel reinforcement in structural expanded clay lightweight aggregate concrete: The influence of failure mechanism and concrete composition. Construction and Building Materials 65, 350-359. doi:10.1016/j.conbuildmat.2014.04.122
  • Alshannag, M., Alshmalani, M., Alsaif, A., Higazey, M. (2023). Flexural performance of high-strength lightweight concrete beams made with hybrid fibers. Case Studies in Construction Materials, 18, e01861. doi:10.1016/j.cscm.2023.e01861
  • Bajare, D., Kazjonovs, J., Korjakins, A. (2013). Lightweight concrete with aggregates made by using industrial waste. J. Sustain. Archit. Civil Eng., 4 (5), 67-73. doi:10.5755/j01.sace.4.5.4188
  • Baradan, B., Türkel, S., Yazıcı H., Ün, H., Yiğiter, H., Felekoğlu, B., Felekoğlu, K.T, Aydın, S., Yardımcı, M.Y., Topal, A., Öztürk, A.U., (2015). “Beton”, Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Yayınları, No: 334, s 825.
  • Boshra, A.E., Yoursy, B.S., A.T., El-boridy, A.T. Fayed, S. (2023). Ferrocement composite columns incorporating hollow core filled with lightweight concrete. Engineering Structures, 280, 115672. doi:10.1016/j.engstruct.2023.115672
  • Bubeník, J., Zach, J., Křížová, K., Novák, V., Sedlmajer, M., Žižková, N. (2023). Behavior and properties of ultra-lightweight concrete with foamed glass aggregate and cellulose fibres under high temperature loading. Journal of Building Engineering, 72, 106677.
  • BS EN 1992-1-1, Eurocode 2. (2004). Design of concrete structures: Part 1-1: General rules and rules for buildings, British Standards Institution, UK, London.
  • Chen, Y.X., Wu, F., Yu, Q., Brouwers, H.J.H. (2020). Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cement and Concrete Composites, 114, 103829. doi:10.1016/j.cemconcomp.2020.103829
  • Cuenca-Moyanoa, G.M., Cabreraa, M., López-Alonso, M., Martínez-Echevarría, M. J., Agrela, F., Rosales, J. (2023). Design of lightweight concrete with olive biomass bottom ash for use in buildings. Journal of Building Engineering, 69, 106289. doi:10.1016/j.jobe.2023.106289
  • Du, H. (2019). Properties of ultra-lightweight cement composites with nano-silica. Construction and Building Materials, 199, 696- 704. https://doi.org/10.1016/j.conbuildmat.2018.11.225.
  • Eltaly, B. A., Shaheen, Y. B., EL-boridy, A. T., Fayed, S. (2023). Ferrocement composite columns incorporating hollow core filled with lightweight concrete. Engineering Structures 280, 115672. doi:10.1016/j.engstruct.2023.115672
  • Engin, C. (2018). Farklı tane boyutlu genleştirilmiş perlit agregası ile üretilen ultra hafif betonların fiziksel ve mekanik özelliklerinin belirlenmesi. YL Tezi, Van Yüzüncü Yıl Üniversitesi FBE, Van.
  • Huang, Z., Padmaja, K., Li, S., Liew, J.R. (2018). Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures. Construction and Building Materials, 164, 760-774. doi:10.1016/j.conbuildmat.2018.01.009 https://theconstructor.org/concrete/ultra-lightweight-concrete-materials-properties-applications/566658, 03.06.2023.
  • Huang, Z., Zhang, T., Wen, Z. (2015). Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Construction and Building Materials, 79, 390-396. doi:10.1016/j.conbuildmat.2015.01.051
  • Islam, M.M.U., Li, J., Roychand, R., Saberian, M (2023). Investigation of durability properties for structural lightweight concrete with discarded vehicle tire rubbers: A study for the complete replacement of conventional coarse aggregates. Construction and Building Materials 369, 130634. doi:10.1016/j.conbuildmat.2023.130634
  • Junaid, M. F., ur Rehman, Z., Kuruc, M., Medveď, I., Bačinskas, D., Čurpek, J., Čekon, M., Ijaz, N., Ansari, W.S. (2022). Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Construction and Building Materials, 319, 126061. doi:10.1016/j.conbuildmat.2021.126061
  • Karakurt, C., Kurama H., Topcu, I.B. (2010). Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1):1-8.
  • Liu, H., Elchalakani, M., Karrech, A., Yehia, S., Yang, B. (2021). High strength flowable lightweight concrete incorporating low C3A cement, silica fume, stalite and macro-polyfelin polymer fibres. Construction and Building Materials 281, 122410. doi:10.1016/j.conbuildmat.2021.122410
  • Li, P., Wu, H., Liu, Y., Yang, J., Fang, Z., & Lin, B. (2019). Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Construction and Building Materials, 205, 529-542.
  • Lo, T.Y., Tang, W.C., Cui, H.Z. (2007). The effects of aggregate properties on lightweight concrete. Building and Environment, 42(8), 3025-3029. doi:10.1016/j.buildenv.2005.06.031
  • Mohammed, J.H., Hamad, A.J. (2014). Materials, properties and application review of Lightweight concrete. Technical Review of the Faculty of Engineering University of Zulia, 37(2), 10-15.
  • MVarma, B., Hajare, M.B. (2015). Ferrocement: Composite material and its applications. Int. J. Pure Appl. Res. Eng. Technol., 3, 296-307.
  • Naaman, A. E. (2000). Ferrocement and Laminated Cementitious Composites; Techno Press 3000: An Arbor. USA.
  • Roberz, F., Loonen, R.C.G.M., Hoes, P., Hensen, J.L.M. (2017). Ultra-lightweight concrete: Energy and comfort performance evaluation in relation to buildings with low and high thermal mass. Energy and Buildings, 138, 432-442. doi:10.1016/j.enbuild.2016.12.049
  • Serelis, E., Vaitkevicius, V. (2022). Utilization of glass shards from municipal solid waste in aluminium-based ultra-lightweight concrete. Construction and Building Materials, 350, 128396.
  • Shi, J., Liu, Y., Xu, H., Peng, Y., Yuan, Q., Gao, J. (2022). The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceramics International, 48(9), 12884-12896. doi:10.1016/j.ceramint.2022.01.161
  • Sifan, M., Nagaratnam, B., Thamboo, J., Poologanathan, K., Corradi, M. (2023) Development and prospectives of lightweight high strength concrete using lightweight aggregates, Construction and Building Materials 362, 129628. doi:10.1016/j.conbuildmat.2022.129628
  • Sikora, P., Rucinska, T., Stephan, D., Chung, S. Y., & Abd Elrahman, M. (2020). Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches. Construction and Building Materials, 264, 120241.
  • Şişman, C.B., Alkaya, S. (2019). “Usability of Sunflower Stems As Lightweight Aggregate in Concrete Production”. Fresenius Environ. Bull, 28, 9983-9990.
  • Sohel, K.M.A. Al-Jabri, K. Zhang, M.H., Liew, J.R.Y. (2018). Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete. Construction and Building Materials, 173, 90-100. doi:10.1016/j.conbuildmat.2018.03.276
  • Spiesz, P. R., Hunger, M. (2017). Structural ultra-lightweight concrete–from laboratory research to field trials. In Eleventh High Performance concrete (11th HPC), Tromsø 6-8 March 2017 (pp. 1-10).
  • Spiesz, P.R., Hunger, M. (2017). Structural ultra-lightweight concrete – from laboratory research to field trials. In H. Justnes, & H. Braarud (Eds.), Proceedings of the 11th High Performance Concrete conference, HPC Tromso 2017, 1-10).
  • Subaşı, S., Beycioğlu, A., Emiroğlu, M. (2009). Genleştirilmiş kil agregalı hafif betonlarda bulanık mantık yöntemiyle yarmada çekme dayanımı tahmin modeli geliştirilmesi. Eskişehir Osmangazi Üniversitesi, Mühendislik ve Mimarlık Fakültesi Dergisi, 22(3), 157-166. Erişim:https://dergipark.org.tr/en/download/article-file/320477
  • Topçu, İ.B., Hafif Beton Özeliklerinin Kompozit Malzeme Olarak İncelenmesi, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, Mart 1988, İstanbul, 126s.
  • Topçu, İ.B., Hafif Betonla Ferrocement Çadır Yapımı. İnşaat Müh. Gelişmeler. IV. Uluslararası Kongresi, 1-3 Kasım 2000, Doğu Akdeniz Üniv., Gazimagusa, KKTC, ss. 987-996
  • Topçu, İ.B., Hafif Betonla Ferrocement Kano Yapımı. X. Müh. Sempozyumu, İnşaat Mühendisliği’99, 2-3 Haziran 1999, Süleyman Demirel Üniversitesi, Isparta, ss. 351-359.
  • Topçu, İ.B., Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1-3), 34-38. doi:10.1016/j.jmatprotec.2007.10.052
  • Topçu, İ.B., Uygunoğlu T., Yapı Malzemesi. Nobel Akademik Yayıncılık, Mart 2021, 424 s. ISBN: 978-625-406-964-2, E-ISBN: 978-625-406-965-9.
  • Topçu, İ.B., Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116. doi:10.1016/j.buildenv.2006.11.024
  • Topçu, İ.B., Uygunoğlu, T. (2010). Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 24(7), 1286-1295. doi:10.1016/j.conbuildmat.2009.12.007
  • Topçu, İ.B., Volkanik Cürufların Hafif Beton Agregası Olarak Kullanılma Olanaklarının İncelenmesi. İMO X. Teknik Kongresi, Cilt 1, ss. 437-451, Ekim 1989, Ankara.
  • Topçu, İ.B., Volkanik Cüruflarla Üretilen Yarı Hafif Betonların Özelikleri. IX. Mühendislik Sempozyumu, 01-04.04.1996, Süleyman Demirel Üniversitesi, Müh.-Mim. Fak., Isparta, ss. 95-97.
  • Ultra-Lightweight Concrete for 3D printing technologies, https://cordis.europa.eu/project/id/841592, doi:10.3030/841592, 2021.
  • Ünal A, Uygunoğlu T, Yildiz A. (2007). Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, 42(2), 584-590.
  • Uygunoğlu, T., Gencel, O., Brostow, W., Topçu, İ.B., Production of Lightweight Polymer Concrete with Pumice. ASPIC 2012, 7th Asian Symposium on polymers in concrete, İstanbul-Turkey, 3-5 October 2012, pp. 669-677.
  • Vilches, J., Ramezani, M., Neitzert, T. (2012). Experimental investigation of the fire resistance of ultra-lightweight foam concrete. International Journal of Advanced Engineering Applications, 1(4), 15-22.
  • Wang, H.T., Wang, L.C. (2013). Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 38, 1146-1151. doi:10.1016/j.conbuildmat.2012.09.016
  • Wang, H.Y., Tsai, K.C. (2006). Engineering properties of lightweight aggregate concrete made from dredged silt. Cement and Concrete Composites, 28(5), 481-485.
  • Wu, Y., Wang, J. Y., Monteiro, P. J., Zhang, M. H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100-112. doi:10.1016/j.conbuildmat.2015.04.004
  • Xie, Y., Li, J., Lu, Z., Jiang, J., Niu, Y. (2019). Preparation and properties of ultra-lightweight EPS concrete based on pre-saturated bentonite. Construction and Building Materials, 195, 505-514. doi:10.1016/j.conbuildmat.2018.11.091
  • Yasar, E., Atis, C. D., Kilic, A., Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57(15), 2267-2270. doi:10.1016/S0167577X(03)00146-0
  • Ye, Y., Liu, J., Zhang, Z., Wang, Z., Peng, Q. (2020). Experimental study of high-strength steel fiber lightweight aggregate concrete on mechanical properties and toughness index. Adv. Mater. Sci. Eng., 2020, 1-10. doi:10.1155/2020/5915034
  • Yıldırım, H., Özturan, T. (2013). Mechanical properties of lightweight concrete made with cold bonded fly ash pellets. Erişim:http://dspace.epoka.edu.al/bitstream/handle/1/1242/471-1303-1 PB.pdf?sequence=1&isAllowed=y
  • Yu, Q. L., Spiesz, P., Brouwers, H. J. H. (2013). Development of cement-based lightweight composites–Part 1: mix design methodology and hardened properties. Cement and concrete composites, 44, 17-29. doi:10.1016/j.cemconcomp.2013.03.030
  • Yu, Q. L., Spiesz, P., Brouwers, H. J. H. (2015). Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18-28. doi:10.1016/j.cemconcomp.2015.04.012
  • Yu, Q.L., Spiesz, P., Brouwers, H.J.H. (2015). Ultra-lightweight concrete: conceptual design and performance evaluation, Cement & Concrete Composites, 61, 18-28. doi:http://dx.doi.org/10.1016/j.cemconcomp.2015.04.012
  • Yu, R., Van Onna, D. V., Spiesz, P., Yu, Q. L., Brouwers, H. J. H. (2016). Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass. Journal of Cleaner Production, 112, 690-701. doi:10.1016/j.jclepro.2015.07.082
  • Zareef, M. A. M. E. (2010). Conceptual and structural design of buildings made of lightweight and infra-lightweight concrete. Ph.D., Thesis, Planen Bauen Umwelt der Technischen Universität, Berlin. doi:10.14279/depositonce-2415
  • Zhang, M. H., Li, L., Paramasivam, P. (2005). Shrinkage of high-strength lightweight aggregate concrete exposed to dry environment. Materials Journal, 102 (2), 86-92.
  • Zhang, M., Li, L., Paramasivam, P. (2004). Flexural toughness and impact resistance of steel-fibre-reinforced lightweight concrete. Magazine of Concrete Research, 56 (5), 251-262. doi:10.1680/macr.2004.56.5.251
  • Zhang, Y., Sun, Q., Xin, H., Liu, Y., Correia, J. A., Berto, F. (2022). Probabilistic flexural fatigue strength of ultra-lightweight cement concrete and high strength lightweight aggregate concrete. International Journal of Fatigue, 158, 106743. doi:10.1016/j.ijfatigue.2022.106743
  • Zhou, H., Brooks, A. L. (2019). Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres. Construction and Building Materials, 512–526. doi:10.1016/j.conbuildmat.2018.11.074
  • Zhou, Y., Gong, G., Huang, Y., Chen, C., Huang, D., Chen, Z., Guo, M. (2021). Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites. Journal of Cleaner Production, 280(2), 124445. doi:10.1016/j.jclepro.2020.124445

Ultra Hafif Betonda Güncel Gelişmeler

Year 2023, Volume: 15 Issue: 2, 689 - 703, 14.07.2023
https://doi.org/10.29137/umagd.1286178

Abstract

Günümüzün en önemli yapı malzemelerinden biri olan betonun farklı özel çeşitleri bulunmaktadır. Bunlardan biride hafif betonlardır. Hafif betonlar (HB) üzerinde yapılan çalışmalarla birim ağırlıkları azaltılmakta ve üretilen betonlara ultra hafif beton denilmektedir (UHB). Birim ağırlıkları azaltılmaya çalışılırken basınç dayanımı, ses emme özelliği, ısıl iletkenlikleri, yangına ve dona dayanıklılıkları gibi özellikleri iyileştirilmeye çalışılmaktadır. Ultra hafif betonların (UHB) üretiminde kullanılan agregalarda zamanla değişime uğramaktadır. Atık malzemelerin değerlendirilerek sürdürülebilir ve doğa dostu UHB çalışmaları devam etmektedir. Doğal kaynakların kullanılması yerine atıkların değerlendirilerek kullanılması UHB’lere karşı ilginin ve talebin artmasını sağlamaktadır. Böylece UHB’lerin ekonomik, çevreci ve sürdürülebilirliği dikkat çekmektedir. Kullanılan agregaların türlerine ve boyutlarına göre UHB’ler sadece binalarda ısı ve ses yalıtım malzemesi olarak kullanılmasının yanı sıra dayanım özellikleri arttırılarak yapının kendi yükünü azaltarak deprem kuvvetlerinin etkilerini de azaltması amaçlanmaktadır. Bu çalışmada literatür kaynakları incelenerek UHB’lerle ilgili son gelişmeler incelenmiştir. UHB’ler arasında karşılaştırmalar yapılmakla birlikte avantaj ve dezavantajları değerlendirilmiştir.

References

  • Abd Elrahman, M., El Madawy, M.E., Chung, S.Y., Sikora, P., Stephan, D. (2019). Preparation and characterization of ultralightweight foamed concrete incorporating lightweight aggregates. Applied Sciences, 9(7), 1447. doi:10.3390/app9071447
  • Adhikary, S. K., Rudžionis, Ž., Vaičiukynienė, D. (2020). Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering, 31, 101399. doi:10.1016/j.jobe.2020.101399
  • Ahmmad, R., Jumaat, M.Z., Alengaram, U.J., Bahri, S., Rehman, M.A., Hashim, H.B. (2016). Performance evaluation of palm oil clinker as coarse aggregate in high strength lightweight concrete. J. Cleaner Prod., 112, 566-574. doi:10.1016/j.jclepro.2015.08.043
  • Alexandre Bogas, J., Gomes, M. G., Real, S. (2014). Bonding of steel reinforcement in structural expanded clay lightweight aggregate concrete: The influence of failure mechanism and concrete composition. Construction and Building Materials 65, 350-359. doi:10.1016/j.conbuildmat.2014.04.122
  • Alshannag, M., Alshmalani, M., Alsaif, A., Higazey, M. (2023). Flexural performance of high-strength lightweight concrete beams made with hybrid fibers. Case Studies in Construction Materials, 18, e01861. doi:10.1016/j.cscm.2023.e01861
  • Bajare, D., Kazjonovs, J., Korjakins, A. (2013). Lightweight concrete with aggregates made by using industrial waste. J. Sustain. Archit. Civil Eng., 4 (5), 67-73. doi:10.5755/j01.sace.4.5.4188
  • Baradan, B., Türkel, S., Yazıcı H., Ün, H., Yiğiter, H., Felekoğlu, B., Felekoğlu, K.T, Aydın, S., Yardımcı, M.Y., Topal, A., Öztürk, A.U., (2015). “Beton”, Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Yayınları, No: 334, s 825.
  • Boshra, A.E., Yoursy, B.S., A.T., El-boridy, A.T. Fayed, S. (2023). Ferrocement composite columns incorporating hollow core filled with lightweight concrete. Engineering Structures, 280, 115672. doi:10.1016/j.engstruct.2023.115672
  • Bubeník, J., Zach, J., Křížová, K., Novák, V., Sedlmajer, M., Žižková, N. (2023). Behavior and properties of ultra-lightweight concrete with foamed glass aggregate and cellulose fibres under high temperature loading. Journal of Building Engineering, 72, 106677.
  • BS EN 1992-1-1, Eurocode 2. (2004). Design of concrete structures: Part 1-1: General rules and rules for buildings, British Standards Institution, UK, London.
  • Chen, Y.X., Wu, F., Yu, Q., Brouwers, H.J.H. (2020). Bio-based ultra-lightweight concrete applying miscanthus fibers: Acoustic absorption and thermal insulation. Cement and Concrete Composites, 114, 103829. doi:10.1016/j.cemconcomp.2020.103829
  • Cuenca-Moyanoa, G.M., Cabreraa, M., López-Alonso, M., Martínez-Echevarría, M. J., Agrela, F., Rosales, J. (2023). Design of lightweight concrete with olive biomass bottom ash for use in buildings. Journal of Building Engineering, 69, 106289. doi:10.1016/j.jobe.2023.106289
  • Du, H. (2019). Properties of ultra-lightweight cement composites with nano-silica. Construction and Building Materials, 199, 696- 704. https://doi.org/10.1016/j.conbuildmat.2018.11.225.
  • Eltaly, B. A., Shaheen, Y. B., EL-boridy, A. T., Fayed, S. (2023). Ferrocement composite columns incorporating hollow core filled with lightweight concrete. Engineering Structures 280, 115672. doi:10.1016/j.engstruct.2023.115672
  • Engin, C. (2018). Farklı tane boyutlu genleştirilmiş perlit agregası ile üretilen ultra hafif betonların fiziksel ve mekanik özelliklerinin belirlenmesi. YL Tezi, Van Yüzüncü Yıl Üniversitesi FBE, Van.
  • Huang, Z., Padmaja, K., Li, S., Liew, J.R. (2018). Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures. Construction and Building Materials, 164, 760-774. doi:10.1016/j.conbuildmat.2018.01.009 https://theconstructor.org/concrete/ultra-lightweight-concrete-materials-properties-applications/566658, 03.06.2023.
  • Huang, Z., Zhang, T., Wen, Z. (2015). Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Construction and Building Materials, 79, 390-396. doi:10.1016/j.conbuildmat.2015.01.051
  • Islam, M.M.U., Li, J., Roychand, R., Saberian, M (2023). Investigation of durability properties for structural lightweight concrete with discarded vehicle tire rubbers: A study for the complete replacement of conventional coarse aggregates. Construction and Building Materials 369, 130634. doi:10.1016/j.conbuildmat.2023.130634
  • Junaid, M. F., ur Rehman, Z., Kuruc, M., Medveď, I., Bačinskas, D., Čurpek, J., Čekon, M., Ijaz, N., Ansari, W.S. (2022). Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Construction and Building Materials, 319, 126061. doi:10.1016/j.conbuildmat.2021.126061
  • Karakurt, C., Kurama H., Topcu, I.B. (2010). Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1):1-8.
  • Liu, H., Elchalakani, M., Karrech, A., Yehia, S., Yang, B. (2021). High strength flowable lightweight concrete incorporating low C3A cement, silica fume, stalite and macro-polyfelin polymer fibres. Construction and Building Materials 281, 122410. doi:10.1016/j.conbuildmat.2021.122410
  • Li, P., Wu, H., Liu, Y., Yang, J., Fang, Z., & Lin, B. (2019). Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Construction and Building Materials, 205, 529-542.
  • Lo, T.Y., Tang, W.C., Cui, H.Z. (2007). The effects of aggregate properties on lightweight concrete. Building and Environment, 42(8), 3025-3029. doi:10.1016/j.buildenv.2005.06.031
  • Mohammed, J.H., Hamad, A.J. (2014). Materials, properties and application review of Lightweight concrete. Technical Review of the Faculty of Engineering University of Zulia, 37(2), 10-15.
  • MVarma, B., Hajare, M.B. (2015). Ferrocement: Composite material and its applications. Int. J. Pure Appl. Res. Eng. Technol., 3, 296-307.
  • Naaman, A. E. (2000). Ferrocement and Laminated Cementitious Composites; Techno Press 3000: An Arbor. USA.
  • Roberz, F., Loonen, R.C.G.M., Hoes, P., Hensen, J.L.M. (2017). Ultra-lightweight concrete: Energy and comfort performance evaluation in relation to buildings with low and high thermal mass. Energy and Buildings, 138, 432-442. doi:10.1016/j.enbuild.2016.12.049
  • Serelis, E., Vaitkevicius, V. (2022). Utilization of glass shards from municipal solid waste in aluminium-based ultra-lightweight concrete. Construction and Building Materials, 350, 128396.
  • Shi, J., Liu, Y., Xu, H., Peng, Y., Yuan, Q., Gao, J. (2022). The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC). Ceramics International, 48(9), 12884-12896. doi:10.1016/j.ceramint.2022.01.161
  • Sifan, M., Nagaratnam, B., Thamboo, J., Poologanathan, K., Corradi, M. (2023) Development and prospectives of lightweight high strength concrete using lightweight aggregates, Construction and Building Materials 362, 129628. doi:10.1016/j.conbuildmat.2022.129628
  • Sikora, P., Rucinska, T., Stephan, D., Chung, S. Y., & Abd Elrahman, M. (2020). Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches. Construction and Building Materials, 264, 120241.
  • Şişman, C.B., Alkaya, S. (2019). “Usability of Sunflower Stems As Lightweight Aggregate in Concrete Production”. Fresenius Environ. Bull, 28, 9983-9990.
  • Sohel, K.M.A. Al-Jabri, K. Zhang, M.H., Liew, J.R.Y. (2018). Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete. Construction and Building Materials, 173, 90-100. doi:10.1016/j.conbuildmat.2018.03.276
  • Spiesz, P. R., Hunger, M. (2017). Structural ultra-lightweight concrete–from laboratory research to field trials. In Eleventh High Performance concrete (11th HPC), Tromsø 6-8 March 2017 (pp. 1-10).
  • Spiesz, P.R., Hunger, M. (2017). Structural ultra-lightweight concrete – from laboratory research to field trials. In H. Justnes, & H. Braarud (Eds.), Proceedings of the 11th High Performance Concrete conference, HPC Tromso 2017, 1-10).
  • Subaşı, S., Beycioğlu, A., Emiroğlu, M. (2009). Genleştirilmiş kil agregalı hafif betonlarda bulanık mantık yöntemiyle yarmada çekme dayanımı tahmin modeli geliştirilmesi. Eskişehir Osmangazi Üniversitesi, Mühendislik ve Mimarlık Fakültesi Dergisi, 22(3), 157-166. Erişim:https://dergipark.org.tr/en/download/article-file/320477
  • Topçu, İ.B., Hafif Beton Özeliklerinin Kompozit Malzeme Olarak İncelenmesi, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, Mart 1988, İstanbul, 126s.
  • Topçu, İ.B., Hafif Betonla Ferrocement Çadır Yapımı. İnşaat Müh. Gelişmeler. IV. Uluslararası Kongresi, 1-3 Kasım 2000, Doğu Akdeniz Üniv., Gazimagusa, KKTC, ss. 987-996
  • Topçu, İ.B., Hafif Betonla Ferrocement Kano Yapımı. X. Müh. Sempozyumu, İnşaat Mühendisliği’99, 2-3 Haziran 1999, Süleyman Demirel Üniversitesi, Isparta, ss. 351-359.
  • Topçu, İ.B., Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1-3), 34-38. doi:10.1016/j.jmatprotec.2007.10.052
  • Topçu, İ.B., Uygunoğlu T., Yapı Malzemesi. Nobel Akademik Yayıncılık, Mart 2021, 424 s. ISBN: 978-625-406-964-2, E-ISBN: 978-625-406-965-9.
  • Topçu, İ.B., Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116. doi:10.1016/j.buildenv.2006.11.024
  • Topçu, İ.B., Uygunoğlu, T. (2010). Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 24(7), 1286-1295. doi:10.1016/j.conbuildmat.2009.12.007
  • Topçu, İ.B., Volkanik Cürufların Hafif Beton Agregası Olarak Kullanılma Olanaklarının İncelenmesi. İMO X. Teknik Kongresi, Cilt 1, ss. 437-451, Ekim 1989, Ankara.
  • Topçu, İ.B., Volkanik Cüruflarla Üretilen Yarı Hafif Betonların Özelikleri. IX. Mühendislik Sempozyumu, 01-04.04.1996, Süleyman Demirel Üniversitesi, Müh.-Mim. Fak., Isparta, ss. 95-97.
  • Ultra-Lightweight Concrete for 3D printing technologies, https://cordis.europa.eu/project/id/841592, doi:10.3030/841592, 2021.
  • Ünal A, Uygunoğlu T, Yildiz A. (2007). Investigation of properties of low-strength lightweight concrete for thermal insulation. Building and Environment, 42(2), 584-590.
  • Uygunoğlu, T., Gencel, O., Brostow, W., Topçu, İ.B., Production of Lightweight Polymer Concrete with Pumice. ASPIC 2012, 7th Asian Symposium on polymers in concrete, İstanbul-Turkey, 3-5 October 2012, pp. 669-677.
  • Vilches, J., Ramezani, M., Neitzert, T. (2012). Experimental investigation of the fire resistance of ultra-lightweight foam concrete. International Journal of Advanced Engineering Applications, 1(4), 15-22.
  • Wang, H.T., Wang, L.C. (2013). Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 38, 1146-1151. doi:10.1016/j.conbuildmat.2012.09.016
  • Wang, H.Y., Tsai, K.C. (2006). Engineering properties of lightweight aggregate concrete made from dredged silt. Cement and Concrete Composites, 28(5), 481-485.
  • Wu, Y., Wang, J. Y., Monteiro, P. J., Zhang, M. H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100-112. doi:10.1016/j.conbuildmat.2015.04.004
  • Xie, Y., Li, J., Lu, Z., Jiang, J., Niu, Y. (2019). Preparation and properties of ultra-lightweight EPS concrete based on pre-saturated bentonite. Construction and Building Materials, 195, 505-514. doi:10.1016/j.conbuildmat.2018.11.091
  • Yasar, E., Atis, C. D., Kilic, A., Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57(15), 2267-2270. doi:10.1016/S0167577X(03)00146-0
  • Ye, Y., Liu, J., Zhang, Z., Wang, Z., Peng, Q. (2020). Experimental study of high-strength steel fiber lightweight aggregate concrete on mechanical properties and toughness index. Adv. Mater. Sci. Eng., 2020, 1-10. doi:10.1155/2020/5915034
  • Yıldırım, H., Özturan, T. (2013). Mechanical properties of lightweight concrete made with cold bonded fly ash pellets. Erişim:http://dspace.epoka.edu.al/bitstream/handle/1/1242/471-1303-1 PB.pdf?sequence=1&isAllowed=y
  • Yu, Q. L., Spiesz, P., Brouwers, H. J. H. (2013). Development of cement-based lightweight composites–Part 1: mix design methodology and hardened properties. Cement and concrete composites, 44, 17-29. doi:10.1016/j.cemconcomp.2013.03.030
  • Yu, Q. L., Spiesz, P., Brouwers, H. J. H. (2015). Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18-28. doi:10.1016/j.cemconcomp.2015.04.012
  • Yu, Q.L., Spiesz, P., Brouwers, H.J.H. (2015). Ultra-lightweight concrete: conceptual design and performance evaluation, Cement & Concrete Composites, 61, 18-28. doi:http://dx.doi.org/10.1016/j.cemconcomp.2015.04.012
  • Yu, R., Van Onna, D. V., Spiesz, P., Yu, Q. L., Brouwers, H. J. H. (2016). Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass. Journal of Cleaner Production, 112, 690-701. doi:10.1016/j.jclepro.2015.07.082
  • Zareef, M. A. M. E. (2010). Conceptual and structural design of buildings made of lightweight and infra-lightweight concrete. Ph.D., Thesis, Planen Bauen Umwelt der Technischen Universität, Berlin. doi:10.14279/depositonce-2415
  • Zhang, M. H., Li, L., Paramasivam, P. (2005). Shrinkage of high-strength lightweight aggregate concrete exposed to dry environment. Materials Journal, 102 (2), 86-92.
  • Zhang, M., Li, L., Paramasivam, P. (2004). Flexural toughness and impact resistance of steel-fibre-reinforced lightweight concrete. Magazine of Concrete Research, 56 (5), 251-262. doi:10.1680/macr.2004.56.5.251
  • Zhang, Y., Sun, Q., Xin, H., Liu, Y., Correia, J. A., Berto, F. (2022). Probabilistic flexural fatigue strength of ultra-lightweight cement concrete and high strength lightweight aggregate concrete. International Journal of Fatigue, 158, 106743. doi:10.1016/j.ijfatigue.2022.106743
  • Zhou, H., Brooks, A. L. (2019). Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres. Construction and Building Materials, 512–526. doi:10.1016/j.conbuildmat.2018.11.074
  • Zhou, Y., Gong, G., Huang, Y., Chen, C., Huang, D., Chen, Z., Guo, M. (2021). Feasibility of incorporating recycled fine aggregate in high performance green lightweight engineered cementitious composites. Journal of Cleaner Production, 280(2), 124445. doi:10.1016/j.jclepro.2020.124445
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

İlker Bekir Topçu 0000-0002-2075-6361

İsmail Hocaoğlu 0000-0001-9294-1120

İlkay Kara 0000-0002-9935-4743

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date April 20, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Topçu, İ. B., Hocaoğlu, İ., & Kara, İ. (2023). Ultra Hafif Betonda Güncel Gelişmeler. International Journal of Engineering Research and Development, 15(2), 689-703. https://doi.org/10.29137/umagd.1286178

Cited By

BETON TEKNOLOJİSİNDEKİ YENİ GELİŞMELER
Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
https://doi.org/10.31796/ogummf.1348428

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.