Research Article
BibTex RIS Cite

Deep Learning Based Mapping Diversity

Year 2025, Volume: 17 Issue: 1, 1 - 10
https://doi.org/10.29137/umagd.1348192

Abstract

In this work, the mapping diversity technique, applied to enhance the bit/symbol error rate performance in wireless fading channels, is designed using deep learning based autoencoder. Specifically, the multiple signal constellations required in mapping diversity technique are obtained using autoencoder structure. In this framework, the multiple signal constellations, obtained by assuming multiple channel use in autoencoder structure, are used in mapping diversity and the performance of this proposed system is compared with classical repetitive transmission technique. Desing and simulations are repeated for different modulation types and thereby, the performance of the proposed system is investigated for various data rates under fading channel conditions. Consequently, supported with simulation results, the proposed deep learning based mapping diversity technique is shown to attain better performance than classical repetitive transmission technique.

Project Number

MF-22003

References

  • Benelli, G. (1992). A New Method for the Integration of Modulation and Channel Coding in an ARQ Protocol. IEEE Transactions on Communications, 40(10), 1594–1606.
  • Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 21(4), 3039-3071.
  • Dai, L., Jiao, R., Adachi, F., Poor, H. V., & Hanzo, L. (2020). Deep learning for wireless communications: An emerging interdisciplinary paradigm. IEEE Wireless Communications, 27(4), 133-139.
  • Erpek, T., O’Shea, T. J., Sagduyu, Y. E., Shi, Y., & Clancy, T. C. (2020). Deep learning for wireless communications. Development and Analysis of Deep Learning Architectures, 223-266.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  • Kim, H., Oh, S., & Viswanath, P. (2020). Physical layer communication via deep learning. IEEE Journal on Selected Areas in Information Theory, 1(1), 5-18.
  • Metzner, J. J. (1977). Improved Sequential Signaling and Decision Techniques for Nonbinary Block Codes. IEEE Transactions on Communications, 25(5), 561–563.
  • O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563-575.
  • O'Shea, T. J., Karra, K., & Clancy, T. C. (2016). Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. In 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 223-228).
  • Proakis, J. G. (2008). Digital communications. McGraw-Hill, Higher Education.
  • Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26(2), 93-99.
  • Samra, H., Ding, Z., & Hahn, P. M. (2005). Symbol mapping diversity design for multiple packet transmissions. IEEETransactions on Communications, 53(5), 810–817.
  • Simeone, O. (2018). A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 648-664.
  • Wang, T., Wen, C. K., Wang, H., Gao, F., Jiang, T., & Jin, S. (2017). Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 14(11), 92-111.
  • Wengerter, C., Golitschek Edler Von Elbwart, A., Seidel, E., Velev, G., ve Schmitt, M. P. (2002). Advanced hybrid ARQ technique employing a signal constellation rearrangement. IEEE Vehicular Technology Conference, 56(4), 2002–2006.

Derin Öğrenme Tabanlı Eşlemleme Çeşitlemesi

Year 2025, Volume: 17 Issue: 1, 1 - 10
https://doi.org/10.29137/umagd.1348192

Abstract

Bu çalışmada kablosuz sönümlemeli haberleşme kanallarında bit/sembol hata oranı performansını iyileştirmek amacıyla uygulanan eşlemleme çeşitlemesi tekniği, derin öğrenme tabanlı özkodlayıcı kullanılarak tasarlanmıştır. Spesifik olarak eşlemleme çeşitlemesi tekniğinde gerekli çoklu işaret kümeleri özkodlayıcı kullanılarak elde edilmiştir. Bu çerçevede, özkodlayıcı yapısında çoklu kanal kullanımı varsayımıyla elde edilen çoklu işaret kümeleri eşlemleme çeşitlemesinde kullanılmış ve tasarlanan bu sistemin performansı eşlemleme çeşitlemesi uygulanmayan klasik tekrarlı iletim tekniği ile karşılaştırılmıştır. Tasarım ve benzetimler farklı modülasyon türleri için tekrar edilmiştir ve böylelikle tasarlanan sistemin farklı bilgi oranları için sönümlemeli kanal şartlarında performansı incelenmiştir. Sonuç olarak, tasarlanan derin öğrenme tabanlı eşlemleme çeşitlemesi tekniği ile klasik tekrarlamalı iletim tekniğinden daha iyi bir başarım elde edildiği benzetim sonuçları ile desteklenerek gösterilmiştir.

Supporting Institution

Aydın Adnan Menderes Üniversitesi BAP Birimi

Project Number

MF-22003

Thanks

Bu çalışma, Aydın Adnan Menderes Üniversitesi BAP Birimi tarafından MF-22003 proje numarası ile desteklenmiştir.

References

  • Benelli, G. (1992). A New Method for the Integration of Modulation and Channel Coding in an ARQ Protocol. IEEE Transactions on Communications, 40(10), 1594–1606.
  • Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 21(4), 3039-3071.
  • Dai, L., Jiao, R., Adachi, F., Poor, H. V., & Hanzo, L. (2020). Deep learning for wireless communications: An emerging interdisciplinary paradigm. IEEE Wireless Communications, 27(4), 133-139.
  • Erpek, T., O’Shea, T. J., Sagduyu, Y. E., Shi, Y., & Clancy, T. C. (2020). Deep learning for wireless communications. Development and Analysis of Deep Learning Architectures, 223-266.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  • Kim, H., Oh, S., & Viswanath, P. (2020). Physical layer communication via deep learning. IEEE Journal on Selected Areas in Information Theory, 1(1), 5-18.
  • Metzner, J. J. (1977). Improved Sequential Signaling and Decision Techniques for Nonbinary Block Codes. IEEE Transactions on Communications, 25(5), 561–563.
  • O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563-575.
  • O'Shea, T. J., Karra, K., & Clancy, T. C. (2016). Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention. In 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 223-228).
  • Proakis, J. G. (2008). Digital communications. McGraw-Hill, Higher Education.
  • Qin, Z., Ye, H., Li, G. Y., & Juang, B. H. F. (2019). Deep learning in physical layer communications. IEEE Wireless Communications, 26(2), 93-99.
  • Samra, H., Ding, Z., & Hahn, P. M. (2005). Symbol mapping diversity design for multiple packet transmissions. IEEETransactions on Communications, 53(5), 810–817.
  • Simeone, O. (2018). A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 648-664.
  • Wang, T., Wen, C. K., Wang, H., Gao, F., Jiang, T., & Jin, S. (2017). Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 14(11), 92-111.
  • Wengerter, C., Golitschek Edler Von Elbwart, A., Seidel, E., Velev, G., ve Schmitt, M. P. (2002). Advanced hybrid ARQ technique employing a signal constellation rearrangement. IEEE Vehicular Technology Conference, 56(4), 2002–2006.
There are 15 citations in total.

Details

Primary Language English
Subjects Radio Frequency Engineering
Journal Section Articles
Authors

Mümtaz Yılmaz 0000-0002-1121-7331

Burak Türer 0000-0002-5772-1074

Project Number MF-22003
Early Pub Date March 3, 2025
Publication Date
Submission Date August 23, 2023
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Yılmaz, M., & Türer, B. (2025). Deep Learning Based Mapping Diversity. International Journal of Engineering Research and Development, 17(1), 1-10. https://doi.org/10.29137/umagd.1348192

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.