Research Article
BibTex RIS Cite

Determination of Optimum Diatomite Ratio in Foam Concrete Production

Year 2025, Volume: 17 Issue: 1, 211 - 220

Abstract

One of the most used construction materials today is concrete. Accordingly, concrete and concrete technology are developing rapidly. One of these developments is foam concrete. Research on foam concrete has increased day by day. One of the reasons for this is that foam concrete has a low density and high thermal insulation properties. In this study, the compressive strength and unit volume weight properties of foam concrete produced using diatomite sand (0-4 mm), a natural lightweight material, were emphasized. In the study, 5 different foam concrete designs were made in order to determine the mixing ratios of the foam concrete that gave the highest compressive strength and the lowest unit volume weight value. In these designs, the components other than diatomite (W/C ratio, micro silica sand, foaming agent, water) were kept constant, while diatomite was added at 32, 36, 40, 44 and 48% of the cement weight. The most suitable technical features in hardened foam concrete were determined as 860 kg/m3 unit volume weight, 5,23 MPa compressive strength, 4,27% water absorption, 1,56 km/s ultrasound transmission speed of foam concrete samples produced with 36% of cement weight. As a result of the experimental studies, the optimum diatomite ratio in foam concrete production was found to be 36% of cement weight.

References

  • Açıkalın, N. (1991). "Diatomite in Turkey and the World", MTA General Directorate F.E.D., Ankara.
  • Aruntaş, H.Y. (1996). “Diatomite, Properties, Areas of Use and Its Place in the Construction Sector”, Cement and Concrete World, 1, 4, 27-32, Ankara.
  • ASTM C 597 (1994). Standard Test Method For Pulse Velocity Through Concrete, Annual Book of ASTM Standarts.
  • Bircan, A. (1968). "Türkiye Diatomite Inventory", MTA Publications. No = 138, Ankara.
  • Bing, C., Zhen, W., & Ning, L. (2012). Experimental research on properties of high-strength foamed concrete. Journal of materials in civil engineering, 24(1), 113-118.
  • Demir, İ., Başpınar, MS, Kahraman, E. (2017). Experimental Investigation of Rheological Properties of Foamed Concrete. Cumhuriyet University Faculty of Science Journal of Science (CFD), Volume 38, No. 1 (2017) ISSN: 1300-1949
  • DPT, (2001). “Industrial Raw Materials Sub-Commission General Industrial Minerals IV Working Group Report”, Eighth Five-Year Development Plan Refractory Report, DPT: 2621 – ÖİK: 632, Ankara. e-book, http://ekutup.dpt.gov.tr/atresinde.
  • Gökçe H. S., Durmuş G., Şimşek O. (2010). Effects of Natural Perlite Aggregate Lightweight Concretes Produced in Alternative Mixing Ratios on Water/Cement / Politeknik Journal, Volume 13, Issue 1.
  • He, Y., Gao, M., Xu, D., & Yu, X. (2021). “Influence of sub-zero temperatures on the dynamic behaviour of foam concrete with sand”. KSCE Journal of Civil Engineering, 25(10), 3843-3851.
  • Jones, M., McCarthy, M., & Mccarthy, A. (2003). “Moving Fly Ash Utilisation in Concrete Forward: A UK Perspective”. In T. Robl, & T. Adams (Eds.), 2003 WOCA Proceedings Papers (pp. 1-24). University Press of Kentucky.
  • Khawaja, S. A., Javed, U., Zafar, T., Riaz, M., Zafar, M. S., & Khan, M. K. (2021). “Eco-friendly incorporation of sugarcane bagasse ash as partial replacement of sand in foam concrete”. Cleaner Engineering and Technology, 4, 100164.
  • Mete, Z. (1982). “Investigation of the Properties of Some Western Anatolian Diatomite Deposits and Investigation of Their Usage Areas”, Associate Professorship Thesis, E. University, Chemistry Faculty, Chemical Engineering Department, Izmir.
  • MTA: https://www.mta.gov.tr/v3.0/bilgi-merkezi/diatomit/ Last access: 28.05.2024
  • Nambiar, E. K., & Ramamurthy, K. (2007). “Air‐void characterization of foam concrete”. Cement and concrete research, 37(2), 221-230.
  • Neville, A. M. (1995). Properties of concrete, 4th edition, Longman Group Limited.
  • Oyak cement: https://www.oyakcimento.com/tr/urunler/cem-i/oyak-cimentoaslauretimi/cemi-425-r/Last access: 30.09.2023
  • Özbey, G., Atamer, N. (1987). “Some Information About Kieselgur (Diatomite)”, 10th Turkey Mining Scientific and Technical Congress, 493-502. Ankara.
  • Özçelik Y. & Şimşek O. (2024). “Use of construction demolition waste fine aggregate in foam concrete production and determination of optimum water/cement ratio”, Politeknik Journal, 27(1): 263-271.
  • Ramamurthy, K., Nambiar, E. K., & Ranjani, G. I. S. (2009). “A classification of studies on properties of foam concrete”. Cement and concrete composites, 31(6), 388-396.
  • Rotowash. URL: www.rotowash. com. tr/kopuk-puskurtme-pompalari-2/88645---30-ltkopuk-puskurtme-pompasi-88645.html. Access date: 11.02.2022.
  • Song, Q., Bao, J., Xue, S., Zhang, P., & Mu, S. (2021). Collaborative disposal of multisource solid waste: Influence of an admixture on the properties, pore structure and durability of foam concrete. Journal of Materials Research and Technology, 14, 1778- 1790.
  • Şeker B. Ş., Gökçe M., Toklu K. (2022). “Investigation of the effect of silica fume andsynthetic foam additive on cell structure in ultra-low density foam concrete”. Case Studies in Construction Materials. Simsek, O. (2019). Concrete and Concrete Technology, Seckin Publishing, 6th Edition, Ankara.
  • Şimşek, O., Ünal M.T. ve Gökçe H.S. (2024). “Performance of foam concrete developed from construction and demolition waste ” Materials Today Sustainability. Volume 27, September 2024, 100822.
  • Turkish Standards Institution (2008). Chemical admixtures - Test methods for concrete, mortar and grout - Part 11: Determination of air void properties in hardened concrete, TS EN 480- 11, Ankara.
  • Turkish Standards Institution (2012). Cement- Part 1: General cements-Composition, properties and conformity criteria, TS EN 197-1, Ankara.
  • Turkish Standards Institution (2019). Concrete - Testing hardened concrete - Part 7: Determination of unit volume mass of hardened concrete, TS EN 12390-7, Ankara.
  • Turkish Standards Institute (2019). Concrete- Hardened concrete tests- Part 3: Determination of compressive strength of test samples, TS EN 12390-3, Ankara.
  • Turkish Standards Institute (2021). Concrete tests in structures- Part 4: Determination of ultrasonic pulsed wave speed, TS EN 12504-4, Ankara.
  • Trtnik G., Kavcic F., Turk G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks UltrasonicsVol. 49, pp. 53–60.
  • TS 9773 (1992). Diatomite-Used in thermal insulation, Turkish Standards Institute, Ankara,7p.
  • Whitehurst E.A. (1951). "Use of the Soni scope for Measuring Stetting Time of Concrete" ASTM vol, 51, pp.1166-76.

Köpük Beton Üretiminde Optimum Diatomit Oranının Belirlenmesi

Year 2025, Volume: 17 Issue: 1, 211 - 220

Abstract

Günümüzde beton teknolojisi hızlı gelişim göstermektedir. Bu sebeple beton en çok kullandığımız yapı malzemelerinden birisidir. Geliştirilmiş birçok özel beton türü mevcuttur. Bunlardan bir tanesi köpük betondur. Köpük beton yüksek oranda boşluğa sahip bir beton türüdür. Bu nedenle ısı ve ses yalıtım özellikleri oldukça iyidir. Bu çalışmada diatomitin köpük beton ile üretilebilirliği araştırılmıştır. Olumlu fiziksel özelliklere sahip diatomitin 4 mm göz açıklığına sahip elekten geçen kısmı ile 5 farklı deneme sistemi hazırlanmış diatomit dışındaki bileşenler (S/Ç oranı, silis kumu miktarı, köpük ajanı miktarı, su miktarı) sabit tutulmuştur. Üretilen köpük beton numunelerinin TS 13655’e göre birim hacim ağırlık, basınç dayanımları, su emme kapasiteleri, ultrases geçiş hızı, gibi özellikleri incelenmiştir. Yapılan deneysel çalışmalar sonucunda köpük beton üretiminde optimum diatomit oranı saptanmıştır.

Thanks

Yapılan deneysel çalışmalar esnasında tarafıma destek veren, laboratuvar ve malzemelerin temin olanağını sağlayan makalenin yazımı esnasında hiçbir yardımdan kaçınmayan çok değerli hocam sayın Doç. Dr. Osman ŞİMŞEK’ e sonsuz teşekkürlerimi sunarım.

References

  • Açıkalın, N. (1991). "Diatomite in Turkey and the World", MTA General Directorate F.E.D., Ankara.
  • Aruntaş, H.Y. (1996). “Diatomite, Properties, Areas of Use and Its Place in the Construction Sector”, Cement and Concrete World, 1, 4, 27-32, Ankara.
  • ASTM C 597 (1994). Standard Test Method For Pulse Velocity Through Concrete, Annual Book of ASTM Standarts.
  • Bircan, A. (1968). "Türkiye Diatomite Inventory", MTA Publications. No = 138, Ankara.
  • Bing, C., Zhen, W., & Ning, L. (2012). Experimental research on properties of high-strength foamed concrete. Journal of materials in civil engineering, 24(1), 113-118.
  • Demir, İ., Başpınar, MS, Kahraman, E. (2017). Experimental Investigation of Rheological Properties of Foamed Concrete. Cumhuriyet University Faculty of Science Journal of Science (CFD), Volume 38, No. 1 (2017) ISSN: 1300-1949
  • DPT, (2001). “Industrial Raw Materials Sub-Commission General Industrial Minerals IV Working Group Report”, Eighth Five-Year Development Plan Refractory Report, DPT: 2621 – ÖİK: 632, Ankara. e-book, http://ekutup.dpt.gov.tr/atresinde.
  • Gökçe H. S., Durmuş G., Şimşek O. (2010). Effects of Natural Perlite Aggregate Lightweight Concretes Produced in Alternative Mixing Ratios on Water/Cement / Politeknik Journal, Volume 13, Issue 1.
  • He, Y., Gao, M., Xu, D., & Yu, X. (2021). “Influence of sub-zero temperatures on the dynamic behaviour of foam concrete with sand”. KSCE Journal of Civil Engineering, 25(10), 3843-3851.
  • Jones, M., McCarthy, M., & Mccarthy, A. (2003). “Moving Fly Ash Utilisation in Concrete Forward: A UK Perspective”. In T. Robl, & T. Adams (Eds.), 2003 WOCA Proceedings Papers (pp. 1-24). University Press of Kentucky.
  • Khawaja, S. A., Javed, U., Zafar, T., Riaz, M., Zafar, M. S., & Khan, M. K. (2021). “Eco-friendly incorporation of sugarcane bagasse ash as partial replacement of sand in foam concrete”. Cleaner Engineering and Technology, 4, 100164.
  • Mete, Z. (1982). “Investigation of the Properties of Some Western Anatolian Diatomite Deposits and Investigation of Their Usage Areas”, Associate Professorship Thesis, E. University, Chemistry Faculty, Chemical Engineering Department, Izmir.
  • MTA: https://www.mta.gov.tr/v3.0/bilgi-merkezi/diatomit/ Last access: 28.05.2024
  • Nambiar, E. K., & Ramamurthy, K. (2007). “Air‐void characterization of foam concrete”. Cement and concrete research, 37(2), 221-230.
  • Neville, A. M. (1995). Properties of concrete, 4th edition, Longman Group Limited.
  • Oyak cement: https://www.oyakcimento.com/tr/urunler/cem-i/oyak-cimentoaslauretimi/cemi-425-r/Last access: 30.09.2023
  • Özbey, G., Atamer, N. (1987). “Some Information About Kieselgur (Diatomite)”, 10th Turkey Mining Scientific and Technical Congress, 493-502. Ankara.
  • Özçelik Y. & Şimşek O. (2024). “Use of construction demolition waste fine aggregate in foam concrete production and determination of optimum water/cement ratio”, Politeknik Journal, 27(1): 263-271.
  • Ramamurthy, K., Nambiar, E. K., & Ranjani, G. I. S. (2009). “A classification of studies on properties of foam concrete”. Cement and concrete composites, 31(6), 388-396.
  • Rotowash. URL: www.rotowash. com. tr/kopuk-puskurtme-pompalari-2/88645---30-ltkopuk-puskurtme-pompasi-88645.html. Access date: 11.02.2022.
  • Song, Q., Bao, J., Xue, S., Zhang, P., & Mu, S. (2021). Collaborative disposal of multisource solid waste: Influence of an admixture on the properties, pore structure and durability of foam concrete. Journal of Materials Research and Technology, 14, 1778- 1790.
  • Şeker B. Ş., Gökçe M., Toklu K. (2022). “Investigation of the effect of silica fume andsynthetic foam additive on cell structure in ultra-low density foam concrete”. Case Studies in Construction Materials. Simsek, O. (2019). Concrete and Concrete Technology, Seckin Publishing, 6th Edition, Ankara.
  • Şimşek, O., Ünal M.T. ve Gökçe H.S. (2024). “Performance of foam concrete developed from construction and demolition waste ” Materials Today Sustainability. Volume 27, September 2024, 100822.
  • Turkish Standards Institution (2008). Chemical admixtures - Test methods for concrete, mortar and grout - Part 11: Determination of air void properties in hardened concrete, TS EN 480- 11, Ankara.
  • Turkish Standards Institution (2012). Cement- Part 1: General cements-Composition, properties and conformity criteria, TS EN 197-1, Ankara.
  • Turkish Standards Institution (2019). Concrete - Testing hardened concrete - Part 7: Determination of unit volume mass of hardened concrete, TS EN 12390-7, Ankara.
  • Turkish Standards Institute (2019). Concrete- Hardened concrete tests- Part 3: Determination of compressive strength of test samples, TS EN 12390-3, Ankara.
  • Turkish Standards Institute (2021). Concrete tests in structures- Part 4: Determination of ultrasonic pulsed wave speed, TS EN 12504-4, Ankara.
  • Trtnik G., Kavcic F., Turk G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks UltrasonicsVol. 49, pp. 53–60.
  • TS 9773 (1992). Diatomite-Used in thermal insulation, Turkish Standards Institute, Ankara,7p.
  • Whitehurst E.A. (1951). "Use of the Soni scope for Measuring Stetting Time of Concrete" ASTM vol, 51, pp.1166-76.
There are 31 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Hasan Eliküçük 0000-0001-5060-1814

Osman Şimşek 0000-0003-3842-5541

Early Pub Date March 3, 2025
Publication Date
Submission Date June 26, 2024
Acceptance Date August 2, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Eliküçük, H., & Şimşek, O. (2025). Determination of Optimum Diatomite Ratio in Foam Concrete Production. International Journal of Engineering Research and Development, 17(1), 211-220. https://doi.org/10.29137/umagd.1505052

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.