Research Article
BibTex RIS Cite

Farklı Geometrili Kalın Kenarlı Savakların Akım Karakteristiklerinin Sayısal Olarak İncelenmesi

Year 2025, Volume: 17 Issue: 1, 247 - 256

Abstract

Kalın kenarlı savaklar, su seviyesini belirleme ve akım hızını düzenleme amaçları ile kullanılan önemli hidrolik yapılardır. Genellikle memba ve mansap yüzeyleri düşey olarak tasarlanan bu yapıların debi deşarj kapasitesini arttırabilmek için memba ve mansap yüzeyleri açılı olacak şekilde yeni öneriler literatürde mevcuttur. Bu çalışmada, kalın kenarlı savakların kretinin eğimli olması ve memba-mansap yüzeyinin basamaklı olarak tasarlanması durumunda akım karakteristiğine etkisi sayısal olarak incelenmiştir. Sayısal analizler için açık kaynak kodlu OpenFOAM yazılımı ve k-ε türbülans modeli kullanılmıştır. Sayısal sonuçlar, literatürdeki dikdörtgen kesitli bir çalışmanın sonuçları (Imanian vd., 2021) ile doğrulanmıştır. Elde edilen sonuçlara göre, tasarlanan yeni modellerin deşarj kapasitesinin klasik kalın kenarlı savağa oranla %4 civarında daha yüksek olduğu, kreti negatif eğimli olarak tasarlanan modellerin deşarj kapasitesinin daha yüksek olduğu, memba ya da mansap yüzeyi basamaklı olarak tasarlanan modellerde deşarj kapasitesinin daha yüksek olduğu ve akım ayrışma bölgesinin daha düşük olduğu gözlenmiştir.

References

  • Al-Hashimi, S.A.M., Madhloom, H.M., Nahi, T.N., 2017. Experimental and numerical simulation of flow over broad-crested weir and stepped weir using different turbulence models. J. Eng. Sustain. Dev. 21.
  • Azimi, A.H., Rajaratnam, N., Zhu, D.Z., 2012. Discharge Characteristics of Weirs of Finite Crest Length with Upstream and Downstream Ramps. J. Irrig. Drain. Eng. 139, 75–83. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000519
  • Blanche, L.H., Govinda Rao, N.S., Muralidhar, D., 1963. Discharge characteristics of weirs of finite-crest width. https://doi.org/10.1051/lhb/1963036
  • Bos MG, 1976. Discharge measurement structures. Laboratorium voor Hydraulica an Afvoerhydrologie, Landbouwhogeschool, Wageningen, The Netherlands, Rapport 4.
  • Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., Ghaderi, A., 2021. 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH J. Hydraul. Eng. 27, 88–96. https://doi.org/10.1080/09715010.2019.1581098
  • Fritz, H.M., Hager, W.H., 1998. Hydraulics of Embankment Weirs. J. Hydraul. Eng. 124, 963–971. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(963)
  • Goodarzi, E., Farhoudi, J., Shokri, N., 2012. Flow characteristics of rectangular broad-crested weirs with sloped upstream face. J. Hydrol. Hydromech 60, 20. https://doi.org/10.2478/v10098-012-0008-1
  • https://en.wikipedia.org/wiki/Computational_fluid_dynamics, 2022.
  • Imanian, H., Mohammadian, A., Hoshyar, P., 2021. Experimental and numerical study of flow over a broad-crested weir under different hydraulic head ratios. Flow Meas. Instrum. 80, 102004. https://doi.org/10.1016/J.FLOWMEASINST.2021.102004
  • J, S., 1964. Square-edged broad-crested weir as a flow measurement device. Water Water Eng. 68(6) 229-235.
  • Jiang, L., Diao, M., Sun, H., Ren, Y., 2018. Numerical Modeling of Flow Over a Rectangular Broad-Crested Weir with a Sloped Upstream Face. Water 2018, Vol. 10, Page 1663 10, 1663. https://doi.org/10.3390/W10111663
  • Madadi, M.R., Hosseinzadeh Dalir, A., Farsadizadeh, D., 2014. Investigation of flow characteristics above trapezoidal broad-crested weirs. Flow Meas. Instrum. 38, 139–148. https://doi.org/10.1016/J.FLOWMEASINST.2014.05.014
  • Maghsoodi, R., Roozgar, M.S., Sarkardeh, H., Azamathulla, H.M., 2012. 3D-simulation of flow over submerged weirs. Int. J. Model. Simul. 32, 237–243. https://doi.org/10.2316/JOURNAL.205.2012.4.205-5656
  • Malekzadeh, F., Salmasi, F., Abraham, J., Arvanaghi, H., 2022. Numerical investigation of the effect of geometric parameters on discharge coefficients for broad-crested weirs with sloped upstream and downstream faces. Appl. Water Sci. 12, 1–15. https://doi.org/10.1007/S13201-022-01631-5/
  • Nilay Sezer Uzol, 2021. Hesaplamalı Akışkanlar Dinamiği’ne Giriş ve Aerodinamik Simülasyonlar (lecture notes) [in Turkish]. Nourani, B., Arvanaghi, H., Salmasi, F., 2021. Effects of different configurations of sloping crests and upstream and downstream ramps on the discharge coefficient for broad-crested weirs. J. Hydrol. 603, 126940. https://doi.org/10.1016/J.JHYDROL.2021.126940
  • Özbek, T., 2009. Açık Kanal Akımlarının Hidroliği ve Hidrolik Yapılar, Teknik Yayınevi [in Turkish].
  • RAO SS, SHUKLA MK, 1971. Characteristics of Flow over Weirs of Finite Crest Width. J. Hydraul. Div. 97, 1807–1816. https://doi.org/10.1061/JYCEAJ.0003138
  • Samani, A. K., & Bagheri, S., 2014. Design of channels and water conveyance structures. Arkan danesh, Esfahan.
  • Sargison, J.E., Percy, A., 2009. Hydraulics of Broad-Crested Weirs with Varying Side Slopes. J. Irrig. Drain. Eng. 135, 115–118. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(115)
  • Shaymaa A. M. Al-Hashimi, Huda M. Madhloom, Rasul M. Khalaf, Thameen N. Nahi, Nadhir A. Al-Ansari, 2017. Flow over Broad Crested Weirs: Comparison of 2D and 3D Models. J. Civ. Eng. Archit. 11. https://doi.org/10.17265/1934-7359/2017.08.005
  • Tənase, N.O., Broboanə, D., Bəlan, C., 2015. Free surface flow over the broad - Crested weir. 2015 9th Int. Symp. Adv. Top. Electr. Eng. ATEE 2015 548–551. https://doi.org/10.1109/ATEE.2015.7133881
  • Zahiri, A., Azamathulla, H.M., Bagheri, S., 2013. Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. J. Hydrol. 480, 162–166. https://doi.org/10.1016/J.JHYDROL.2012.12.022
  • Zerihun, Y.T., 2020. Free Flow and Discharge Characteristics of Trapezoidal-Shaped Weirs. Fluids 2020, Vol. 5, Page 238 5, 238. https://doi.org/10.3390/FLUIDS5040238

Numerical Investigation of Flow Characteristics of Broad-Crested Weirs with Different Geometry

Year 2025, Volume: 17 Issue: 1, 247 - 256

Abstract

Broad-crested weirs are important hydraulic structures used for water level control and flow regulation. In the literature, novel designs with upstream and downstream slope angles have been made to increase the discharge capacity of these structures, which are generally designed with vertical upstream and downstream faces. This study numerically investigates the effect on the flow characteristics of broad-crested weirs whose crest is inclined and whose upstream and downstream faces are stepped. The open-source software OpenFOAM and the k-ε turbulence model are used for the numerical analysis. The numerical results are validated with the literature study of a classical broad-crested weir (Imanian et al., 2021). According to the results, it is seen that the discharge capacity of the newly designed models is about 4% higher than the classical broad-crested weir, and the discharge capacity of the models with negative crest slope is higher. In addition, the discharge capacity is higher, and the flow separation zone is lower in the models designed with stepped upstream and downstream surfaces.

References

  • Al-Hashimi, S.A.M., Madhloom, H.M., Nahi, T.N., 2017. Experimental and numerical simulation of flow over broad-crested weir and stepped weir using different turbulence models. J. Eng. Sustain. Dev. 21.
  • Azimi, A.H., Rajaratnam, N., Zhu, D.Z., 2012. Discharge Characteristics of Weirs of Finite Crest Length with Upstream and Downstream Ramps. J. Irrig. Drain. Eng. 139, 75–83. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000519
  • Blanche, L.H., Govinda Rao, N.S., Muralidhar, D., 1963. Discharge characteristics of weirs of finite-crest width. https://doi.org/10.1051/lhb/1963036
  • Bos MG, 1976. Discharge measurement structures. Laboratorium voor Hydraulica an Afvoerhydrologie, Landbouwhogeschool, Wageningen, The Netherlands, Rapport 4.
  • Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., Ghaderi, A., 2021. 3-D Numerical simulation of water flow over a broad-crested weir with openings. ISH J. Hydraul. Eng. 27, 88–96. https://doi.org/10.1080/09715010.2019.1581098
  • Fritz, H.M., Hager, W.H., 1998. Hydraulics of Embankment Weirs. J. Hydraul. Eng. 124, 963–971. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:9(963)
  • Goodarzi, E., Farhoudi, J., Shokri, N., 2012. Flow characteristics of rectangular broad-crested weirs with sloped upstream face. J. Hydrol. Hydromech 60, 20. https://doi.org/10.2478/v10098-012-0008-1
  • https://en.wikipedia.org/wiki/Computational_fluid_dynamics, 2022.
  • Imanian, H., Mohammadian, A., Hoshyar, P., 2021. Experimental and numerical study of flow over a broad-crested weir under different hydraulic head ratios. Flow Meas. Instrum. 80, 102004. https://doi.org/10.1016/J.FLOWMEASINST.2021.102004
  • J, S., 1964. Square-edged broad-crested weir as a flow measurement device. Water Water Eng. 68(6) 229-235.
  • Jiang, L., Diao, M., Sun, H., Ren, Y., 2018. Numerical Modeling of Flow Over a Rectangular Broad-Crested Weir with a Sloped Upstream Face. Water 2018, Vol. 10, Page 1663 10, 1663. https://doi.org/10.3390/W10111663
  • Madadi, M.R., Hosseinzadeh Dalir, A., Farsadizadeh, D., 2014. Investigation of flow characteristics above trapezoidal broad-crested weirs. Flow Meas. Instrum. 38, 139–148. https://doi.org/10.1016/J.FLOWMEASINST.2014.05.014
  • Maghsoodi, R., Roozgar, M.S., Sarkardeh, H., Azamathulla, H.M., 2012. 3D-simulation of flow over submerged weirs. Int. J. Model. Simul. 32, 237–243. https://doi.org/10.2316/JOURNAL.205.2012.4.205-5656
  • Malekzadeh, F., Salmasi, F., Abraham, J., Arvanaghi, H., 2022. Numerical investigation of the effect of geometric parameters on discharge coefficients for broad-crested weirs with sloped upstream and downstream faces. Appl. Water Sci. 12, 1–15. https://doi.org/10.1007/S13201-022-01631-5/
  • Nilay Sezer Uzol, 2021. Hesaplamalı Akışkanlar Dinamiği’ne Giriş ve Aerodinamik Simülasyonlar (lecture notes) [in Turkish]. Nourani, B., Arvanaghi, H., Salmasi, F., 2021. Effects of different configurations of sloping crests and upstream and downstream ramps on the discharge coefficient for broad-crested weirs. J. Hydrol. 603, 126940. https://doi.org/10.1016/J.JHYDROL.2021.126940
  • Özbek, T., 2009. Açık Kanal Akımlarının Hidroliği ve Hidrolik Yapılar, Teknik Yayınevi [in Turkish].
  • RAO SS, SHUKLA MK, 1971. Characteristics of Flow over Weirs of Finite Crest Width. J. Hydraul. Div. 97, 1807–1816. https://doi.org/10.1061/JYCEAJ.0003138
  • Samani, A. K., & Bagheri, S., 2014. Design of channels and water conveyance structures. Arkan danesh, Esfahan.
  • Sargison, J.E., Percy, A., 2009. Hydraulics of Broad-Crested Weirs with Varying Side Slopes. J. Irrig. Drain. Eng. 135, 115–118. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:1(115)
  • Shaymaa A. M. Al-Hashimi, Huda M. Madhloom, Rasul M. Khalaf, Thameen N. Nahi, Nadhir A. Al-Ansari, 2017. Flow over Broad Crested Weirs: Comparison of 2D and 3D Models. J. Civ. Eng. Archit. 11. https://doi.org/10.17265/1934-7359/2017.08.005
  • Tənase, N.O., Broboanə, D., Bəlan, C., 2015. Free surface flow over the broad - Crested weir. 2015 9th Int. Symp. Adv. Top. Electr. Eng. ATEE 2015 548–551. https://doi.org/10.1109/ATEE.2015.7133881
  • Zahiri, A., Azamathulla, H.M., Bagheri, S., 2013. Discharge coefficient for compound sharp crested side weirs in subcritical flow conditions. J. Hydrol. 480, 162–166. https://doi.org/10.1016/J.JHYDROL.2012.12.022
  • Zerihun, Y.T., 2020. Free Flow and Discharge Characteristics of Trapezoidal-Shaped Weirs. Fluids 2020, Vol. 5, Page 238 5, 238. https://doi.org/10.3390/FLUIDS5040238
There are 23 citations in total.

Details

Primary Language English
Subjects Hydromechanics
Journal Section Articles
Authors

Abdulkadir Demirçelik 0009-0001-6746-8308

Mehmet Mustafa Duman 0009-0007-5111-4541

Erdinç İkincioğulları 0000-0003-2518-980X

Early Pub Date March 3, 2025
Publication Date
Submission Date July 19, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2025 Volume: 17 Issue: 1

Cite

APA Demirçelik, A., Duman, M. M., & İkincioğulları, E. (2025). Numerical Investigation of Flow Characteristics of Broad-Crested Weirs with Different Geometry. International Journal of Engineering Research and Development, 17(1), 247-256. https://doi.org/10.29137/umagd.1519268

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.