Research Article
BibTex RIS Cite

Dağıtık Karar Protokolleri Kullanarak Sürdürülebilir Hibrit Enerji Dağıtım Ağı için Yeni Bir Çerçeve

Year 2025, Volume: 17 Issue: 2, 349 - 369

Abstract

Günümüzde, nüfus artışı ve teknolojik ilerlemeler, küresel elektrik talebinin artmasına katkıda bulunmaktadır. Bu araştırmanın amacı, HES'in güvenilirliğini ve sürdürülebilirliğini artırmak için yeni bir dağıtılmış karar verme protokolü (DDM) geliştirmektir. Bu DDM kullanılarak, HES içindeki bağımsız ve otonom enerji üreticileri üzerindeki planlı ve plansız üretim kesintilerinin etkilerini en aza indirmek amaçlanmaktadır. Bu protokolün uygulanmasıyla, HES içindeki enerji üreticilerinin, müşteri ihtiyaçlarını karşılayamadıkları durumlarda işbirliği yaparak karşılıklı fayda sağlamaları hedeflenmektedir. Bir vaka çalışması olarak, dört bağımsız toplulukta CN işletmeleri olarak simüle edilen on altı bağımsız enerji santrali bulunmaktadır. DDM protokolü, bağımsız enerji üreticileri arasındaki işbirliğini yönetmeyi, üreticilerin kaynaklarını etkin bir şekilde kullanmayı, kar oranlarını artırmayı ve her topluluk için enerji arzının sürdürülebilirliğini optimize etmeyi amaçlamaktadır. Sonuçlar, önerilen protokolün, kar, talep karşılama oranı, sürdürülebilirlik ve kaynak kullanımı kriterleri altında her bir enerji üreticisi ve tüm HES için tatmin edici sonuçlar verdiğini göstermektedir. Ayrıca, her topluluk içindeki işbirliği oranındaki artış, bu parametreleri ortalama %90 oranında artırmıştır.

References

  • Ahmad, T., Zhang, D., & Huang, C. (2021). Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications. Energy, 231, 120911. https://doi.org/10.1016/j.energy.2021.120911
  • Ajidarma, P., Nof, S. Y., Pradana, R. A., Nugroho, W. A., & Halim, A. H. (2022). Preemptive Demand and Capacity Sharing Learning Protocols Using Long Short-Term Memory (LSTM) Neural Network Autoencoders. IFAC-PapersOnLine, 55(10), 1798–1803. https://doi.org/10.1016/j.ifacol.2022.09.659
  • Al-Abri, A., & Okedu, K. E. (2023). Overview of the Global Electricity System in Oman Considering Energy Demand Model Forecast. Energy Engineering: Journal of the Association of Energy Engineering, 120(2), 409–423. https://doi.org/10.32604/ee.2023.020375
  • Al-khaykan, A., Al-kharsan, I. H., Ali, M. O., Alrubaie, A. J., Fakhruldeen, H. F., & Counsell, J. M. (2023). Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems. 1–17.
  • Bhargava, R., Levalle, R. R., & Nof, S. Y. (2016). A best-matching protocol for order fulfillment in re-configurable supply networks. Computers in Industry, 82, 160–169. https://doi.org/10.1016/j.compind.2016.07.001
  • Chen, Y., Guo, M., Liu, Y., Wang, D., Zhuang, Z., & Quan, M. (2023). Energy, exergy, and economic analysis of a centralized solar and biogas hybrid heating system for rural areas. Energy Conversion and Management, 276(13), 116591. https://doi.org/10.1016/j.enconman.2022.116591
  • Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modeling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108(501), 7–21. https://doi.org/10.1080/01621459.2012.722900
  • Costoya, X., deCastro, M., Carvalho, D., & Gómez-Gesteira, M. (2023). Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renewable and Sustainable Energy Reviews, 173(November 2022). https://doi.org/10.1016/j.rser.2022.113101
  • Ghofrani, M., & Hosseini, N. N. (2016). Optimizing Hybrid Renewable Energy Systems: A Review. Sustainable Energy - Technological Issues, Applications and Case Studies. https://doi.org/10.5772/65971
  • Global Futures Report - REN21. (n.d.). Retrieved May 23, 2022, from https://web.archive.org/web/20190724164150/https://www.ren21.net/reports/global-futures-report/
  • Huang, C. Y., & Wu, Y. W. (2003). Decision model for partnership development in virtual enterprises. International Journal of Production Research, 41(9), 1855–1872. https://doi.org/10.1080/0020754031000087210
  • Huang, K., Liu, P., Kim, J. S., Xu, W., Gong, Y., Cheng, Q., & Zhou, Y. (2023). A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system. Energy, 263(PB), 125737. https://doi.org/10.1016/j.energy.2022.125737
  • Huy, T. H. B., Dinh, H. T., & Kim, D. (2023). Multi-objective framework for a home energy management system with the integration of solar energy and an electric vehicle using an augmented ε-constraint method and lexicographic optimization. Sustainable Cities and Society, 88(November 2022), 104289. https://doi.org/10.1016/j.scs.2022.104289
  • Ifaei, P., Karbassi, A., Jacome, G., & Yoo, C. K. (2017). A systematic approach of bottom-up assessment methodology for an optimal design of hybrid solar/wind energy resources – Case study at middle east region. Energy Conversion and Management, 145(2017), 138–157. https://doi.org/10.1016/j.enconman.2017.04.097
  • IRENA. (2019). Renewable capacity statistics 2019, International Renewable Energy Agency (IRENA), Abu Dhabi. In International Renewable Energy Agency (IRENA), Abu Dhabi.
  • Jahanpour, E., Ko, H. S., & Nof, S. Y. (2016). Collaboration protocols for sustainable wind energy distribution networks. International Journal of Production Economics, 182(July 2015), 496–507. https://doi.org/10.1016/j.ijpe.2016.09.010
  • Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022
  • Kazem, H. A., Chaichan, M. T., Al-Waeli, A. H. A., & Gholami, A. (2022). A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(3), 6709–6736. https://doi.org/10.1080/15567036.2022.2100517
  • Kucukali, S., & Baris, K. (2010). Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy, 38(5), 2438–2445. https://doi.org/10.1016/j.enpol.2009.12.037
  • Kumar, C. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V., Kumar, T. M. A., Rout, P. K., Chanotiya, C. S., Pakhale, V. D., & Nannaware, A. D. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55(November 2022), 102905. https://doi.org/10.1016/j.seta.2022.102905
  • Lewis, N. S. (2007). Toward cost-effective solar energy use. Science, 315(5813), 798–801. https://doi.org/10.1126/science.1137014
  • Li, J. (2023). Evaluation of dynamic growth trend of renewable energy based on mathematical model. Energy Reports, 9, 48–56. https://doi.org/10.1016/j.egyr.2022.11.139
  • Li, X., Yang, W., Zhao, Z., Wang, R., & Yin, X. (2023). Advantage of priority regulation of pumped storage for carbon-emission-oriented co-scheduling of hybrid energy system. Journal of Energy Storage, 58(December 2022), 106400. https://doi.org/10.1016/j.est.2022.106400
  • Lu, L., Yuan, W., Su, C., Wang, P., Cheng, C., Yan, D., & Wu, Z. (2021). Optimization model for the short-term joint operation of a grid-connected wind-photovoltaic-hydro hybrid energy system with cascade hydropower plants. Energy Conversion and Management, 236. https://doi.org/10.1016/j.enconman.2021.114055
  • Magesh, S. (2025). Distributed energy storage systems: Hybrid energy storage systems. Distributed Energy Storage Systems for Digital Power Systems, 109–147. https://doi.org/10.1016/B978-0-443-22013-5.00011-3
  • Maghami, M. R., & Mutambara, A. G. O. (2023). Challenges associated with Hybrid Energy Systems: An artificial intelligence solution. Energy Reports, 9, 924–940. https://doi.org/10.1016/j.egyr.2022.11.195
  • Mahesh, A., & Sandhu, K. S. (2015). Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renewable and Sustainable Energy Reviews, 52, 1135–1147. https://doi.org/10.1016/j.rser.2015.08.008
  • Memon, M. M., Halepoto, I. A., Abro, M. A. J., & Khuhawar, F. Y. (2025). Distributed energy storage systems for distributed energy resources integration. Distributed Energy Storage Systems for Digital Power Systems, 319–358. https://doi.org/10.1016/B978-0-443-22013-5.00015-0
  • Mertens, S. (2022). Design of wind and solar energy supply, to match energy demand. Cleaner Engineering and Technology, 6, 100402. https://doi.org/10.1016/j.clet.2022.100402
  • Minowa, M., Ito, K., Sumi, S. I., & Horii, K. (2012). A Study of Lightning Protection for Wind Turbine Blade by Using Creeping Discharge Characteristics Masayuki. 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 12–15.
  • Mohammed, N., & Al-Bazi, A. (2021). A multi agent-based optimisation model for the distribution planning and control of energy-based intermittent renewable sources. International Journal of Energy Research, 45(13), 19316–19330. https://doi.org/10.1002/er.7044
  • Padmashini, R. K., Lakshmi, D., Rajeshkumar, J. N., Sivaraman, P., Rajasree, R., & Chenniappan, S. (2025). Energy management for distributed energy storage system. Distributed Energy Storage Systems for Digital Power Systems, 183–199. https://doi.org/10.1016/B978-0-443-22013-5.00003-4
  • Rakpho, P., & Yamaka, W. (2021). The forecasting power of economic policy uncertainty for energy demand and supply. Energy Reports, 7, 338–343. https://doi.org/10.1016/j.egyr.2021.06.059
  • Reddy, S. S. (2017). Optimization of Renewable Energy Resources in Hybrid Energy Systems. Journal of Green Engineering, 7(1), 43–60. https://doi.org/10.13052/JGE1904-4720.7123
  • Sahri, Y., Tamalouzt, S., Belaid, S. L., Bajaj, M., Ghoneim, S. S. M., Zawbaa, H. M., & Kamel, S. (2023). Performance improvement of Hybrid System based DFIG-Wind/PV/Batteries connected to DC and AC grid by applying Intelligent Control. Energy Reports, 9, 2027–2043. https://doi.org/10.1016/j.egyr.2023.01.021
  • Shivam, K., Tzou, J. C., & Wu, S. C. (2020). Multi-objective sizing optimization of a grid-connected solar-wind hybrid system using climate classification: A case study of four locations in Southern Taiwan. Energies, 13(10). https://doi.org/10.3390/en13102505
  • Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers, C–29(12), 1104–1113. https://doi.org/10.1109/TC.1980.1675516
  • Sreenath, S., Azmi, A. M., & Ismail, Z. A. M. (2023). Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis. Energy Reports, 9, 711–719. https://doi.org/10.1016/j.egyr.2022.11.065
  • Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014
  • Syama, S., & Ramprabhakar, J. (2022). Multistep Ahead Solar Irradiance and Wind Speed Forecasting using Bayesian Optimized Long Short Term Memory. 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings, Icces, 164–171. https://doi.org/10.1109/ICCES54183.2022.9835840
  • Taghizadeh, M., Bahramara, S., Adabi, F., & Nojavan, S. (2020). Optimal operation of storage-based hybrid energy system considering market price uncertainty and peak demand management. Journal of Energy Storage, 30(April), 101519. https://doi.org/10.1016/j.est.2020.101519
  • Tavner, P. J., Greenwood, D. M., Whittle, M. W. G., Gindele, R., Faulstich, S., & Hahn, B. (2010). Study of weather and location effects on wind turbine failure rates. Wind Energy, 16(2), 175–187. https://doi.org/10.1002/we.538
  • Wei, H., Hongxuan, Z., Yu, D., Yiting, W., Ling, D., & Ming, X. (2019). Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks. Applied Energy, 250(April), 389–403. https://doi.org/10.1016/j.apenergy.2019.04.090
  • Wei, Y., Liu, H., Gu, K., & Li, D. (2007). Contract net based scheduling approach using interactive bidding for dynamic job shop scheduling. IEEE ICIT 2007 - 2007 IEEE International Conference on Integration Technology, 281–286. https://doi.org/10.1109/ICITECHNOLOGY.2007.4290478
  • Wu, J., Levi, N., Araujo, R., & Wang, Y. G. (2023). An evaluation of the impact of COVID-19 lockdowns on electricity demand. Electric Power Systems Research, 216(November 2022), 109015. https://doi.org/10.1016/j.epsr.2022.109015
  • Yilmaz, I., & Yoon, S. W. (2020). Dynamic-distributed decisions and sharing protocol for fair resource sharing in collaborative network. International Journal of Production Economics, 226(January). https://doi.org/10.1016/j.ijpe.2020.107644
  • Yoon, S. W., & Nof, S. Y. (2010a). Demand and capacity sharing decisions and protocols in a collaborative network of enterprises. Decision Support Systems, 49(4), 442–450. https://doi.org/10.1016/j.dss.2010.05.005
  • Yoon, S. W., & Nof, S. Y. (2010b). Demand and capacity sharing decisions and protocols in a collaborative network of enterprises. Decision Support Systems, 49(4), 442–450. https://doi.org/10.1016/j.dss.2010.05.005
  • Yuan, W., Wang, X., Su, C., Cheng, C., Liu, Z., & Wu, Z. (2021). Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. Energy, 222, 119996. https://doi.org/10.1016/j.energy.2021.119996
  • Yuan, X., Heikari, L., Hirvonen, J., Liang, Y., Virtanen, M., Kosonen, R., & Pan, Y. (2022). System modelling and optimization of a low temperature local hybrid energy system based on solar energy for a residential district. Energy Conversion and Management, 267(March), 115918. https://doi.org/10.1016/j.enconman.2022.115918
  • Zhang, H., Liao, K., Yang, J., Yin, Z., & He, Z. (2025). Long-term and Short-term Coordinated Scheduling for Wind-PV-Hydro-Storage Hybrid Energy System based on Deep Reinforcement Learning. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2025.3529215
  • Zhang, Y., Han, Z., Tian, B., Chen, N., & Fan, Y. (2025). Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit. Energy Engineering: Journal of the Association of Energy Engineering, 122(1), 167. https://doi.org/10.32604/EE.2024.056190
  • Zhang, Z., Qin, H., Li, J., Liu, Y., Yao, L., Wang, Y., Wang, C., Pei, S., & Zhou, J. (2020). Short-term optimal operation of wind-solar-hydro hybrid system considering uncertainties. Energy Conversion and Management, 205(October 2019), 112405. https://doi.org/10.1016/j.enconman.2019.112405
  • Zhou, X., Dai, C., Liu, G., Tan, X., Zhang, Z., Pan, Y., Pan, H., & Ahmed, A. (2023). A hybrid wind energy harvester based on a double-rotor reverse synergy mechanism for high-speed railway. Sustainable Cities and Society, 90(August 2022), 104389. https://doi.org/10.1016/j.scs.2022.104389
  • Zhu, F., Zhong, P. an, Xu, B., Liu, W., Wang, W., Sun, Y., Chen, J., & Li, J. (2020). Short-term stochastic optimization of a hydro-wind-photovoltaic hybrid system under multiple uncertainties. Energy Conversion and Management, 214(1), 112902. https://doi.org/10.1016/j.enconman.2020.112902

A Novel Framework for Sustainable Hybrid Energy Distribution Network Using Distributed Decision Protocols

Year 2025, Volume: 17 Issue: 2, 349 - 369

Abstract

Nowadays, population growth and technological advancements are contributing to the growth of global electricity demand. The aim of this research is to form a new distributed decision-making protocol (DDM) to increase the reliability and sustainability of HES. Using this DDM, it is intended to minimize the effects of planned and unplanned production interruptions on the independent and autonomous energy producers within the HES. By implementing this protocol, energy producers in the HES are intended to collaborate and achieve mutual benefits in cases where they are not able to fulfill the needs of their customers. As a case study, there are sixteen independent power plants that are simulated as CN enterprises in four independent communities. The DDM protocol aims to manage the collaboration among independent energy producers, to use the sources of the producers effectively, to increase the profit rates, and to optimize the sustainability of the energy supply for each community. The results demonstrates that the proposed protocol gives satisfying results under the criteria of profit, demand fulfillment rate, sustainability, and resource utilization both for each energy producers and entire HES. Moreover, the increase in collaboration rate within each community increased these parameters by average of 90%.

References

  • Ahmad, T., Zhang, D., & Huang, C. (2021). Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications. Energy, 231, 120911. https://doi.org/10.1016/j.energy.2021.120911
  • Ajidarma, P., Nof, S. Y., Pradana, R. A., Nugroho, W. A., & Halim, A. H. (2022). Preemptive Demand and Capacity Sharing Learning Protocols Using Long Short-Term Memory (LSTM) Neural Network Autoencoders. IFAC-PapersOnLine, 55(10), 1798–1803. https://doi.org/10.1016/j.ifacol.2022.09.659
  • Al-Abri, A., & Okedu, K. E. (2023). Overview of the Global Electricity System in Oman Considering Energy Demand Model Forecast. Energy Engineering: Journal of the Association of Energy Engineering, 120(2), 409–423. https://doi.org/10.32604/ee.2023.020375
  • Al-khaykan, A., Al-kharsan, I. H., Ali, M. O., Alrubaie, A. J., Fakhruldeen, H. F., & Counsell, J. M. (2023). Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems. 1–17.
  • Bhargava, R., Levalle, R. R., & Nof, S. Y. (2016). A best-matching protocol for order fulfillment in re-configurable supply networks. Computers in Industry, 82, 160–169. https://doi.org/10.1016/j.compind.2016.07.001
  • Chen, Y., Guo, M., Liu, Y., Wang, D., Zhuang, Z., & Quan, M. (2023). Energy, exergy, and economic analysis of a centralized solar and biogas hybrid heating system for rural areas. Energy Conversion and Management, 276(13), 116591. https://doi.org/10.1016/j.enconman.2022.116591
  • Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modeling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108(501), 7–21. https://doi.org/10.1080/01621459.2012.722900
  • Costoya, X., deCastro, M., Carvalho, D., & Gómez-Gesteira, M. (2023). Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renewable and Sustainable Energy Reviews, 173(November 2022). https://doi.org/10.1016/j.rser.2022.113101
  • Ghofrani, M., & Hosseini, N. N. (2016). Optimizing Hybrid Renewable Energy Systems: A Review. Sustainable Energy - Technological Issues, Applications and Case Studies. https://doi.org/10.5772/65971
  • Global Futures Report - REN21. (n.d.). Retrieved May 23, 2022, from https://web.archive.org/web/20190724164150/https://www.ren21.net/reports/global-futures-report/
  • Huang, C. Y., & Wu, Y. W. (2003). Decision model for partnership development in virtual enterprises. International Journal of Production Research, 41(9), 1855–1872. https://doi.org/10.1080/0020754031000087210
  • Huang, K., Liu, P., Kim, J. S., Xu, W., Gong, Y., Cheng, Q., & Zhou, Y. (2023). A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system. Energy, 263(PB), 125737. https://doi.org/10.1016/j.energy.2022.125737
  • Huy, T. H. B., Dinh, H. T., & Kim, D. (2023). Multi-objective framework for a home energy management system with the integration of solar energy and an electric vehicle using an augmented ε-constraint method and lexicographic optimization. Sustainable Cities and Society, 88(November 2022), 104289. https://doi.org/10.1016/j.scs.2022.104289
  • Ifaei, P., Karbassi, A., Jacome, G., & Yoo, C. K. (2017). A systematic approach of bottom-up assessment methodology for an optimal design of hybrid solar/wind energy resources – Case study at middle east region. Energy Conversion and Management, 145(2017), 138–157. https://doi.org/10.1016/j.enconman.2017.04.097
  • IRENA. (2019). Renewable capacity statistics 2019, International Renewable Energy Agency (IRENA), Abu Dhabi. In International Renewable Energy Agency (IRENA), Abu Dhabi.
  • Jahanpour, E., Ko, H. S., & Nof, S. Y. (2016). Collaboration protocols for sustainable wind energy distribution networks. International Journal of Production Economics, 182(July 2015), 496–507. https://doi.org/10.1016/j.ijpe.2016.09.010
  • Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. https://doi.org/10.1016/j.rser.2016.05.022
  • Kazem, H. A., Chaichan, M. T., Al-Waeli, A. H. A., & Gholami, A. (2022). A systematic review of solar photovoltaic energy systems design modelling, algorithms, and software. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(3), 6709–6736. https://doi.org/10.1080/15567036.2022.2100517
  • Kucukali, S., & Baris, K. (2010). Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach. Energy Policy, 38(5), 2438–2445. https://doi.org/10.1016/j.enpol.2009.12.037
  • Kumar, C. M. S., Singh, S., Gupta, M. K., Nimdeo, Y. M., Raushan, R., Deorankar, A. V., Kumar, T. M. A., Rout, P. K., Chanotiya, C. S., Pakhale, V. D., & Nannaware, A. D. (2023). Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustainable Energy Technologies and Assessments, 55(November 2022), 102905. https://doi.org/10.1016/j.seta.2022.102905
  • Lewis, N. S. (2007). Toward cost-effective solar energy use. Science, 315(5813), 798–801. https://doi.org/10.1126/science.1137014
  • Li, J. (2023). Evaluation of dynamic growth trend of renewable energy based on mathematical model. Energy Reports, 9, 48–56. https://doi.org/10.1016/j.egyr.2022.11.139
  • Li, X., Yang, W., Zhao, Z., Wang, R., & Yin, X. (2023). Advantage of priority regulation of pumped storage for carbon-emission-oriented co-scheduling of hybrid energy system. Journal of Energy Storage, 58(December 2022), 106400. https://doi.org/10.1016/j.est.2022.106400
  • Lu, L., Yuan, W., Su, C., Wang, P., Cheng, C., Yan, D., & Wu, Z. (2021). Optimization model for the short-term joint operation of a grid-connected wind-photovoltaic-hydro hybrid energy system with cascade hydropower plants. Energy Conversion and Management, 236. https://doi.org/10.1016/j.enconman.2021.114055
  • Magesh, S. (2025). Distributed energy storage systems: Hybrid energy storage systems. Distributed Energy Storage Systems for Digital Power Systems, 109–147. https://doi.org/10.1016/B978-0-443-22013-5.00011-3
  • Maghami, M. R., & Mutambara, A. G. O. (2023). Challenges associated with Hybrid Energy Systems: An artificial intelligence solution. Energy Reports, 9, 924–940. https://doi.org/10.1016/j.egyr.2022.11.195
  • Mahesh, A., & Sandhu, K. S. (2015). Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renewable and Sustainable Energy Reviews, 52, 1135–1147. https://doi.org/10.1016/j.rser.2015.08.008
  • Memon, M. M., Halepoto, I. A., Abro, M. A. J., & Khuhawar, F. Y. (2025). Distributed energy storage systems for distributed energy resources integration. Distributed Energy Storage Systems for Digital Power Systems, 319–358. https://doi.org/10.1016/B978-0-443-22013-5.00015-0
  • Mertens, S. (2022). Design of wind and solar energy supply, to match energy demand. Cleaner Engineering and Technology, 6, 100402. https://doi.org/10.1016/j.clet.2022.100402
  • Minowa, M., Ito, K., Sumi, S. I., & Horii, K. (2012). A Study of Lightning Protection for Wind Turbine Blade by Using Creeping Discharge Characteristics Masayuki. 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 12–15.
  • Mohammed, N., & Al-Bazi, A. (2021). A multi agent-based optimisation model for the distribution planning and control of energy-based intermittent renewable sources. International Journal of Energy Research, 45(13), 19316–19330. https://doi.org/10.1002/er.7044
  • Padmashini, R. K., Lakshmi, D., Rajeshkumar, J. N., Sivaraman, P., Rajasree, R., & Chenniappan, S. (2025). Energy management for distributed energy storage system. Distributed Energy Storage Systems for Digital Power Systems, 183–199. https://doi.org/10.1016/B978-0-443-22013-5.00003-4
  • Rakpho, P., & Yamaka, W. (2021). The forecasting power of economic policy uncertainty for energy demand and supply. Energy Reports, 7, 338–343. https://doi.org/10.1016/j.egyr.2021.06.059
  • Reddy, S. S. (2017). Optimization of Renewable Energy Resources in Hybrid Energy Systems. Journal of Green Engineering, 7(1), 43–60. https://doi.org/10.13052/JGE1904-4720.7123
  • Sahri, Y., Tamalouzt, S., Belaid, S. L., Bajaj, M., Ghoneim, S. S. M., Zawbaa, H. M., & Kamel, S. (2023). Performance improvement of Hybrid System based DFIG-Wind/PV/Batteries connected to DC and AC grid by applying Intelligent Control. Energy Reports, 9, 2027–2043. https://doi.org/10.1016/j.egyr.2023.01.021
  • Shivam, K., Tzou, J. C., & Wu, S. C. (2020). Multi-objective sizing optimization of a grid-connected solar-wind hybrid system using climate classification: A case study of four locations in Southern Taiwan. Energies, 13(10). https://doi.org/10.3390/en13102505
  • Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers, C–29(12), 1104–1113. https://doi.org/10.1109/TC.1980.1675516
  • Sreenath, S., Azmi, A. M., & Ismail, Z. A. M. (2023). Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis. Energy Reports, 9, 711–719. https://doi.org/10.1016/j.egyr.2022.11.065
  • Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014
  • Syama, S., & Ramprabhakar, J. (2022). Multistep Ahead Solar Irradiance and Wind Speed Forecasting using Bayesian Optimized Long Short Term Memory. 7th International Conference on Communication and Electronics Systems, ICCES 2022 - Proceedings, Icces, 164–171. https://doi.org/10.1109/ICCES54183.2022.9835840
  • Taghizadeh, M., Bahramara, S., Adabi, F., & Nojavan, S. (2020). Optimal operation of storage-based hybrid energy system considering market price uncertainty and peak demand management. Journal of Energy Storage, 30(April), 101519. https://doi.org/10.1016/j.est.2020.101519
  • Tavner, P. J., Greenwood, D. M., Whittle, M. W. G., Gindele, R., Faulstich, S., & Hahn, B. (2010). Study of weather and location effects on wind turbine failure rates. Wind Energy, 16(2), 175–187. https://doi.org/10.1002/we.538
  • Wei, H., Hongxuan, Z., Yu, D., Yiting, W., Ling, D., & Ming, X. (2019). Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks. Applied Energy, 250(April), 389–403. https://doi.org/10.1016/j.apenergy.2019.04.090
  • Wei, Y., Liu, H., Gu, K., & Li, D. (2007). Contract net based scheduling approach using interactive bidding for dynamic job shop scheduling. IEEE ICIT 2007 - 2007 IEEE International Conference on Integration Technology, 281–286. https://doi.org/10.1109/ICITECHNOLOGY.2007.4290478
  • Wu, J., Levi, N., Araujo, R., & Wang, Y. G. (2023). An evaluation of the impact of COVID-19 lockdowns on electricity demand. Electric Power Systems Research, 216(November 2022), 109015. https://doi.org/10.1016/j.epsr.2022.109015
  • Yilmaz, I., & Yoon, S. W. (2020). Dynamic-distributed decisions and sharing protocol for fair resource sharing in collaborative network. International Journal of Production Economics, 226(January). https://doi.org/10.1016/j.ijpe.2020.107644
  • Yoon, S. W., & Nof, S. Y. (2010a). Demand and capacity sharing decisions and protocols in a collaborative network of enterprises. Decision Support Systems, 49(4), 442–450. https://doi.org/10.1016/j.dss.2010.05.005
  • Yoon, S. W., & Nof, S. Y. (2010b). Demand and capacity sharing decisions and protocols in a collaborative network of enterprises. Decision Support Systems, 49(4), 442–450. https://doi.org/10.1016/j.dss.2010.05.005
  • Yuan, W., Wang, X., Su, C., Cheng, C., Liu, Z., & Wu, Z. (2021). Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. Energy, 222, 119996. https://doi.org/10.1016/j.energy.2021.119996
  • Yuan, X., Heikari, L., Hirvonen, J., Liang, Y., Virtanen, M., Kosonen, R., & Pan, Y. (2022). System modelling and optimization of a low temperature local hybrid energy system based on solar energy for a residential district. Energy Conversion and Management, 267(March), 115918. https://doi.org/10.1016/j.enconman.2022.115918
  • Zhang, H., Liao, K., Yang, J., Yin, Z., & He, Z. (2025). Long-term and Short-term Coordinated Scheduling for Wind-PV-Hydro-Storage Hybrid Energy System based on Deep Reinforcement Learning. IEEE Transactions on Sustainable Energy. https://doi.org/10.1109/TSTE.2025.3529215
  • Zhang, Y., Han, Z., Tian, B., Chen, N., & Fan, Y. (2025). Coordinated Control Strategy of New Energy Power Generation System with Hybrid Energy Storage Unit. Energy Engineering: Journal of the Association of Energy Engineering, 122(1), 167. https://doi.org/10.32604/EE.2024.056190
  • Zhang, Z., Qin, H., Li, J., Liu, Y., Yao, L., Wang, Y., Wang, C., Pei, S., & Zhou, J. (2020). Short-term optimal operation of wind-solar-hydro hybrid system considering uncertainties. Energy Conversion and Management, 205(October 2019), 112405. https://doi.org/10.1016/j.enconman.2019.112405
  • Zhou, X., Dai, C., Liu, G., Tan, X., Zhang, Z., Pan, Y., Pan, H., & Ahmed, A. (2023). A hybrid wind energy harvester based on a double-rotor reverse synergy mechanism for high-speed railway. Sustainable Cities and Society, 90(August 2022), 104389. https://doi.org/10.1016/j.scs.2022.104389
  • Zhu, F., Zhong, P. an, Xu, B., Liu, W., Wang, W., Sun, Y., Chen, J., & Li, J. (2020). Short-term stochastic optimization of a hydro-wind-photovoltaic hybrid system under multiple uncertainties. Energy Conversion and Management, 214(1), 112902. https://doi.org/10.1016/j.enconman.2020.112902
There are 55 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Articles
Authors

Nihan Çağlayan 0000-0002-4448-7338

İbrahim Yılmaz 0000-0002-5959-7353

Babek Erdebilli 0000-0001-8860-3903

Early Pub Date July 4, 2025
Publication Date
Submission Date November 23, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Çağlayan, N., Yılmaz, İ., & Erdebilli, B. (2025). A Novel Framework for Sustainable Hybrid Energy Distribution Network Using Distributed Decision Protocols. International Journal of Engineering Research and Development, 17(2), 349-369.

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.