Research Article
BibTex RIS Cite

Effect of phase change material on mechanical and thermal properties of cementitious composites

Year 2025, Volume: 17 Issue: 2, 370 - 382, 15.07.2025

Abstract

Cleaning the snow/ice formed on the pavement surface during winter months causes great time loss and high labor costs. In this context, phase change materials (PCM) can be considered as an effective alternative for cleaning the snow/ice on the pavement surface. In this study, microencapsulated PCM (mPCM) was added to cement mortars at 0%, 2%, 4%, 6%, 8% and 10% by weight of cement. The prepared cement mortars' flexural strength, compressive strength, and ultrasonic pulse velocity were investigated. In addition, to observe the effect of mPCM on thermal properties, reference, and 6% mPCM, added mortar samples of 100 mm × 100 mm × 20 mm were produced, and thermocouples were placed inside them. As a result, it was observed that the mechanical properties of cement mortars decreased as the mPCM ratio increased. However, the mechanical strength of cement mortars remained sufficient for many structural applications. Thermal property tests showed that mPCM added mortars heated and cooled down slower than the reference mortar. This is important, especially in regions with a very high day-night temperature difference. Cracking, one of the biggest problems seen in cement-based pavements and caused by the day-night temperature difference, can also be reduced with mPCM.

Supporting Institution

Kırıkkale University Scientific Research Projects Funding Office

Project Number

2023/085

Thanks

The authors gratefully acknowledge the financial assistance of the Kırıkkale University Scientific Research Projects Funding Office (Project: 2023/085).

References

  • Acıkök, F., Belendir, U., Ardoğa, M. K., & Şahmaran, M. (2023). Multi-functional conductive cementitious composites including phase change materials (PCM) with snow/ice melting capability. International Journal of Pavement Engineering, 24(1). https://doi.org/10.1080/10298436.2023.2248347
  • Alakara, E. H. (2022). Geri Dönüştürülmüş Asfalt Tozunun Alkali Aktifleştirilmiş Cüruf Harçları Üzerindeki Etkisi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 14(3), 362–368. https://doi.org/10.29137/umagd.1207073
  • Alakara, E. H., Sevim, Ö., Demir, İ., & Günel, G. (2022). Effect of waste concrete powder on slag-based sustainable geopolymer composite mortars. Challenge Journal of Concrete Research Letters, 13(3), 101–106.
  • Alkan, C., Alakara, E. H., Alay Aksoy, S., & Demir, İ. (2023). Cement mortar composites including 1-tetradecanol@PMMA Pickering emulsion particles for thermal energy management of buildings. Chemical Engineering Journal, 476(August). https://doi.org/10.1016/j.cej.2023.146843
  • Arora, A., Sant, G., & Neithalath, N. (2017). Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cement and Concrete Composites, 81, 11–24. https://doi.org/10.1016/j.cemconcomp.2017.04.006
  • Bednarska, D., & Koniorczyk, M. (2020). Freezing of partly saturated cementitious materials – Insight into properties of pore confined solution and microstructure. Construction and Building Materials, 251, 118895. https://doi.org/10.1016/j.conbuildmat.2020.118895
  • Bentz, D. P., & Turpin, R. (2007). Potential applications of phase change materials in concrete technology. Cement and Concrete Composites, 29(7), 527–532. https://doi.org/10.1016/j.cemconcomp.2007.04.007
  • Çaktı, K., Erden, İ., Gündüz, S., Hassanpour-Kasanagh, S., Büyük, B., & Alkan, C. (2022). Investigation of the effectiveness of microencapsulated phase change materials for bitumen rheology. International Journal of Energy Research, 46(15), 23879–23892. https://doi.org/10.1002/er.8686
  • Carmona, J., Garcés, P., & Climent, M. A. (2015). Efficiency of a conductive cement-based anodic system for the application of cathodic protection, cathodic prevention and electrochemical chloride extraction to control corrosion in reinforced concrete structures. Corrosion Science, 96, 102–111. https://doi.org/10.1016/j.corsci.2015.04.012
  • Chi, Z., Yiqiu, T., Fengchen, C., Qing, Y., & Huining, X. (2019). Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology. Energy Conversion and Management, 186, 473–486. https://doi.org/10.1016/j.enconman.2019.03.008
  • Cui, H., Feng, T., Yang, H., Bao, X., Tang, W., & Fu, J. (2018). Experimental study of carbon fiber reinforced alkali-activated slag composites with micro-encapsulated PCM for energy storage. Construction and Building Materials, 161, 442–451. https://doi.org/10.1016/j.conbuildmat.2017.11.075
  • Cui, H., Liao, W., Mi, X., Lo, T. Y., & Chen, D. (2015). Study on functional and mechanical properties of cement mortar with graphitemodified microencapsulated phase-change materials. Energy and Buildings, 105, 273–284. https://doi.org/10.1016/j.enbuild.2015.07.043
  • Dai, J., Ma, F., Fu, Z., Li, C., Jia, M., Shi, K., Wen, Y., & Wang, W. (2021). Applicability assessment of stearic acid / palmitic acid binary eutectic phase change material in cooling pavement. Renewable Energy, 175, 748–759. https://doi.org/10.1016/j.renene.2021.05.063 Daniels, J. W., & Heymsfield, E. (2020). Development of anti-icing airfield pavement using surface-embedded heat wire. International Journal of Pavement Engineering, 21(6), 725–735. https://doi.org/10.1080/10298436.2018.1508842
  • Demir, İ. (2022). F Sınıfı Uçucu Kül ve Yüksek Fırın Cürufu İkamesinin Çimento Harç Özelliklerine Etkisi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 14(2), 531–543. https://doi.org/10.29137/umagd.1040338
  • Ding, S., Dong, S., Wang, X., Ding, S., Han, B., & Ou, J. (2023). Self-heating ultra-high performance concrete with stainless steel wires for active deicing and snow-melting of transportation infrastructures. Cement and Concrete Composites, 138, 105005.https://doi.org/10.1016/j.cemconcomp.2023.105005
  • Farnam, Y., Dick, S., Wiese, A., Davis, J., Bentz, D., & Weiss, J. (2015). The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials. Cement and Concrete Composites, 64, 1–15. https://doi.org/10.1016/j.cemconcomp.2015.09.006
  • Farnam, Y., Esmaeeli, H. S., Zavattieri, P. D., Haddock, J., & Weiss, J. (2017). Incorporating phase change materials in concrete pavement to melt snow and ice. Cement and Concrete Composites, 84, 134–145. https://doi.org/10.1016/j.cemconcomp.2017.09.002
  • Farnam, Y., Krafcik, M., Liston, L., Washington, T., Erk, K., Tao, B., & Weiss, J. (2016). Evaluating the Use of Phase Change Materials in Concrete Pavement to Melt Ice and Snow. Journal of Materials in Civil Engineering, 28(4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001439
  • Gao, Y., Huang, L., & Zhang, H. (2016). Study on anti-freezing functional design of phase change and temperature control composite bridge decks. Construction and Building Materials, 122, 714–720. https://doi.org/10.1016/j.conbuildmat.2016.06.065
  • Gbekou, F. K., Benzarti, K., Boudenne, A., Eddhahak, A., & Duc, M. (2022). Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials. Construction and Building Materials, 352(September), 129056. https://doi.org/10.1016/j.conbuildmat.2022.129056
  • Guardia, C., Barluenga, G., & Palomar, I. (2020). PCM Cement-Lime Mortars for Enhanced Energy Efficiency of Multilayered Building Enclosures under Different Climatic Conditions. Mdpi.Com, 13(18). https://doi.org/10.3390/ma13184043
  • Gümüş, M., Demir, Ş., & Sevim, Ö. (2020). Effects of Aggregate Type on Radiation Attenuation Properties in Heavyweight Concretes. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 12(2), 777–786. https://doi.org/10.29137/umagd.740779
  • Jayalath, A., San Nicolas, R., Sofi, M., Shanks, R., Ngo, T., Aye, L., & Mendis, P. (2016). Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Construction and Building Materials, 120, 408–417. https://doi.org/10.1016/j.conbuildmat.2016.05.116
  • Jeon, J., Lee, J. H., Seo, J., Jeong, S. G., & Kim, S. (2013). Application of PCM thermal energy storage system to reduce building energy consumption. Journal of Thermal Analysis and Calorimetry, 111(1), 279–288. https://doi.org/10.1007/s10973-012-2291-9
  • Kubba, Z., Fahim Huseien, G., Sam, A. R. M., Shah, K. W., Asaad, M. A., Ismail, M., Tahir, M. M., & Mirza, J. (2018). Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Studies in Construction Materials, 9, e00205. https://doi.org/10.1016/j.cscm.2018.e00205
  • Lai, Y., Liu, Y., & Ma, D. (2014). Automatically melting snow on airport cement concrete pavement with carbon fiber grille. Cold Regions Science and Technology, 103, 57–62. https://doi.org/10.1016/j.coldregions.2014.03.008
  • Li, H.-W.-X., Lyngdoh, G., Krishnan, N. M. A., & Das, S. (2023). Machine learning guided design of microencapsulated phase change materials-incorporated concretes for enhanced freeze-thaw durability. Cement and Concrete Composites, 140, 105090. https://doi.org/10.1016/j.cemconcomp.2023.105090
  • Li, Z., & Yuan, J. (2021). Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement. Construction and Building Materials, 307, 124971. https://doi.org/10.1016/j.conbuildmat.2021.124971
  • Liu, K., Fu, C., Xie, H., Wang, F., Wang, X., & Bai, H. (2019). Design of electric heat pipe embedding schemes for snow-melting pavement based on mechanical properties in cold regions. Cold Regions Science and Technology, 165, 102806. https://doi.org/10.1016/j.coldregions.2019.102806
  • Meshgin, P., & Xi, Y. (2012). Effect of phase-change materials on properties of concrete. ACI Materials Journal, 109(1), 71–80. https://doi.org/10.14359/51683572
  • Meshgin, P., Xi, Y., & Li, Y. (2012). Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar. Construction and Building Materials, 28(1), 713–721. https://doi.org/10.1016/j.conbuildmat.2011.10.039
  • Nayak, S., Krishnan, N. M. A., & Das, S. (2019). Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements. Construction and Building Materials, 201, 246–256. https://doi.org/10.1016/j.conbuildmat.2018.12.199
  • Paswan, R., & Das, S. (2024a). Elucidating the evolution of pore structure, microstructural damage, and micromechanical response in cement pastes containing microencapsulated phase change materials under freeze-thaw conditions. Cement and Concrete Composites,154, 105743. https://doi.org/10.1016/j.cemconcomp.2024.105743
  • Paswan, R., & Das, S. (2024b). Meso-structural degradation and mechanical property evolution in cementitious mortars containing microencapsulated phase change materials under extended freeze-thaw cycles. Construction and Building Materials, 457, 139405. https://doi.org/10.1016/j.conbuildmat.2024.139405
  • Sakulich, A. R., & Bentz, D. P. (2012). Increasing the Service Life of Bridge Decks by Incorporating Phase-Change Materials to Reduce Freeze-Thaw Cycles. Journal of Materials in Civil Engineering, 24(8), 1034–1042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000381
  • Shi, X., Fay, L., Peterson, M. M., & Yang, Z. (2010). Freeze–thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers. Materials and Structures, 43(7), 933–946. https://doi.org/10.1617/s11527-009-9557-0
  • TS EN 1015-3. (2000). Methods of Test for Mortar For masonry- Part 3: Determination of Consistence of Fresh Mortar (by flow Table), Turkish Standards Institution, Ankara, Turkey.
  • TS EN 12504-4. (2021). Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. Turkish Standards Institution: Ankara, Turkey.
  • TS EN 196-1. (2016). Methods of testing cement–Part 1: Determination of strength. Turkish Standard Institution, Ankara,.
  • TS EN 197-1. (2012). Cement–Part 1: Composition, specifications and conformity criteria for common cements. Turkish Standard Institution, Ankara.
  • Tumidajski, P. J., Xie, P., Arnott, M., & Beaudoin, J. J. (2003). Overlay current in a conductive concrete snow melting system. Cement and Concrete Research, 33(11), 1807–1809. https://doi.org/10.1016/S0008-8846(03)00198-4
  • Wang, R., Hu, Z., Li, Y., Wang, K., & Zhang, H. (2022). Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment. Construction and Building Materials, 321, 126371. https://doi.org/10.1016/j.conbuildmat.2022.126371
  • Whitehurst, E. A. (1951). Soniscope tests concrete structures. In Journal Proceedings, 47(2), 433–444.
  • Xu, H., & Tan, Y. (2012). Development and Testing of Heat- and Mass-Coupled Model of Snow Melting for Hydronically Heatedm Pavement. Transportation Research Record: Journal of the Transportation Research Board, 2282(1), 14–21. https://doi.org/10.3141/2282-02
  • Yeon, J. H., & Kim, K.-K. (2018). Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement. Construction and Building Materials, 177, 202–209. https://doi.org/10.1016/j.conbuildmat.2018.05.113
  • Yousefi, A., Tang, W., Khavarian, M., & Fang, C. (2021). Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite. Renewable Energy, 175, 14–28. https://doi.org/10.1016/j.renene.2021.04.123
  • Yu, B., Li, S., Zhu, H., Jiang, Q., Wang, D., & Chen, Y. (2023). A composite phase change material for improving the freeze–thaw resistance performance of cement mortars. Construction and Building Materials, 387, 131657. https://doi.org/10.1016/j.conbuildmat.2023.131657
  • Zhang, H., Xing, F., Cui, H. Z., Chen, D. Z., Ouyang, X., Xu, S. Z., Wang, J. X., Huang, Y. T., Zuo, J. D., & Tang, J. N. (2016). A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties. Applied Energy, 170, 130–139. https://doi.org/10.1016/j.apenergy.2016.02.091
  • Zhang, J., Das, D. K., & Peterson, R. (2009). Selection of effective and efficient snow removal and ice control technologies for coldregion bridges. Journal of Civil, Environmental, and Architectural Engineering, 3(1), 1–14

Faz değiştiren malzemenin çimentolu kompozitlerin mekanik ve termal özellikleri üzerindeki etkisi

Year 2025, Volume: 17 Issue: 2, 370 - 382, 15.07.2025

Abstract

Kış aylarında yol yüzeylerinde oluşan kar/buzun temizlenmesi büyük zaman kaybına ve yüksek işçilik maliyetlerine neden olmaktadır. Bu bağlamda faz değişim malzemeleri (FDM), yol yüzeylerindeki kar/buzun temizlenmesinde etkili bir alternatif olarak değerlendirilebilir. Bu çalışmada, mikrokapsüllenmiş FDM (mFDM), çimento harçlarına çimento ağırlığının %0, %2, %4, %6, %8 ve %10 oranlarında ilave edilmiştir. Hazırlanan çimento harçlarının eğilme dayanımı, basınç dayanımı ve ultrasonik darbe hızı incelenmiştir. Ayrıca mFDM'nin termal özelliklere etkisini gözlemlemek için referans ve %6 mFDM ilaveli 100 mm x 100 mm x 20 mm boyutlarında harç numuneleri üretilmiş ve içlerine termokupllar yerleştirilmiştir. Sonuç olarak, mFDM oranı arttıkça çimento harçlarının mekanik özelliklerinin azaldığı, ancak çimento harçlarının mekanik dayanımının birçok yapısal uygulama için yeterli kaldığı görülmüştür. Termal özellik testleri, mFDM'nin referans harçtan daha yavaş ısıtılan ve soğutulan harçlar eklediğini gösterdi. Bu, özellikle gündüz-gece sıcaklık farkının çok yüksek olduğu bölgelerde önemlidir. Çimento bazlı kaldırımlarda görülen ve gündüz-gece sıcaklık farkından kaynaklanan en büyük sorunlardan biri olan çatlama da mFDM ile azaltılabilir.

Project Number

2023/085

References

  • Acıkök, F., Belendir, U., Ardoğa, M. K., & Şahmaran, M. (2023). Multi-functional conductive cementitious composites including phase change materials (PCM) with snow/ice melting capability. International Journal of Pavement Engineering, 24(1). https://doi.org/10.1080/10298436.2023.2248347
  • Alakara, E. H. (2022). Geri Dönüştürülmüş Asfalt Tozunun Alkali Aktifleştirilmiş Cüruf Harçları Üzerindeki Etkisi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 14(3), 362–368. https://doi.org/10.29137/umagd.1207073
  • Alakara, E. H., Sevim, Ö., Demir, İ., & Günel, G. (2022). Effect of waste concrete powder on slag-based sustainable geopolymer composite mortars. Challenge Journal of Concrete Research Letters, 13(3), 101–106.
  • Alkan, C., Alakara, E. H., Alay Aksoy, S., & Demir, İ. (2023). Cement mortar composites including 1-tetradecanol@PMMA Pickering emulsion particles for thermal energy management of buildings. Chemical Engineering Journal, 476(August). https://doi.org/10.1016/j.cej.2023.146843
  • Arora, A., Sant, G., & Neithalath, N. (2017). Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cement and Concrete Composites, 81, 11–24. https://doi.org/10.1016/j.cemconcomp.2017.04.006
  • Bednarska, D., & Koniorczyk, M. (2020). Freezing of partly saturated cementitious materials – Insight into properties of pore confined solution and microstructure. Construction and Building Materials, 251, 118895. https://doi.org/10.1016/j.conbuildmat.2020.118895
  • Bentz, D. P., & Turpin, R. (2007). Potential applications of phase change materials in concrete technology. Cement and Concrete Composites, 29(7), 527–532. https://doi.org/10.1016/j.cemconcomp.2007.04.007
  • Çaktı, K., Erden, İ., Gündüz, S., Hassanpour-Kasanagh, S., Büyük, B., & Alkan, C. (2022). Investigation of the effectiveness of microencapsulated phase change materials for bitumen rheology. International Journal of Energy Research, 46(15), 23879–23892. https://doi.org/10.1002/er.8686
  • Carmona, J., Garcés, P., & Climent, M. A. (2015). Efficiency of a conductive cement-based anodic system for the application of cathodic protection, cathodic prevention and electrochemical chloride extraction to control corrosion in reinforced concrete structures. Corrosion Science, 96, 102–111. https://doi.org/10.1016/j.corsci.2015.04.012
  • Chi, Z., Yiqiu, T., Fengchen, C., Qing, Y., & Huining, X. (2019). Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology. Energy Conversion and Management, 186, 473–486. https://doi.org/10.1016/j.enconman.2019.03.008
  • Cui, H., Feng, T., Yang, H., Bao, X., Tang, W., & Fu, J. (2018). Experimental study of carbon fiber reinforced alkali-activated slag composites with micro-encapsulated PCM for energy storage. Construction and Building Materials, 161, 442–451. https://doi.org/10.1016/j.conbuildmat.2017.11.075
  • Cui, H., Liao, W., Mi, X., Lo, T. Y., & Chen, D. (2015). Study on functional and mechanical properties of cement mortar with graphitemodified microencapsulated phase-change materials. Energy and Buildings, 105, 273–284. https://doi.org/10.1016/j.enbuild.2015.07.043
  • Dai, J., Ma, F., Fu, Z., Li, C., Jia, M., Shi, K., Wen, Y., & Wang, W. (2021). Applicability assessment of stearic acid / palmitic acid binary eutectic phase change material in cooling pavement. Renewable Energy, 175, 748–759. https://doi.org/10.1016/j.renene.2021.05.063 Daniels, J. W., & Heymsfield, E. (2020). Development of anti-icing airfield pavement using surface-embedded heat wire. International Journal of Pavement Engineering, 21(6), 725–735. https://doi.org/10.1080/10298436.2018.1508842
  • Demir, İ. (2022). F Sınıfı Uçucu Kül ve Yüksek Fırın Cürufu İkamesinin Çimento Harç Özelliklerine Etkisi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 14(2), 531–543. https://doi.org/10.29137/umagd.1040338
  • Ding, S., Dong, S., Wang, X., Ding, S., Han, B., & Ou, J. (2023). Self-heating ultra-high performance concrete with stainless steel wires for active deicing and snow-melting of transportation infrastructures. Cement and Concrete Composites, 138, 105005.https://doi.org/10.1016/j.cemconcomp.2023.105005
  • Farnam, Y., Dick, S., Wiese, A., Davis, J., Bentz, D., & Weiss, J. (2015). The influence of calcium chloride deicing salt on phase changes and damage development in cementitious materials. Cement and Concrete Composites, 64, 1–15. https://doi.org/10.1016/j.cemconcomp.2015.09.006
  • Farnam, Y., Esmaeeli, H. S., Zavattieri, P. D., Haddock, J., & Weiss, J. (2017). Incorporating phase change materials in concrete pavement to melt snow and ice. Cement and Concrete Composites, 84, 134–145. https://doi.org/10.1016/j.cemconcomp.2017.09.002
  • Farnam, Y., Krafcik, M., Liston, L., Washington, T., Erk, K., Tao, B., & Weiss, J. (2016). Evaluating the Use of Phase Change Materials in Concrete Pavement to Melt Ice and Snow. Journal of Materials in Civil Engineering, 28(4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001439
  • Gao, Y., Huang, L., & Zhang, H. (2016). Study on anti-freezing functional design of phase change and temperature control composite bridge decks. Construction and Building Materials, 122, 714–720. https://doi.org/10.1016/j.conbuildmat.2016.06.065
  • Gbekou, F. K., Benzarti, K., Boudenne, A., Eddhahak, A., & Duc, M. (2022). Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials. Construction and Building Materials, 352(September), 129056. https://doi.org/10.1016/j.conbuildmat.2022.129056
  • Guardia, C., Barluenga, G., & Palomar, I. (2020). PCM Cement-Lime Mortars for Enhanced Energy Efficiency of Multilayered Building Enclosures under Different Climatic Conditions. Mdpi.Com, 13(18). https://doi.org/10.3390/ma13184043
  • Gümüş, M., Demir, Ş., & Sevim, Ö. (2020). Effects of Aggregate Type on Radiation Attenuation Properties in Heavyweight Concretes. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 12(2), 777–786. https://doi.org/10.29137/umagd.740779
  • Jayalath, A., San Nicolas, R., Sofi, M., Shanks, R., Ngo, T., Aye, L., & Mendis, P. (2016). Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. Construction and Building Materials, 120, 408–417. https://doi.org/10.1016/j.conbuildmat.2016.05.116
  • Jeon, J., Lee, J. H., Seo, J., Jeong, S. G., & Kim, S. (2013). Application of PCM thermal energy storage system to reduce building energy consumption. Journal of Thermal Analysis and Calorimetry, 111(1), 279–288. https://doi.org/10.1007/s10973-012-2291-9
  • Kubba, Z., Fahim Huseien, G., Sam, A. R. M., Shah, K. W., Asaad, M. A., Ismail, M., Tahir, M. M., & Mirza, J. (2018). Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Studies in Construction Materials, 9, e00205. https://doi.org/10.1016/j.cscm.2018.e00205
  • Lai, Y., Liu, Y., & Ma, D. (2014). Automatically melting snow on airport cement concrete pavement with carbon fiber grille. Cold Regions Science and Technology, 103, 57–62. https://doi.org/10.1016/j.coldregions.2014.03.008
  • Li, H.-W.-X., Lyngdoh, G., Krishnan, N. M. A., & Das, S. (2023). Machine learning guided design of microencapsulated phase change materials-incorporated concretes for enhanced freeze-thaw durability. Cement and Concrete Composites, 140, 105090. https://doi.org/10.1016/j.cemconcomp.2023.105090
  • Li, Z., & Yuan, J. (2021). Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement. Construction and Building Materials, 307, 124971. https://doi.org/10.1016/j.conbuildmat.2021.124971
  • Liu, K., Fu, C., Xie, H., Wang, F., Wang, X., & Bai, H. (2019). Design of electric heat pipe embedding schemes for snow-melting pavement based on mechanical properties in cold regions. Cold Regions Science and Technology, 165, 102806. https://doi.org/10.1016/j.coldregions.2019.102806
  • Meshgin, P., & Xi, Y. (2012). Effect of phase-change materials on properties of concrete. ACI Materials Journal, 109(1), 71–80. https://doi.org/10.14359/51683572
  • Meshgin, P., Xi, Y., & Li, Y. (2012). Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar. Construction and Building Materials, 28(1), 713–721. https://doi.org/10.1016/j.conbuildmat.2011.10.039
  • Nayak, S., Krishnan, N. M. A., & Das, S. (2019). Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements. Construction and Building Materials, 201, 246–256. https://doi.org/10.1016/j.conbuildmat.2018.12.199
  • Paswan, R., & Das, S. (2024a). Elucidating the evolution of pore structure, microstructural damage, and micromechanical response in cement pastes containing microencapsulated phase change materials under freeze-thaw conditions. Cement and Concrete Composites,154, 105743. https://doi.org/10.1016/j.cemconcomp.2024.105743
  • Paswan, R., & Das, S. (2024b). Meso-structural degradation and mechanical property evolution in cementitious mortars containing microencapsulated phase change materials under extended freeze-thaw cycles. Construction and Building Materials, 457, 139405. https://doi.org/10.1016/j.conbuildmat.2024.139405
  • Sakulich, A. R., & Bentz, D. P. (2012). Increasing the Service Life of Bridge Decks by Incorporating Phase-Change Materials to Reduce Freeze-Thaw Cycles. Journal of Materials in Civil Engineering, 24(8), 1034–1042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000381
  • Shi, X., Fay, L., Peterson, M. M., & Yang, Z. (2010). Freeze–thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers. Materials and Structures, 43(7), 933–946. https://doi.org/10.1617/s11527-009-9557-0
  • TS EN 1015-3. (2000). Methods of Test for Mortar For masonry- Part 3: Determination of Consistence of Fresh Mortar (by flow Table), Turkish Standards Institution, Ankara, Turkey.
  • TS EN 12504-4. (2021). Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. Turkish Standards Institution: Ankara, Turkey.
  • TS EN 196-1. (2016). Methods of testing cement–Part 1: Determination of strength. Turkish Standard Institution, Ankara,.
  • TS EN 197-1. (2012). Cement–Part 1: Composition, specifications and conformity criteria for common cements. Turkish Standard Institution, Ankara.
  • Tumidajski, P. J., Xie, P., Arnott, M., & Beaudoin, J. J. (2003). Overlay current in a conductive concrete snow melting system. Cement and Concrete Research, 33(11), 1807–1809. https://doi.org/10.1016/S0008-8846(03)00198-4
  • Wang, R., Hu, Z., Li, Y., Wang, K., & Zhang, H. (2022). Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment. Construction and Building Materials, 321, 126371. https://doi.org/10.1016/j.conbuildmat.2022.126371
  • Whitehurst, E. A. (1951). Soniscope tests concrete structures. In Journal Proceedings, 47(2), 433–444.
  • Xu, H., & Tan, Y. (2012). Development and Testing of Heat- and Mass-Coupled Model of Snow Melting for Hydronically Heatedm Pavement. Transportation Research Record: Journal of the Transportation Research Board, 2282(1), 14–21. https://doi.org/10.3141/2282-02
  • Yeon, J. H., & Kim, K.-K. (2018). Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement. Construction and Building Materials, 177, 202–209. https://doi.org/10.1016/j.conbuildmat.2018.05.113
  • Yousefi, A., Tang, W., Khavarian, M., & Fang, C. (2021). Development of novel form-stable phase change material (PCM) composite using recycled expanded glass for thermal energy storage in cementitious composite. Renewable Energy, 175, 14–28. https://doi.org/10.1016/j.renene.2021.04.123
  • Yu, B., Li, S., Zhu, H., Jiang, Q., Wang, D., & Chen, Y. (2023). A composite phase change material for improving the freeze–thaw resistance performance of cement mortars. Construction and Building Materials, 387, 131657. https://doi.org/10.1016/j.conbuildmat.2023.131657
  • Zhang, H., Xing, F., Cui, H. Z., Chen, D. Z., Ouyang, X., Xu, S. Z., Wang, J. X., Huang, Y. T., Zuo, J. D., & Tang, J. N. (2016). A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties. Applied Energy, 170, 130–139. https://doi.org/10.1016/j.apenergy.2016.02.091
  • Zhang, J., Das, D. K., & Peterson, R. (2009). Selection of effective and efficient snow removal and ice control technologies for coldregion bridges. Journal of Civil, Environmental, and Architectural Engineering, 3(1), 1–14
There are 49 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Erdinç Halis Alakara 0000-0001-7925-4190

İlhami Demir 0000-0002-8230-4053

Cemil Alkan 0000-0002-1509-4789

Project Number 2023/085
Early Pub Date July 4, 2025
Publication Date July 15, 2025
Submission Date December 9, 2024
Acceptance Date March 17, 2025
Published in Issue Year 2025 Volume: 17 Issue: 2

Cite

APA Alakara, E. H., Demir, İ., & Alkan, C. (2025). Effect of phase change material on mechanical and thermal properties of cementitious composites. International Journal of Engineering Research and Development, 17(2), 370-382. https://doi.org/10.29137/ijerad.1598794

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.