Üst Ekstremite Rehabilitasyonunda 3D Yazıcıyla Yapılan Ortezlerin Kullanımı: Derleme
Yıl 2024,
, 45 - 54, 31.07.2024
Sümeyye Sarışahin
,
Zeynep Çorakcı Yazıcıoğlu
Öz
Son yıllarda teknolojideki gelişmeler, sağlık hizmetleri sektöründe özellikle rehabilitasyon hizmetleri alanında 3D (3 Boyutlu) baskının benimsenmesiyle önemli bir dönüşüm yaratmıştır. Bu teknoloji, üst ekstremite rehabilitasyonu için özelleştirilmiş, görsel olarak çekici, hafif ve çevre dostu ortezlerin tasarlanmasında önemli bir rol oynamaktadır. 3D tarama sistemleri, ortezlerin üretim sürecini doğru bir şekilde öngörerek, ortez modellerinin kayıtlarını tutmayı kolaylaştırır. Bu kayıtlı modeller, tekrarlı ve seri üretim süreçlerini daha verimli ve erişilebilir hale getirir. Ancak, yüksek maliyetler nedeniyle gelişmekte olan ülkelerde 3D yazıcıların kullanımı sınırlıdır. Ayrıca, kanıta dayalı uygulamaların eksikliği bulunmaktadır. Bu zorlukların üstesinden gelmek için, ortez üretimi için yazılım arayüzlerini geliştirme ve 3D baskılı ortezleri üst ekstremite rehabilitasyon modellerine entegre etme çabaları sürdürülmektedir. Farklı demografik gruplar arasında üst ekstremite ortez üretiminde 3D baskı için optimal parametreleri araştırmak üzere daha fazla araştırma gereklidir.
Teşekkür
“7th International Congress On 3D Printing Technologies And Digital Industry 2023”’de sözlü bildiri olarak sunulmuş ve kongre özet kitabında özet olarak yayımlanmıştır.
Kaynakça
- Agudelo-Ardila, C.P, & Prada-Botia, G.C. (2019). Orthotic prototype for upper limb printed in 3D: A efficient solution. Journal of Physics: Conference Series, 1388(1), 012016. http://dx.doi.org/10.1088/1742-6596/1388/1/012016 .
- Artıboyut Group. (2022). 3D Printer Filament Properties. Retrieved 5 July from https://artiboyut.com/2023/11/17/3d-yazici-filament-ozellikleri/.
- Aydın, L., & Küçük, S. (2017). Design and construction of ankle foot orthosis by means of three dimensional printers, Journal of Polytechnic, 20(1), 1-8. https://doi.org/10.2339/2017.20.1 1-8 .
- Baronio, G., Harran, S., & Signoroni, A. (2016). A critical analysis of a hand orthosis reverse engineering and 3D printing process. Journal of Applied Bionics and Biomechanics, Special Issue: Recent Advances in Biomedical Applications, 27-33. https://doi.org/10.1155/2016/8347478 .
- Chae, D.S., Kim, D.H., Kang, K.Y., Kim, D.Y., Park, S.W., Park, S.J., & Kim, J.H. (2020). The functional effect of 3D-printing individualized orthosis for patients with peripheral nerve injuries: Three case reports. Medicine, 99(16), e19791. http://dx.doi.org/10.1097/MD.0000000000019791
- Chen Y.J., Lin, H., Zhang, X., Huang, W., Shi, L., & Wang, D. (2017). Application of 3D printed and patient-specific cast for the treatment of distal radius fractures: initial experience. Journal of 3D Printing in Medicine, 3(1), 1-9. https://doi.org/10.1186/s41205-017-0019-y .
- Choo, Y.J., Boudier-Reveret, M., & Chang, M.C. (2020). 3D printing technology applied to orthosis manufacturing: narrative review. Annals of Palliative Medicine, 9(6), 4262-4270. https://doi.org/10.21037/apm-20-1185.
- Chu, C.H., Wang I.J., Sun J.R., & Liu C.H. (2022). Customized designs of short thumb orthoses using 3D hand parametric models. Journal of Assistive Technology, 34(1), 104-111. https://doi.org/10.1080/10400435.2019.1709917 .
- De Jesus Faria, A.S.T. (2017). Additive manufacturing of custom-fit orthoses for the upper limb. 1st Ed. 1-6, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
- De Souza M.A., Schmitz, C., Pinhel, M.M., Setti, J.A.P., & Nohama, P. (2017). Proposal of custom made wrist orthoses based on 3D modelling and 3D printing. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3789-3792, Jeju Island. https://doi.org/10.1109/EMBC.2017.8037682 .
- Hasibuzzaman, M., Wahab, A.A., Seng, G.H., & Ramlee, M.H. (2021). Three-dimensional printed orthosis in biomedical application: A short review. In Journal of Physics: Conference Series 2071(1), 012025. IOP Publishing. https://doi.org/10.1088/1742-6596/2071/1/012025
- Huber, J., Slone, S., & Bazrgari, B. (2023). An evaluation of 3D printable elastics for post stroke dynamic hand bracing: a pilot study. Journal of Assistive Technology, 35(6), 513-522. https://doi.org/10.1080/10400435.2023.2177774 .
- HUBS A Protolab. (2021). FDM 3D Printing Materials Compared. Retrieved 15 May from https://www.hubs.com/3d-printing/fdm/.
- Kerteriz Blog. (2022). What are the Types and Shapes of 3D Printers. Retrieved 5 June from https://kerteriz.net/3d-yazici-cesitleri-ve-sekilleri-nelerdir/.
- Kim, S.J., Kim S.J., Cha, Y.H., Lee, K.H., & Kwon, J.Y. (2018). Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: a preliminary, randomized, controlled, open-label study. Journal of Prosthetics and Orthotics International, 42(6), 636-643. https://doi.org/10.1177/0309364618785725 .
- Koldaş, K., & Selamet, S. (2018). Looking to the future through the windows of the past, letterpress in the new century. 6th International Printing Techologies Symposium, 505-520, İstanbul, 1 December 2018.
- Marinho, F.D., Santos, P.M.D., Nardi, S.M.T., Sime, M.M., & Coutinho, G.C. (2020). Use of 3D printed orthesis and occupational therapeutic treatment in rhizarthrosis. Cadernos Brasileiros de Terapia Ocupacional, 28(4), 1151-1164. https://doi.org/10.4322/2526-8910.ctoAO2083 .
- Oud, T., Kerkum, Y., de Groot, P., Gijsbers, H., Nollet, F., & Brehm, M.A. (2021). Production time and user satisfaction of 3-dimensional printed orthoses for chronic hand conditions compared with conventional orthoses: a prospective case series. Journal of Rehabilitation Medicine-Clinical Communications, 4. https://doi.org/10.2340%2F20030711-1000048
- Özsoy, K., Aksoy, B., & Yücel, M. (2020). Design and manufacture of continuous automatic 3D printing device with conveyor system by image processing technology. Erzincan University Journal of Science and Technology, 13(2), 392-403. https://doi.org/10.18185/erzifbed.666424
- Portnova, A.A., Mukherjee, G., Peters, K.M., Yamane, A., & Steele, K.M. (2018). Design of a 3D-printed, open-source wrist-driven orthosis for individuals with spinal cord injury. Journal of PloS One, 13(2), e0193106. https://doi.org/10.1371/journal.pone.0193106 .
- Portnoy, S., Barmin, N., Elimelech, M., Assaly, B., Oren, S., Shanan, R., & Levanon, Y. (2020). Automated 3D printed finger orthosis versus manual orthosis preparation by occupational therapy students: Preparation time, product weight, and user satisfaction, Journal of Hand Therapy, 33(2), 174-179. https://doi.org/10.1016/j.jht.2020.03.022 .
- Simplify 3D Group. (2022). Ultimate 3D Printing Materials Guide. Retrieved 11 July from https://www.simplify3d.com/resources/materials-guide/.
- 3D Printing Expert-Boyut Kat. (2021). How to Use a 3D Printer. Retrieved 10 May from https://www.boyutkat.com/3d-yazici/3d-yazici-nasil-kullanilir-ucretsiz-3d-yazici-egitimi/#mühendislikte-3d-yazıcı-kullanımı.
- Wagner, J.B., Scheinfeld, L., Leeman, B., Pardini, K., Saragossi, J., & Flood, K. (2018). Three professions come together for an interdisciplinary approach to 3D printing: occupational therapy, biomedical engineering, and medical librarianship. Journal of the Medical Library Association: JMLA, 106(3) 370-376. https://doi.org/10.5195/jmla.2018.321 .
- Wang, K., Shi, Y., He, W., Yuan, J., Li, Y., Pan, X., & Zhao, C. (2018). The research on 3D printing fingerboard and the initial application on cerebral stroke patient’s hand spasm. Journal of Biomedical Engineering Online, 17(1), 1-14. https://doi.org/10.1186/s12938-018-0522-4 .
- Yılmaz, F., Arar, M.E., & Koç, E. (2013). Rapid prototyping and end product production with 3D printing, Union of Chambers of Turkish Engineers and Architects: chamber of metallurgical engineers, Technical writing, 35-40.
- Zheng, Y., Liu, G., Yu, L., Wang, Y., Fang ,Y., Shen, Y., & Hua, Z. (2020). Effects of a 3D printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial, Journal of Clinical Rehabilitation, 34(2), 194-204. https://doi.org/10.1177/0269215519885174 .
The Use of Orthoses Made With 3D Printer In Upper Extremity Rehabilitation: A Review
Yıl 2024,
, 45 - 54, 31.07.2024
Sümeyye Sarışahin
,
Zeynep Çorakcı Yazıcıoğlu
Öz
Recent advancements in technology have brought about a significant transformation in the healthcare industry, particularly in the rehabilitation services sector, with the adoption of 3D (3 Dimensional) printing. This technology plays a crucial role in designing customized, aesthetically pleasing, lightweight, and eco-friendly orthoses for upper extremity rehabilitation. 3D scanning systems accurately predict the production process of orthoses, making it easier to maintain records of orthotic models. These recorded models make repetitive and batch production processes more efficient and accessible. However, the use of 3D printers in developing countries is limited due to high costs. Additionally, there is a lack of evidence-based practices. To overcome these challenges, efforts are underway to improve software interfaces for orthotic production and integrate 3D printed orthoses into upper extremity rehabilitation models. Further research is necessary to explore the optimal parameters for 3D printing in upper extremity orthotic production across diverse demographics.
Teşekkür
It was presented as an oral presentation at the “7th International 3D Printing Technologies and Digital Industry Congress” and was published as an abstract in the “Abstract Book”.
Kaynakça
- Agudelo-Ardila, C.P, & Prada-Botia, G.C. (2019). Orthotic prototype for upper limb printed in 3D: A efficient solution. Journal of Physics: Conference Series, 1388(1), 012016. http://dx.doi.org/10.1088/1742-6596/1388/1/012016 .
- Artıboyut Group. (2022). 3D Printer Filament Properties. Retrieved 5 July from https://artiboyut.com/2023/11/17/3d-yazici-filament-ozellikleri/.
- Aydın, L., & Küçük, S. (2017). Design and construction of ankle foot orthosis by means of three dimensional printers, Journal of Polytechnic, 20(1), 1-8. https://doi.org/10.2339/2017.20.1 1-8 .
- Baronio, G., Harran, S., & Signoroni, A. (2016). A critical analysis of a hand orthosis reverse engineering and 3D printing process. Journal of Applied Bionics and Biomechanics, Special Issue: Recent Advances in Biomedical Applications, 27-33. https://doi.org/10.1155/2016/8347478 .
- Chae, D.S., Kim, D.H., Kang, K.Y., Kim, D.Y., Park, S.W., Park, S.J., & Kim, J.H. (2020). The functional effect of 3D-printing individualized orthosis for patients with peripheral nerve injuries: Three case reports. Medicine, 99(16), e19791. http://dx.doi.org/10.1097/MD.0000000000019791
- Chen Y.J., Lin, H., Zhang, X., Huang, W., Shi, L., & Wang, D. (2017). Application of 3D printed and patient-specific cast for the treatment of distal radius fractures: initial experience. Journal of 3D Printing in Medicine, 3(1), 1-9. https://doi.org/10.1186/s41205-017-0019-y .
- Choo, Y.J., Boudier-Reveret, M., & Chang, M.C. (2020). 3D printing technology applied to orthosis manufacturing: narrative review. Annals of Palliative Medicine, 9(6), 4262-4270. https://doi.org/10.21037/apm-20-1185.
- Chu, C.H., Wang I.J., Sun J.R., & Liu C.H. (2022). Customized designs of short thumb orthoses using 3D hand parametric models. Journal of Assistive Technology, 34(1), 104-111. https://doi.org/10.1080/10400435.2019.1709917 .
- De Jesus Faria, A.S.T. (2017). Additive manufacturing of custom-fit orthoses for the upper limb. 1st Ed. 1-6, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
- De Souza M.A., Schmitz, C., Pinhel, M.M., Setti, J.A.P., & Nohama, P. (2017). Proposal of custom made wrist orthoses based on 3D modelling and 3D printing. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3789-3792, Jeju Island. https://doi.org/10.1109/EMBC.2017.8037682 .
- Hasibuzzaman, M., Wahab, A.A., Seng, G.H., & Ramlee, M.H. (2021). Three-dimensional printed orthosis in biomedical application: A short review. In Journal of Physics: Conference Series 2071(1), 012025. IOP Publishing. https://doi.org/10.1088/1742-6596/2071/1/012025
- Huber, J., Slone, S., & Bazrgari, B. (2023). An evaluation of 3D printable elastics for post stroke dynamic hand bracing: a pilot study. Journal of Assistive Technology, 35(6), 513-522. https://doi.org/10.1080/10400435.2023.2177774 .
- HUBS A Protolab. (2021). FDM 3D Printing Materials Compared. Retrieved 15 May from https://www.hubs.com/3d-printing/fdm/.
- Kerteriz Blog. (2022). What are the Types and Shapes of 3D Printers. Retrieved 5 June from https://kerteriz.net/3d-yazici-cesitleri-ve-sekilleri-nelerdir/.
- Kim, S.J., Kim S.J., Cha, Y.H., Lee, K.H., & Kwon, J.Y. (2018). Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: a preliminary, randomized, controlled, open-label study. Journal of Prosthetics and Orthotics International, 42(6), 636-643. https://doi.org/10.1177/0309364618785725 .
- Koldaş, K., & Selamet, S. (2018). Looking to the future through the windows of the past, letterpress in the new century. 6th International Printing Techologies Symposium, 505-520, İstanbul, 1 December 2018.
- Marinho, F.D., Santos, P.M.D., Nardi, S.M.T., Sime, M.M., & Coutinho, G.C. (2020). Use of 3D printed orthesis and occupational therapeutic treatment in rhizarthrosis. Cadernos Brasileiros de Terapia Ocupacional, 28(4), 1151-1164. https://doi.org/10.4322/2526-8910.ctoAO2083 .
- Oud, T., Kerkum, Y., de Groot, P., Gijsbers, H., Nollet, F., & Brehm, M.A. (2021). Production time and user satisfaction of 3-dimensional printed orthoses for chronic hand conditions compared with conventional orthoses: a prospective case series. Journal of Rehabilitation Medicine-Clinical Communications, 4. https://doi.org/10.2340%2F20030711-1000048
- Özsoy, K., Aksoy, B., & Yücel, M. (2020). Design and manufacture of continuous automatic 3D printing device with conveyor system by image processing technology. Erzincan University Journal of Science and Technology, 13(2), 392-403. https://doi.org/10.18185/erzifbed.666424
- Portnova, A.A., Mukherjee, G., Peters, K.M., Yamane, A., & Steele, K.M. (2018). Design of a 3D-printed, open-source wrist-driven orthosis for individuals with spinal cord injury. Journal of PloS One, 13(2), e0193106. https://doi.org/10.1371/journal.pone.0193106 .
- Portnoy, S., Barmin, N., Elimelech, M., Assaly, B., Oren, S., Shanan, R., & Levanon, Y. (2020). Automated 3D printed finger orthosis versus manual orthosis preparation by occupational therapy students: Preparation time, product weight, and user satisfaction, Journal of Hand Therapy, 33(2), 174-179. https://doi.org/10.1016/j.jht.2020.03.022 .
- Simplify 3D Group. (2022). Ultimate 3D Printing Materials Guide. Retrieved 11 July from https://www.simplify3d.com/resources/materials-guide/.
- 3D Printing Expert-Boyut Kat. (2021). How to Use a 3D Printer. Retrieved 10 May from https://www.boyutkat.com/3d-yazici/3d-yazici-nasil-kullanilir-ucretsiz-3d-yazici-egitimi/#mühendislikte-3d-yazıcı-kullanımı.
- Wagner, J.B., Scheinfeld, L., Leeman, B., Pardini, K., Saragossi, J., & Flood, K. (2018). Three professions come together for an interdisciplinary approach to 3D printing: occupational therapy, biomedical engineering, and medical librarianship. Journal of the Medical Library Association: JMLA, 106(3) 370-376. https://doi.org/10.5195/jmla.2018.321 .
- Wang, K., Shi, Y., He, W., Yuan, J., Li, Y., Pan, X., & Zhao, C. (2018). The research on 3D printing fingerboard and the initial application on cerebral stroke patient’s hand spasm. Journal of Biomedical Engineering Online, 17(1), 1-14. https://doi.org/10.1186/s12938-018-0522-4 .
- Yılmaz, F., Arar, M.E., & Koç, E. (2013). Rapid prototyping and end product production with 3D printing, Union of Chambers of Turkish Engineers and Architects: chamber of metallurgical engineers, Technical writing, 35-40.
- Zheng, Y., Liu, G., Yu, L., Wang, Y., Fang ,Y., Shen, Y., & Hua, Z. (2020). Effects of a 3D printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial, Journal of Clinical Rehabilitation, 34(2), 194-204. https://doi.org/10.1177/0269215519885174 .