Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermal Comfort Effect of Natural Radiation: Color Factor in Industrial Safety Helmets, Human Health

Yıl 2024, , 20 - 33, 31.07.2024
https://doi.org/10.46236/umbd.1473972

Öz

This article presents the effects of helmet colors from protective clothing on the thermal protection factor under natural radiation. Thermal exposure distributions were measured using a thermal camera to determine the sun protection effectiveness of helmets under various exposure conditions. Increasing the thermal comfort of the hard hat, which is a work safety protective clothing, has become one of the biggest areas of interest of hard hat designers. Helmets protect human health by providing simple and useful protection against natural radiation rays. To identify the effect of the colors of the helmets, temperature distributions were detected using a thermal camera. White color is important for human health as it has the greatest effect on the thermal protection factor of helmets, which are protective clothing. In this study, recommendations for the engineering of hard hats, which are protective clothing with adequate thermal protection, are presented. Experimental results of white, blue and yellow colored helmets have been determined.

Kaynakça

  • Aydın, Ö., & Günaydın, G. K. (2012). Elektromanyetik kalkanlama amaçli koruyucu tekstiller. In 1st International Fashion And Textile Design Symposium Proceedings Special Edition-I (76-85).
  • Abeysekera, J. D., & Shahnavaz, H. (1990). Adaptation to discomfort in personal protective devices: an example with safety helmets. Ergonomics, 33(2), 137-145.
  • Abeysekera, J. D., Holmér, I., & Dupuis, C. (1991). Heat transfer characteristics of industrial safety helmets. Ergonomics, 297-303
  • Abeysekera, J. D., & Shahnavaz, H. (1988). Ergonomics evaluation of modified industrial helmets for use in tropical environments. Ergonomics, 31(9), 1317-1329.
  • Breckenridge, J. R. (1977). Effects of clothing on bodily resistance against meteorological stimuli. Progress in human biometeorology.
  • Coleman, A. E., & Mortagy, A. K. (1973). Ambient head temperature and football helmet design. Med. Sci. Sports, 5, 204-208.
  • Dimitrovski, K., Sluga, F., & Urbas, R. (2010). Evaluation of the structure of monofilament PET woven fabrics and their UV protection properties. Textile Research Journal, 80(11), 1027-1037.
  • Egglestone, G. T., & Robinson, D. J. (1999). Venting of a ballistic helmet in an attempt to reduce thermal loading. DSTO Aeronautical and Maritime Research Laboratory. p. 0021.
  • Günaydın, G. K., Soydan, A. S., Yavaş, A., Avinç, O., Demirtaş, M., & Palamutçu, S. (2019). Comparıson of some physical properties of woven fabric types produced usıng naturally colored organic cotton. “Emırel”. Proceedıng & Abstract Book, 161.
  • Günaydin, G. K., Avinc, O., Palamutcu, S., Yavas, A., & Soydan, A. S. (2019). Naturally colored organic cotton and naturally colored cotton fiber production. Organic Cotton: Is it a Sustainable Solution, 81-99.
  • Gilchrist, A., & Mills, N. J. (1994). Modelling of the impact response of motorcycle helmets. International journal of impact engineering, 15(3), 201-218.
  • Halimi, M. T., Dhahri, H., Khedher, N. B., Hassen, M. B., & Sakli, F. (2009). Thermal properties of industrial safety helmets. J. Appl. Sci. Res, 5, 833-844.
  • Hsu, Y. L., Tai, C. Y., & Chen, T. C. (2000). Improving thermal properties of industrial safety helmets. International Journal of Industrial Ergonomics, 26(1), 109-117.
  • Kostopoulos, V., Markopoulos, Y. P., Giannopoulos, G., & Vlachos, D. E. (2002). Finite element analysis of impact damage response of composite motorcycle safety helmets. Composites Part B: Engineering, 33(2), 99-107.
  • Liu, X., & Holmér, I. (1995). Evaporative heat transfer characteristics of industrial safety helmets. Applied ergonomics, 26(2), 135-140.
  • Masso-Moreu, Y., & Mills, N. J. (2003). Impact compression of polystyrene foam pyramids. International journal of impact engineering, 28(6), 653-676.
  • Meinander, H. (1992). Determination of clothing comfort properties with the sweating thermal manikin. In Proceedings of The Fifth International Conference on Environmental Ergonomics, 40-41.
  • Mecheels, J., & Umbach, K. H. (1976). Thermophysiologische eigenschaften von kleidungssystemen. Melliand Textilberichte, 12, 1029-1032.
  • Reischl, U. W. E. (1986). Fire fighter helmet ventilation analysis. American Industrial Hygiene Association Journal, 47(9), 546-551.
  • Roszkowski, W. (1980).“Guidelines for modernisation of safety helmets. Ochrony pracy 30 (WI), 75-86.
  • Shuaeib, F. M., Hamouda, A. M. S., Umar, R. R., Hamdan, M. M., & Hashmi, M. S. J. (2002). Motorcycle helmet: Part I. Biomechanics and computational issues. Journal of Materials Processing Technology, 123(3), 406-421.
  • Kaplan, S., & Memiş, N. K. (2023). Doğal radyasyonun yönetimiyle tasarlanan kişisel termal yönetim sağlayan pasif akıllı yapılar. Tekstil ve Mühendis, 30(131), 210-225.
  • Kodaloğlu, M., & Kodaloğlu, F. A. (2024). Prediction of The Ultraviolet Protection Provided by Woven Fabric Construction Using Fuzzy Logic. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 19(1), 40-52.
  • Yelkovan, S., Çeven, E. K., & Günaydın, G. K., (2023). Tekstil ürünlerinde solar geçirgenlik. In International Conference on Frontiers in Academic Research, 1, 351-361.

Doğal Radyasyonun Termal Konfor Etkisi: Endüstriyel Baretlerde Renk Faktörü, İnsan Sağlığı

Yıl 2024, , 20 - 33, 31.07.2024
https://doi.org/10.46236/umbd.1473972

Öz

Bu makale, koruyucu giysilerdeki kask renklerinin doğal radyasyon altında termal koruma faktörü üzerindeki etkilerini sunmaktadır. Kaskların çeşitli maruz kalma koşulları altında güneşten korunma etkinliğini belirlemek için termal maruz kalma dağılımları bir termal kamera kullanılarak ölçülmüştür. İş güvenliği koruyucu giysisi olan baretin termal konforunun arttırılması, baret tasarımcılarının en büyük ilgi alanlarından biri haline gelmiştir. Kasklar doğal radyasyon ışınlarına karşı basit ve kullanışlı koruma sağlayarak insan sağlığını korur. Kaskların renklerinin etkisini belirlemek için termal kamera kullanılarak sıcaklık dağılımları tespit edildi. Beyaz renk, koruyucu giysi olan kaskların termal koruma faktörü üzerinde en büyük etkiye sahip olduğundan insan sağlığı açısından önemlidir. Bu çalışmada yeterli termal korumaya sahip koruyucu giysi olan baretlerin mühendisliğine yönelik öneriler sunulmaktadır. Beyaz, mavi ve sarı renkli kaskların deneysel sonuçları tespit edilmiştir.

Kaynakça

  • Aydın, Ö., & Günaydın, G. K. (2012). Elektromanyetik kalkanlama amaçli koruyucu tekstiller. In 1st International Fashion And Textile Design Symposium Proceedings Special Edition-I (76-85).
  • Abeysekera, J. D., & Shahnavaz, H. (1990). Adaptation to discomfort in personal protective devices: an example with safety helmets. Ergonomics, 33(2), 137-145.
  • Abeysekera, J. D., Holmér, I., & Dupuis, C. (1991). Heat transfer characteristics of industrial safety helmets. Ergonomics, 297-303
  • Abeysekera, J. D., & Shahnavaz, H. (1988). Ergonomics evaluation of modified industrial helmets for use in tropical environments. Ergonomics, 31(9), 1317-1329.
  • Breckenridge, J. R. (1977). Effects of clothing on bodily resistance against meteorological stimuli. Progress in human biometeorology.
  • Coleman, A. E., & Mortagy, A. K. (1973). Ambient head temperature and football helmet design. Med. Sci. Sports, 5, 204-208.
  • Dimitrovski, K., Sluga, F., & Urbas, R. (2010). Evaluation of the structure of monofilament PET woven fabrics and their UV protection properties. Textile Research Journal, 80(11), 1027-1037.
  • Egglestone, G. T., & Robinson, D. J. (1999). Venting of a ballistic helmet in an attempt to reduce thermal loading. DSTO Aeronautical and Maritime Research Laboratory. p. 0021.
  • Günaydın, G. K., Soydan, A. S., Yavaş, A., Avinç, O., Demirtaş, M., & Palamutçu, S. (2019). Comparıson of some physical properties of woven fabric types produced usıng naturally colored organic cotton. “Emırel”. Proceedıng & Abstract Book, 161.
  • Günaydin, G. K., Avinc, O., Palamutcu, S., Yavas, A., & Soydan, A. S. (2019). Naturally colored organic cotton and naturally colored cotton fiber production. Organic Cotton: Is it a Sustainable Solution, 81-99.
  • Gilchrist, A., & Mills, N. J. (1994). Modelling of the impact response of motorcycle helmets. International journal of impact engineering, 15(3), 201-218.
  • Halimi, M. T., Dhahri, H., Khedher, N. B., Hassen, M. B., & Sakli, F. (2009). Thermal properties of industrial safety helmets. J. Appl. Sci. Res, 5, 833-844.
  • Hsu, Y. L., Tai, C. Y., & Chen, T. C. (2000). Improving thermal properties of industrial safety helmets. International Journal of Industrial Ergonomics, 26(1), 109-117.
  • Kostopoulos, V., Markopoulos, Y. P., Giannopoulos, G., & Vlachos, D. E. (2002). Finite element analysis of impact damage response of composite motorcycle safety helmets. Composites Part B: Engineering, 33(2), 99-107.
  • Liu, X., & Holmér, I. (1995). Evaporative heat transfer characteristics of industrial safety helmets. Applied ergonomics, 26(2), 135-140.
  • Masso-Moreu, Y., & Mills, N. J. (2003). Impact compression of polystyrene foam pyramids. International journal of impact engineering, 28(6), 653-676.
  • Meinander, H. (1992). Determination of clothing comfort properties with the sweating thermal manikin. In Proceedings of The Fifth International Conference on Environmental Ergonomics, 40-41.
  • Mecheels, J., & Umbach, K. H. (1976). Thermophysiologische eigenschaften von kleidungssystemen. Melliand Textilberichte, 12, 1029-1032.
  • Reischl, U. W. E. (1986). Fire fighter helmet ventilation analysis. American Industrial Hygiene Association Journal, 47(9), 546-551.
  • Roszkowski, W. (1980).“Guidelines for modernisation of safety helmets. Ochrony pracy 30 (WI), 75-86.
  • Shuaeib, F. M., Hamouda, A. M. S., Umar, R. R., Hamdan, M. M., & Hashmi, M. S. J. (2002). Motorcycle helmet: Part I. Biomechanics and computational issues. Journal of Materials Processing Technology, 123(3), 406-421.
  • Kaplan, S., & Memiş, N. K. (2023). Doğal radyasyonun yönetimiyle tasarlanan kişisel termal yönetim sağlayan pasif akıllı yapılar. Tekstil ve Mühendis, 30(131), 210-225.
  • Kodaloğlu, M., & Kodaloğlu, F. A. (2024). Prediction of The Ultraviolet Protection Provided by Woven Fabric Construction Using Fuzzy Logic. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 19(1), 40-52.
  • Yelkovan, S., Çeven, E. K., & Günaydın, G. K., (2023). Tekstil ürünlerinde solar geçirgenlik. In International Conference on Frontiers in Academic Research, 1, 351-361.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Murat Kodaloğlu 0000-0001-6644-8068

Feyza Akarslan Kodaloğlu 0000-0002-7855-8616

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 26 Nisan 2024
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kodaloğlu, M., & Akarslan Kodaloğlu, F. (2024). Thermal Comfort Effect of Natural Radiation: Color Factor in Industrial Safety Helmets, Human Health. Uluborlu Mesleki Bilimler Dergisi, 7(2), 20-33. https://doi.org/10.46236/umbd.1473972
Creative Commons Lisansı
Isparta Uygulamalı Bilimler Üniversitesi Uluborlu Mesleki Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.