Research Article
BibTex RIS Cite

ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI

Year 2025, Volume: 9 Issue: 2, 251 - 264, 26.12.2025
https://doi.org/10.62301/usmtd.1832764

Abstract

Zemin-Yapı Etkileşimi (ZYE), sismik tasarımda periyot uzaması ve ek sönüm sağlaması nedeniyle genellikle faydalı bir mekanizma olarak kabul edilir. Ancak, son depremlerde özellikle yumuşak zeminlerde gözlemlenen performanslar, ZYE'nin yer değiştirme taleplerini ve ikinci mertebe (P-Delta) etkilerini artırarak yapısal güvenliği tehdit edebileceğini göstermiştir. Bu çalışmada, TBDY 2018 yönetmeliği ile FEMA P-2091, FEMA 440 ve NIST GCR 12-917-21 teknik kılavuzlarında tanımlanan ZYE prosedürleri, felsefi ve metodolojik açıdan karşılaştırmalı olarak incelenmiştir. Yapılan inceleme, söz konusu dokümanların risk yönetim stratejileri açısından temelden ayrıştığını ortaya koymaktadır. TBDY 2018'in, ZYE kaynaklı olumsuz etkileri taban kesme kuvveti alt sınırları ve genel öteleme limitleri aracılığıyla dolaylı ve kuralcı bir yaklaşımla yönettiği, buna karşın FEMA ve NIST kılavuzlarının, rezonans ve sönüm kaybı gibi risklere karşı tasarımcıyı doğrudan uyaran, performansa dayalı fiziksel modeller ve kontrol listeleri sunduğu belirlenmiştir. Çalışma, bu metodolojik farklılıkları analiz ederek, özellikle narin ve yüksek yapıların tasarımında, ZYE'nin sadece kuvvet azaltıcı etkisine odaklanılmaması gerektiğini vurgulamakta ve yönetmelik koşullarının ötesinde bir performans değerlendirme perspektifi sunmaktadır.

References

  • NIST, Soil–structure interaction for building structures, NIST GCR 12-917-21, National Institute of Standards and Technology, Gaithersburg, MD, 2012.
  • J.P. Wolf, Dynamic Soil-Structure Interaction, Prentice-Hall, Englewood Cliffs, NJ, 1985. doi:10.1201/9781439832721.ch1.
  • E. Kausel, Early history of soil-structure interaction, Soil Dyn. Earthq. Eng. 30 (9) (2010) 822–832. doi:10.1016/j.soildyn.2009.11.001.
  • A.K. Bharti, V. Garg, S. Chandrawanshi, A critical review of seismic soil-structure interaction analysis, Struct. 72 (2025) 108221. doi:10.1016/j.istruc.2025.108221.
  • FEMA, A Practical Guide to Soil-Structure Interaction, FEMA P-2091, Federal Emergency Management Agency, Washington, DC, 2020.
  • FEMA, Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Federal Emergency Management Agency, Washington, DC, 2005.
  • I.A. Najar, et al., Advancing soil-structure interaction (SSI): a comprehensive review of current practices, challenges, and future directions, J. Infrastruct. Preserv. Resil. 6 (1) (2025). doi:10.1186/s43065-025-00118-2.
  • L. Khanmohammadi, J.V. Amiri, M.R. Davoodi, Investigation the accuracy of FEMA-440 procedure to analyze soil-structure systems, J. Vibroeng. 19 (6) (2017) 4338–4355. doi:10.21595/jve.2015.16303.
  • V. Anand, S.R. Satish Kumar, Seismic soil-structure interaction: a state-of-the-art review, Struct. 16 (2018) 317–326. doi:10.1016/j.istruc.2018.10.009.
  • L. Lazarov, K. Todorov, Comments to Eurocode 8 recommendations in modelling and analysis of structures, in: Proc. 14th Eur. Conf. Earthq. Eng. (14ECEE), Ohrid, 2010, pp. 1–8.
  • S. Jarernprasert, E. Bazan-Zurita, J. Bielak, Seismic soil-structure interaction response of inelastic structures, Soil Dyn. Earthq. Eng. 47 (2013) 132–143. doi:10.1016/j.soildyn.2012.08.008.
  • E.M. Echebba, H. Boubel, A. El Omari, M. Rougui, M. Chourak, F.H. Chehade, Analysis of the second order effect of the SSI on the building during a seismic load, Infrastructures 6 (2) (2021) 20. doi:10.3390/infrastructures6020020.
  • M. Mekki, S.M. Elachachi, D. Breysse, M. Zoutat, Seismic behavior of R.C. structures including soil-structure interaction and soil variability effects, Eng. Struct. 126 (2016) 15–26. doi:10.1016/j.engstruct.2016.07.034.
  • R.B. Sancio, et al., Correlation between ground failure and soil conditions in Adapazari, Turkey, Soil Dyn. Earthq. Eng. 22 (9–12) (2002) 1093–1102. doi:10.1016/S0267-7261(02)00135-5.
  • C. Cruz, E. Miranda, Evaluation of soil-structure interaction effects on the damping ratios of buildings subjected to earthquakes, Soil Dyn. Earthq. Eng. 100 (2017) 183–195. doi:10.1016/j.soildyn.2017.05.034.
  • M. Khanmohammadi, V. Mohsenzadeh, Effects of foundation rocking and uplifting on displacement amplification factor, Earthq. Eng. Eng. Vib. 17 (3) (2018) 511–525. doi:10.1007/s11803-018-0459-4.
  • M. Cardenas, P. Bard, P. Gueguen, F.J. Chavez-Garcia, Soil-structure interaction in Mexico City: wave field radiated away from Jalapa Building: data and modelling, in: Proc. 12th World Conf. Earthq. Eng. (12WCEE), Auckland, New Zealand, 2000, pp. 1–8.
  • J.M. Mayoral, et al., Site effects in Mexico City basin: past and present, Soil Dyn. Earthq. Eng. 121 (2019) 369–382. doi:10.1016/j.soildyn.2019.02.028.
  • B. Bapir, L. Abrahamczyk, T. Wichtmann, L.F. Prada-Sarmiento, Soil-structure interaction: a state-of-the-art review of modeling techniques and studies on seismic response of building structures, Front. Built Environ. 9 (2023) 1120351. doi:10.3389/fbuil.2023.1120351.
  • A. Kumar, G. Ghosh, Assessment of soil amplification effects on the seismic vulnerability of irregular reinforced concrete buildings of varying heights, Sci. Rep. 15 (1) (2025) 14145. doi:10.1038/s41598-025-14145-2.
  • J. Galetzka, et al., Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal, Science 349 (6252) (2015) 1091–1095. doi:10.1126/science.aac6383.
  • D. Apriadi, A. Mandhany, A. Sahadewa, Y.I. Basarah, W. Sengara, A.M. Hakim, Scaling factors for 1-D ground response amplification in a soft soil basin, Front. Built Environ. 9 (2023) 1275425. doi:10.3389/fbuil.2023.1275425.
  • C. Amendola, D. Pitilakis, Urban scale risk assessment including SSI and site amplification, Bull. Earthq. Eng. 21 (4) (2023) 1821–1846. doi:10.1007/s10518-022-01575-w.
  • AFAD, Türk Bina Deprem Yönetmeliği (Deprem Etkisi Altında Binaların Tasarımı İçin Esaslar), Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018. Available at: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1.pdf

RISK MANAGEMENT STRATEGIES IN SOIL-STRUCTURE INTERACTION: A CRITICAL COMPARISON OF TBDY 2018 AND NIST/FEMA GUIDELINES

Year 2025, Volume: 9 Issue: 2, 251 - 264, 26.12.2025
https://doi.org/10.62301/usmtd.1832764

Abstract

Soil-Structure Interaction (SSI) is generally considered a beneficial mechanism in seismic design due to its ability to elongate the structural period and introduce additional damping. However, performances observed in recent earthquakes, particularly on soft soils, have demonstrated that SSI can threaten structural safety by amplifying displacement demands and second-order (P-Delta) effects. In this study, the SSI procedures defined in the TBDY 2018 code and the FEMA P-2091, FEMA 440, and NIST GCR 12-917-21 technical guidelines are comparatively examined from philosophical and methodological perspectives. The review reveals a fundamental divergence in the risk management strategies of these documents. It is determined that while TBDY 2018 manages the detrimental effects of SSI through an implicit and prescriptive approach via base shear lower bounds and general drift limits, FEMA and NIST guidelines offer performance-based physical models and checklists that explicitly warn the designer against risks such as resonance and radiation damping loss. By analysing these methodological differences, this study emphasizes that the focus in the design of slender and high-rise structures should not be solely on the force-reducing effects of SSI and provides a performance assessment perspective that extends beyond code requirements.

References

  • NIST, Soil–structure interaction for building structures, NIST GCR 12-917-21, National Institute of Standards and Technology, Gaithersburg, MD, 2012.
  • J.P. Wolf, Dynamic Soil-Structure Interaction, Prentice-Hall, Englewood Cliffs, NJ, 1985. doi:10.1201/9781439832721.ch1.
  • E. Kausel, Early history of soil-structure interaction, Soil Dyn. Earthq. Eng. 30 (9) (2010) 822–832. doi:10.1016/j.soildyn.2009.11.001.
  • A.K. Bharti, V. Garg, S. Chandrawanshi, A critical review of seismic soil-structure interaction analysis, Struct. 72 (2025) 108221. doi:10.1016/j.istruc.2025.108221.
  • FEMA, A Practical Guide to Soil-Structure Interaction, FEMA P-2091, Federal Emergency Management Agency, Washington, DC, 2020.
  • FEMA, Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440, Federal Emergency Management Agency, Washington, DC, 2005.
  • I.A. Najar, et al., Advancing soil-structure interaction (SSI): a comprehensive review of current practices, challenges, and future directions, J. Infrastruct. Preserv. Resil. 6 (1) (2025). doi:10.1186/s43065-025-00118-2.
  • L. Khanmohammadi, J.V. Amiri, M.R. Davoodi, Investigation the accuracy of FEMA-440 procedure to analyze soil-structure systems, J. Vibroeng. 19 (6) (2017) 4338–4355. doi:10.21595/jve.2015.16303.
  • V. Anand, S.R. Satish Kumar, Seismic soil-structure interaction: a state-of-the-art review, Struct. 16 (2018) 317–326. doi:10.1016/j.istruc.2018.10.009.
  • L. Lazarov, K. Todorov, Comments to Eurocode 8 recommendations in modelling and analysis of structures, in: Proc. 14th Eur. Conf. Earthq. Eng. (14ECEE), Ohrid, 2010, pp. 1–8.
  • S. Jarernprasert, E. Bazan-Zurita, J. Bielak, Seismic soil-structure interaction response of inelastic structures, Soil Dyn. Earthq. Eng. 47 (2013) 132–143. doi:10.1016/j.soildyn.2012.08.008.
  • E.M. Echebba, H. Boubel, A. El Omari, M. Rougui, M. Chourak, F.H. Chehade, Analysis of the second order effect of the SSI on the building during a seismic load, Infrastructures 6 (2) (2021) 20. doi:10.3390/infrastructures6020020.
  • M. Mekki, S.M. Elachachi, D. Breysse, M. Zoutat, Seismic behavior of R.C. structures including soil-structure interaction and soil variability effects, Eng. Struct. 126 (2016) 15–26. doi:10.1016/j.engstruct.2016.07.034.
  • R.B. Sancio, et al., Correlation between ground failure and soil conditions in Adapazari, Turkey, Soil Dyn. Earthq. Eng. 22 (9–12) (2002) 1093–1102. doi:10.1016/S0267-7261(02)00135-5.
  • C. Cruz, E. Miranda, Evaluation of soil-structure interaction effects on the damping ratios of buildings subjected to earthquakes, Soil Dyn. Earthq. Eng. 100 (2017) 183–195. doi:10.1016/j.soildyn.2017.05.034.
  • M. Khanmohammadi, V. Mohsenzadeh, Effects of foundation rocking and uplifting on displacement amplification factor, Earthq. Eng. Eng. Vib. 17 (3) (2018) 511–525. doi:10.1007/s11803-018-0459-4.
  • M. Cardenas, P. Bard, P. Gueguen, F.J. Chavez-Garcia, Soil-structure interaction in Mexico City: wave field radiated away from Jalapa Building: data and modelling, in: Proc. 12th World Conf. Earthq. Eng. (12WCEE), Auckland, New Zealand, 2000, pp. 1–8.
  • J.M. Mayoral, et al., Site effects in Mexico City basin: past and present, Soil Dyn. Earthq. Eng. 121 (2019) 369–382. doi:10.1016/j.soildyn.2019.02.028.
  • B. Bapir, L. Abrahamczyk, T. Wichtmann, L.F. Prada-Sarmiento, Soil-structure interaction: a state-of-the-art review of modeling techniques and studies on seismic response of building structures, Front. Built Environ. 9 (2023) 1120351. doi:10.3389/fbuil.2023.1120351.
  • A. Kumar, G. Ghosh, Assessment of soil amplification effects on the seismic vulnerability of irregular reinforced concrete buildings of varying heights, Sci. Rep. 15 (1) (2025) 14145. doi:10.1038/s41598-025-14145-2.
  • J. Galetzka, et al., Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal, Science 349 (6252) (2015) 1091–1095. doi:10.1126/science.aac6383.
  • D. Apriadi, A. Mandhany, A. Sahadewa, Y.I. Basarah, W. Sengara, A.M. Hakim, Scaling factors for 1-D ground response amplification in a soft soil basin, Front. Built Environ. 9 (2023) 1275425. doi:10.3389/fbuil.2023.1275425.
  • C. Amendola, D. Pitilakis, Urban scale risk assessment including SSI and site amplification, Bull. Earthq. Eng. 21 (4) (2023) 1821–1846. doi:10.1007/s10518-022-01575-w.
  • AFAD, Türk Bina Deprem Yönetmeliği (Deprem Etkisi Altında Binaların Tasarımı İçin Esaslar), Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018. Available at: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1.pdf
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Reinforced Concrete Buildings, Earthquake Engineering, Civil Geotechnical Engineering
Journal Section Research Article
Authors

Mehmet K. Derdiman 0000-0003-2359-3120

Submission Date November 30, 2025
Acceptance Date December 15, 2025
Publication Date December 26, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Derdiman, M. K. (2025). ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, 9(2), 251-264. https://doi.org/10.62301/usmtd.1832764
AMA Derdiman MK. ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. December 2025;9(2):251-264. doi:10.62301/usmtd.1832764
Chicago Derdiman, Mehmet K. “ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi 9, no. 2 (December 2025): 251-64. https://doi.org/10.62301/usmtd.1832764.
EndNote Derdiman MK (December 1, 2025) ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9 2 251–264.
IEEE M. K. Derdiman, “ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI”, Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi, vol. 9, no. 2, pp. 251–264, 2025, doi: 10.62301/usmtd.1832764.
ISNAD Derdiman, Mehmet K. “ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI”. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi 9/2 (December2025), 251-264. https://doi.org/10.62301/usmtd.1832764.
JAMA Derdiman MK. ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9:251–264.
MLA Derdiman, Mehmet K. “ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI”. Uluslararası Sürdürülebilir Mühendislik Ve Teknoloji Dergisi, vol. 9, no. 2, 2025, pp. 251-64, doi:10.62301/usmtd.1832764.
Vancouver Derdiman MK. ZEMİN-YAPI ETKİLEŞİMİNDE RİSK YÖNETİM STRATEJİLERİ: TBDY 2018 İLE NIST VE FEMA KILAVUZLARININ ELEŞTİREL KARŞILAŞTIRMASI. Uluslararası Sürdürülebilir Mühendislik ve Teknoloji Dergisi. 2025;9(2):251-64.