Research Article
BibTex RIS Cite

METALLURGY AND METHOD OF NEW TREND 3-D ADDITIVE MANUFACTURING IN INDUSTRY

Year 2017, Volume: 9 Issue: 3, 65 - 88, 30.12.2017

Abstract

Today’s manufacturing sector has introduced to a manufacturing method depending on developments in
materials, engineering software and laser technologies which are combined to manufacture as a useful
engineering part of 3-D digital design by layer upon layer from polymer, metal, ceramic materials. This method
has entered into the literature as "Additive Manufacturing" and today it has been used in mainly medical,
automotive, space-airplane, computer and home appliances sectors and also prototypes of parts with specific and
complex geometries and / or make it possible to produce a useful engineering part. In this study, the studies
conducted in the area of modern manufacturing science were evaluated and the point reached in 3-B additive
manufacturing, additive manufacturing methods and application areas were investigated and it was tried to give
information that could be projected to our manufacturing sectors.

References

  • Additive Manufacturing Research Group. (2017). About Additive Manufacturing. http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ (30.09.2017).
  • Afazov, S., Okioga, A., Holloway, A., Denmark, W., Triantaphyllou, A., Smith, S.A., Smith, L.B. (2017). A Methodology for Precision Additive Manufacturing Through Compensation. Precision Engineering, 50, 269–274.
  • Ahn, N., Kweona, J.H., Choi, J., Lee, S. (2012). Quantification of Surface Roughness of Parts Processed By Laminated Object Manufacturing. Journal of Materials Processing Technology, 212, 339–346.
  • Aniwaa. (2017). Categories of 3D printing technologies and processes. http://www.aniwaa.com/3d-printing-technologies-and-the-3d-printing-process/ (26.09.2017).
  • Annual Book of ASTM Standards Book (2012). Standard Terminology for Additive Manufacturing Technologies. International, West Conshohocken, USA. Arcam. (2014). Arcam history. http://www.arcam.com/ company/about-arcam/history/ (21.09.2017).
  • Bagg, S.D., Sochalski, K.L.M., Bunn, J.R. (2016). The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Archesmade with Selective Laser Melting. American Society of Precision Engineering (ASPE) 2016 Summer Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, USA.
  • Bourell, D.L., Marcus, H. L., Barlow, J. W. and Beaman, J. J. (1992). Selective Laser Sintering of Metals and Ceramics, Int. Journal of Powder Metall., 2, 28, 369–381.
  • Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K. (2014). Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting. Journal of Laser Appl., 26(1), 012004.
  • Chua, C.K., Leong, K.F. and Lim, C.S. (2010). Rapid Prototyping: Principles and Applications. 3rd edition. World Scientific. Singapore.
  • Cima, M.J., Haggerty, J.S., Sachs, E.M., Williams, P.A. (1989). Three dimensional Printing Techniques. US Patent US5204055 A, USA.
  • Colegrove, P.A., Donoghue, J., Martina, F., Gu, J., Prangnell, P., Hönnige, J. (2017). Application of Bulk Deformation Methods for Microstructural and Material Property İmprovement and Residual Stress and Distortion Control in Additively Manufactured Components. Scripta Materialia, 135, 111-118.
  • Custom Market Research Service. (2013). New market research report on 3-B printing, http://www.3ders.org/articles/20131111-3d-printing-market-worth-billion-by-2020.html (28.09.2017).
  • Custom. (2017). Laminated object manufacturing (LOM). http://www.custompartnet.com/wu/laminated-object-manufacturing (19.09.2017).
  • Deckard, C.R. (1986). Method and Apparatus for Producing Parts by Selective Sintering. PCT/US Patent WO1988002677 A2, USA.
  • Deckard, C.R. (1998). Selective Laser Sintering. Univeristy of Texas, PhD Thesis at Department of Mechanical Engineering, Austin, USA.
  • Delgado, J., Ciurana, J., Rodríguez, C.A. (2012). Influence of Process Parameters on Part Quality and Mechanical Properties for Dmls and Slm with Iron-based Materials. Int. Journal of Adv. Manuf. Technol., 60, 601–610, 53.
  • Dreams. (2017). Material extrusion. http://seb199.me.vt.edu/dreams/material-extrusion/ (24.09.2017).
  • Dwivedi, S., Rai, S. (2016). Rapid Prototypıng Technology and Its Applıcatıons. International Research Journal of Engineering and Technology, 3,10, 332-339.
  • Edwards, T. (2017). mechanical prototyping processes: what to use and when. http://mindtribe.com/2009/06/been-there-prototyped-that-what-process-and-when/ (03.10.2017).
  • EOS. (2013). Industries and markets. http://www.eos.info/industries_markets ( 21.09.2017).
  • EPMA (2015). Introduction to Additive Manufacturing Technology, A Guide for Designer and Engineer. EPMA Executive Director Shrewsbury, UK.
  • Exone. (2017). Binder Jetting. http://www.exone.com/Resources/TechnologyOverview/What-is-Binder-Jetting. (20.12.2017).
  • Explaining. (2017). Powder bed fusion. http://explainingthefuture.com/3dprinting.html. (22.09.2017).
  • Gibson, I., Shi, D. (1997) Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyping Journal, 3, 4, 129-136.
  • Gibson, I., Rosen, D., Stucker, B. (2015). Vat Photopolymerization Processes. Additive Manufacturing Technologies, 63-106, Springer, New York.
  • Gibson, I., Rosen, W.D., Stucker, B. (2010). Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 1. Edition, Springer Publishers, United Kingdom.
  • GOV2020. (2017). Additive Manufacturing. http://government2020.dupress.com/driver/additive-manufacturing/ (30.09.2017).
  • Gu, D., Shen, Y. (2008). Processing Conditions and Microstructural Features of Porous 316l Stainless Steel Components by Dmls. Applied Surface Science, 255,1880–1887.
  • Gu, D., Shen, Y. (2009). Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods. Materials and Design, 30, 2903– 2910.
  • Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X. (2013). Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel. Materials and Design, 50, 581–586.
  • Hanzl, P., Zetek, M., Bakša, T., Kroupa, T. (2015). The Influence of Processing Parameters on the Mechanical Properties of SLM Parts. Procedia Engineering, 100,1405 – 1413.
  • Kobryn, P.A., Semiatin S.L. (2001). Mechanical Properties of Laser-Deposited Ti–6Al–4V. Solid Freeform Fabrication. The University of Texas, Austin, USA.
  • Krar, S.F., Gill, R.A. (2003). Exploring Advanced Manufacturing Technologies. 1. Edition. New York.
  • Kruth, J.P., Badrossamay, M., Yasa, E., Deckers, J., Thijs, L., Humbeeck, J.V. (2010). Part and Material Properties in Selective Laser Melting of Metals. 16th International Symposium Electro Machining, Shanghai, China.
  • Kruth, J.P., Kumar, S. (2005). Statistical Analysis of Experimental Parameters in Selective Laser Sintering. Journal of Adv. Eng. Materials 7(8), 750–755.
  • Larson, R. (1993). Method and Device for Producing Three-Dimensional Bodies. US Patent US5786562 A, USA.
  • Longhitanoa, G.A., Larosaa, M.A., Munhoza, A.L.J., Zavagliaa, C.A.C., Ierardia, M.C.F. (2015). Surface Finishes for Ti-6Al-4V Alloy Produced by Direct Metal Laser Sintering. Materials Research 18(4), 838-842.
  • Lou A. and Grosvenor C. (2012). Selective laser sintering, birth of an industry. http://www.me.utexas.edu/news/2012/0712_sls_history.php (22.09.2017).
  • Manriquez-Frayre, J.A., Bourell, D.L. (1990). Selective Laser Sintering of Binary Metallic Powder. Solid Freeform Fabrication Symposium, 99–106, Austin, USA.
  • Marcus, H.L., Bourell, D.L., Beaman, J.J., Manthiram, A., Barlow, J.W., Crawford, R.H. (1993). Challenges in Laser Processed Solid Freeform Fabrication. Processing and Fabrication of Advanced Materials III, TMS Materials Week Conference, 127–133, Pittsburgh, USA.
  • Marhellabs. (2017). Fused deposition modeling. https://www.marhellabs.com/en/3dmanufacturing-processes/fused-deposition-modeling-fdm/ (23.09.2017).
  • Meiners, W. (1999). Direktes Selektives Lasersintern Einkomponentiger Metallischer Werkstoffe. Dissertation, Aachen. Germany.
  • Molecule. (2017). Material jetting. https://www.molecule.ink/markets/3d-printing/materialjetting.html (22.09.2017).
  • Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N. (2012). Metal fabrication by Additive Manufacturing Using Laser and Electron beam Melting Technologies. Journal of Materials Science Technology, 28(1), 1–24.
  • Ouden, A.D. (2017). Rapid prototyping for 3D prototypes and visual models. http://www.alexdenouden.nl/08/rapprod5.htm (23.09.2017).
  • Over, C. (2003). Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAL6V4 mit ‘‘Selective Laser Melting. Dissertation, Aachen, Germany.
  • Petersheim, J. (1997). Selektives Laserschweißen—Ein Neuartiges Verfahren zur Schnellen Fertigung Mechanischer Bauteile. Elektrowarme Int., 55, B3, B80–B85.
  • Pucci, J.U., Christophe, B.R., Sisti, J.A., Connolly, E.S. (2017). Three-Dimensional Printing: Technologies, Applications, and Limitations in Neurosurgery. Biotechnology Advances, 35, 5, 521-529.
  • Redwood, B. (2017). Additive manufacturing technologies overview. https://www.3dhubs.com/knowledge-base/additive-manufacturing-technologies-overview (25.09.2017).
  • Renishaw Apply Innovation. (2017). Data sheets – Additive Manufacturing, http://www.renishaw.com/en/data-sheets-additive-manufacturing--17862 (29.09.2017).
  • Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S. (2016). The Metallurgy and Processing Science of Metal Additive Manufacturing. International Materials Reviews, 61, 5, 315-360.
  • Sandia-National-Laboratories. (2017). Creating a complex metal part in a day is goal of commercial consortium. http://www.sandia.gov/media/lens.htm (20.09.2017).
  • Schleifenbaum, H., Diatlov, A., Hinke, C., Bultmann, J., Voswinckel, H. (2011). Direct Photonic Production: Towards High Speed Additive Manufacturing of Individualized Goods, Journal of Prod. Eng. Res. Devel., 5, 359–371.
  • Schuh, G., Klocke, F., Brecher, C., Schmitt, R. (2007). Excellence in Production. Apprimus, Aachen, Germany.
  • Shi, Y., Li, Z., Sun, H., Huang, S. and Zeng, F. (2004). Effect of the Properties of the Polymer Materials on the Quality of Selective Laser Sintering Parts. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 218, 3, 247-252.
  • Shifeng, W., Shuai, L., Qingsong, W., Yan C.H., Sheng, Z., Yusheng, S. (2014). Effect of Molted Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts. Journal of Materials Processing Technology, 214, 2660–2667.
  • Sign. (2017). The digital eye: 3D print Technology. https://sdgmag.com/features/digital-eye3d-print-technology (22.09.2017).
  • Simchi, A., vd. (2006). Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features. Journal of Materials Science and Engineering A, 428, 148-158.
  • Sinkora, E. (2017). The pluses and minuses of combining additive & subtractive machining. http://advancedmanufacturing.org/pluses-minuses-combining-additive-subtractive-machining/ (20.09.2017).
  • Sofos, A.B.K.K. (2014). Additive Manufacturing and Production of Metallic Parts in Automotive Industry, Master Thesis in Production Engineering and Management, Kth Royal Instıtute of Technology, Stockholm, Sweden.
  • Standard Terminology for Additive Manufacturing Technologies. (2012). The 7 categories of AdditiveManufacturing.http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditive manufacturing/ (29.09.2017).
  • Stratasys Ltd. (2014). PolyJet technology. http://www.stratasys.com/3dprinters/technology/polyjet-technology (20.09.2017).
  • Su, W.N., Erasenthiran, P., Dick, P.M. (2003). Investigation of Fully Dense Laser Sintering of Tool Steel Powder Using A Pulsed Nd: Yag (Neodymium-Dopedyttrium Aluminium Garnet) Laser. Proceedings of the Institution of Mech. Engineers Part C. Journal of Mech. Eng. Sci., 217, 127–138.
  • Threeding. (2017). Binder jetting 3-B printing technology. https://www.threeding.com/blog/%E2%80%8Bbinder-jetting-3d-printing-technology (24.09.2017).
  • Turhan, S., Özsoy, A. (2016). DMLS Yöntemiyle İmal Edilen Ti-6Al-4V Alaşım Özelliklerine İşlem Parametrelerinin Etkisi. SDU Uluslararası Teknolojik Araştırmalar Dergisi, 8, 2, 15-27.
  • Wagner, C. (2003). Untersuchungen zum Selektiven Lasersintern von Metallen. Dissertation, Aachen, Germany.
  • Wallace, J. vd. (2014). Validating Continuous Digital Light Processing (cDLP) Additive Manufacturing Accuracy and Tissue Engineering Utility of a Dye-initiator Package. Biofabrication, 6, 015003, 14.
  • Wang, X.C., Laoui, T., Bonse, J., Froyen, L. (2002). Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation. Int. Journal of Adv. Manufact. Technol., 42, 351–357.
  • Weider, Z.S. (2017). The future of additive manufacturing. Imperical College London. http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/engineering/imse/newssum mary/news_30-5-2017-12-2-51 (30.05.2017).
  • White, D. (1999). Ultrasonic Object Consolidation. US Patent US6519500B1, USA. Wohlers, T., Gorne, T. (2014). History of Additive Manufacturing, Wöhler Reports. Wöhlers Associates Inc. USA.
  • Xometry. (2017). Binder jetting. https://www.xometry.com/blog/3d-printing-processes (21.09.2017).
  • Yılmaz, D. (2015). Katmanlı İmalat Teknolojileri ve Havacılık Uygulamaları. Sektör Değerlendirme Raporu, STM Mühendislik Teknoloji Danışmanlık, 1-22, Ankara.
  • Yu, N. (2005). Process Parameters Optimization for Direct Metal Laser Sintering (DMLS). A Dissertation Submitted for the Degree of Doctor Philosophy, Department of Mechanical Engineering, National University of Singapore.
  • Zhang, D. (2004). Entwicklung des Selective Laser Melting (SLM) fur Aluminium Werkstoffe. Dissertation, Aachen, Germany.

ENDÜSTRİDE YENİ EĞİLİM OLAN 3-D EKLEMELİ İMALAT YÖNTEMİ VE METALURJİSİ

Year 2017, Volume: 9 Issue: 3, 65 - 88, 30.12.2017

Abstract

Günümüz imalat sektörü, malzeme, mühendislik yazılım ve lazer teknolojisindeki gelişmelere bağlı olarak farklı
teknolojilerin bir araya getirildiği üç boyutlu (3-B) katı model esaslı bir dijital tasarım ile polimer, metal ve
seramik esaslı malzemelerden katman katman eklemeli bir şekilde kullanışlı mühendislik parçasının imal
edilebildiği bir yöntemle tanışmıştır. Bu yöntem, “eklemeli imalat” olarak literatüre girmiş ve günümüzde başta
medikal olmak üzere otomotiv, uzay-uçak, bilgisayar ve ev aletleri sektörlerinde de özellikli ve karmaşık
geometriye sahip parçaların prototipinin ve/veya kullanışlı mühendislik parçasının imalatı mümkün hale
gelmiştir. Bu çalışmada, modern imalat bilimi alanında yapılan çalışmalar değerlendirilerek, 3-B eklemeli
imalatta gelinen nokta, eklemeli imalat yöntemleri ve uygulama alanları araştırılmış ve bu alanda ülkemiz imalat
sektörüne faydalı olabilecek bilgiler verilmeye çalışılmıştır.

References

  • Additive Manufacturing Research Group. (2017). About Additive Manufacturing. http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/ (30.09.2017).
  • Afazov, S., Okioga, A., Holloway, A., Denmark, W., Triantaphyllou, A., Smith, S.A., Smith, L.B. (2017). A Methodology for Precision Additive Manufacturing Through Compensation. Precision Engineering, 50, 269–274.
  • Ahn, N., Kweona, J.H., Choi, J., Lee, S. (2012). Quantification of Surface Roughness of Parts Processed By Laminated Object Manufacturing. Journal of Materials Processing Technology, 212, 339–346.
  • Aniwaa. (2017). Categories of 3D printing technologies and processes. http://www.aniwaa.com/3d-printing-technologies-and-the-3d-printing-process/ (26.09.2017).
  • Annual Book of ASTM Standards Book (2012). Standard Terminology for Additive Manufacturing Technologies. International, West Conshohocken, USA. Arcam. (2014). Arcam history. http://www.arcam.com/ company/about-arcam/history/ (21.09.2017).
  • Bagg, S.D., Sochalski, K.L.M., Bunn, J.R. (2016). The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Archesmade with Selective Laser Melting. American Society of Precision Engineering (ASPE) 2016 Summer Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, USA.
  • Bourell, D.L., Marcus, H. L., Barlow, J. W. and Beaman, J. J. (1992). Selective Laser Sintering of Metals and Ceramics, Int. Journal of Powder Metall., 2, 28, 369–381.
  • Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K. (2014). Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting. Journal of Laser Appl., 26(1), 012004.
  • Chua, C.K., Leong, K.F. and Lim, C.S. (2010). Rapid Prototyping: Principles and Applications. 3rd edition. World Scientific. Singapore.
  • Cima, M.J., Haggerty, J.S., Sachs, E.M., Williams, P.A. (1989). Three dimensional Printing Techniques. US Patent US5204055 A, USA.
  • Colegrove, P.A., Donoghue, J., Martina, F., Gu, J., Prangnell, P., Hönnige, J. (2017). Application of Bulk Deformation Methods for Microstructural and Material Property İmprovement and Residual Stress and Distortion Control in Additively Manufactured Components. Scripta Materialia, 135, 111-118.
  • Custom Market Research Service. (2013). New market research report on 3-B printing, http://www.3ders.org/articles/20131111-3d-printing-market-worth-billion-by-2020.html (28.09.2017).
  • Custom. (2017). Laminated object manufacturing (LOM). http://www.custompartnet.com/wu/laminated-object-manufacturing (19.09.2017).
  • Deckard, C.R. (1986). Method and Apparatus for Producing Parts by Selective Sintering. PCT/US Patent WO1988002677 A2, USA.
  • Deckard, C.R. (1998). Selective Laser Sintering. Univeristy of Texas, PhD Thesis at Department of Mechanical Engineering, Austin, USA.
  • Delgado, J., Ciurana, J., Rodríguez, C.A. (2012). Influence of Process Parameters on Part Quality and Mechanical Properties for Dmls and Slm with Iron-based Materials. Int. Journal of Adv. Manuf. Technol., 60, 601–610, 53.
  • Dreams. (2017). Material extrusion. http://seb199.me.vt.edu/dreams/material-extrusion/ (24.09.2017).
  • Dwivedi, S., Rai, S. (2016). Rapid Prototypıng Technology and Its Applıcatıons. International Research Journal of Engineering and Technology, 3,10, 332-339.
  • Edwards, T. (2017). mechanical prototyping processes: what to use and when. http://mindtribe.com/2009/06/been-there-prototyped-that-what-process-and-when/ (03.10.2017).
  • EOS. (2013). Industries and markets. http://www.eos.info/industries_markets ( 21.09.2017).
  • EPMA (2015). Introduction to Additive Manufacturing Technology, A Guide for Designer and Engineer. EPMA Executive Director Shrewsbury, UK.
  • Exone. (2017). Binder Jetting. http://www.exone.com/Resources/TechnologyOverview/What-is-Binder-Jetting. (20.12.2017).
  • Explaining. (2017). Powder bed fusion. http://explainingthefuture.com/3dprinting.html. (22.09.2017).
  • Gibson, I., Shi, D. (1997) Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyping Journal, 3, 4, 129-136.
  • Gibson, I., Rosen, D., Stucker, B. (2015). Vat Photopolymerization Processes. Additive Manufacturing Technologies, 63-106, Springer, New York.
  • Gibson, I., Rosen, W.D., Stucker, B. (2010). Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 1. Edition, Springer Publishers, United Kingdom.
  • GOV2020. (2017). Additive Manufacturing. http://government2020.dupress.com/driver/additive-manufacturing/ (30.09.2017).
  • Gu, D., Shen, Y. (2008). Processing Conditions and Microstructural Features of Porous 316l Stainless Steel Components by Dmls. Applied Surface Science, 255,1880–1887.
  • Gu, D., Shen, Y. (2009). Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods. Materials and Design, 30, 2903– 2910.
  • Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X. (2013). Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel. Materials and Design, 50, 581–586.
  • Hanzl, P., Zetek, M., Bakša, T., Kroupa, T. (2015). The Influence of Processing Parameters on the Mechanical Properties of SLM Parts. Procedia Engineering, 100,1405 – 1413.
  • Kobryn, P.A., Semiatin S.L. (2001). Mechanical Properties of Laser-Deposited Ti–6Al–4V. Solid Freeform Fabrication. The University of Texas, Austin, USA.
  • Krar, S.F., Gill, R.A. (2003). Exploring Advanced Manufacturing Technologies. 1. Edition. New York.
  • Kruth, J.P., Badrossamay, M., Yasa, E., Deckers, J., Thijs, L., Humbeeck, J.V. (2010). Part and Material Properties in Selective Laser Melting of Metals. 16th International Symposium Electro Machining, Shanghai, China.
  • Kruth, J.P., Kumar, S. (2005). Statistical Analysis of Experimental Parameters in Selective Laser Sintering. Journal of Adv. Eng. Materials 7(8), 750–755.
  • Larson, R. (1993). Method and Device for Producing Three-Dimensional Bodies. US Patent US5786562 A, USA.
  • Longhitanoa, G.A., Larosaa, M.A., Munhoza, A.L.J., Zavagliaa, C.A.C., Ierardia, M.C.F. (2015). Surface Finishes for Ti-6Al-4V Alloy Produced by Direct Metal Laser Sintering. Materials Research 18(4), 838-842.
  • Lou A. and Grosvenor C. (2012). Selective laser sintering, birth of an industry. http://www.me.utexas.edu/news/2012/0712_sls_history.php (22.09.2017).
  • Manriquez-Frayre, J.A., Bourell, D.L. (1990). Selective Laser Sintering of Binary Metallic Powder. Solid Freeform Fabrication Symposium, 99–106, Austin, USA.
  • Marcus, H.L., Bourell, D.L., Beaman, J.J., Manthiram, A., Barlow, J.W., Crawford, R.H. (1993). Challenges in Laser Processed Solid Freeform Fabrication. Processing and Fabrication of Advanced Materials III, TMS Materials Week Conference, 127–133, Pittsburgh, USA.
  • Marhellabs. (2017). Fused deposition modeling. https://www.marhellabs.com/en/3dmanufacturing-processes/fused-deposition-modeling-fdm/ (23.09.2017).
  • Meiners, W. (1999). Direktes Selektives Lasersintern Einkomponentiger Metallischer Werkstoffe. Dissertation, Aachen. Germany.
  • Molecule. (2017). Material jetting. https://www.molecule.ink/markets/3d-printing/materialjetting.html (22.09.2017).
  • Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N. (2012). Metal fabrication by Additive Manufacturing Using Laser and Electron beam Melting Technologies. Journal of Materials Science Technology, 28(1), 1–24.
  • Ouden, A.D. (2017). Rapid prototyping for 3D prototypes and visual models. http://www.alexdenouden.nl/08/rapprod5.htm (23.09.2017).
  • Over, C. (2003). Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAL6V4 mit ‘‘Selective Laser Melting. Dissertation, Aachen, Germany.
  • Petersheim, J. (1997). Selektives Laserschweißen—Ein Neuartiges Verfahren zur Schnellen Fertigung Mechanischer Bauteile. Elektrowarme Int., 55, B3, B80–B85.
  • Pucci, J.U., Christophe, B.R., Sisti, J.A., Connolly, E.S. (2017). Three-Dimensional Printing: Technologies, Applications, and Limitations in Neurosurgery. Biotechnology Advances, 35, 5, 521-529.
  • Redwood, B. (2017). Additive manufacturing technologies overview. https://www.3dhubs.com/knowledge-base/additive-manufacturing-technologies-overview (25.09.2017).
  • Renishaw Apply Innovation. (2017). Data sheets – Additive Manufacturing, http://www.renishaw.com/en/data-sheets-additive-manufacturing--17862 (29.09.2017).
  • Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S. (2016). The Metallurgy and Processing Science of Metal Additive Manufacturing. International Materials Reviews, 61, 5, 315-360.
  • Sandia-National-Laboratories. (2017). Creating a complex metal part in a day is goal of commercial consortium. http://www.sandia.gov/media/lens.htm (20.09.2017).
  • Schleifenbaum, H., Diatlov, A., Hinke, C., Bultmann, J., Voswinckel, H. (2011). Direct Photonic Production: Towards High Speed Additive Manufacturing of Individualized Goods, Journal of Prod. Eng. Res. Devel., 5, 359–371.
  • Schuh, G., Klocke, F., Brecher, C., Schmitt, R. (2007). Excellence in Production. Apprimus, Aachen, Germany.
  • Shi, Y., Li, Z., Sun, H., Huang, S. and Zeng, F. (2004). Effect of the Properties of the Polymer Materials on the Quality of Selective Laser Sintering Parts. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 218, 3, 247-252.
  • Shifeng, W., Shuai, L., Qingsong, W., Yan C.H., Sheng, Z., Yusheng, S. (2014). Effect of Molted Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts. Journal of Materials Processing Technology, 214, 2660–2667.
  • Sign. (2017). The digital eye: 3D print Technology. https://sdgmag.com/features/digital-eye3d-print-technology (22.09.2017).
  • Simchi, A., vd. (2006). Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features. Journal of Materials Science and Engineering A, 428, 148-158.
  • Sinkora, E. (2017). The pluses and minuses of combining additive & subtractive machining. http://advancedmanufacturing.org/pluses-minuses-combining-additive-subtractive-machining/ (20.09.2017).
  • Sofos, A.B.K.K. (2014). Additive Manufacturing and Production of Metallic Parts in Automotive Industry, Master Thesis in Production Engineering and Management, Kth Royal Instıtute of Technology, Stockholm, Sweden.
  • Standard Terminology for Additive Manufacturing Technologies. (2012). The 7 categories of AdditiveManufacturing.http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditive manufacturing/ (29.09.2017).
  • Stratasys Ltd. (2014). PolyJet technology. http://www.stratasys.com/3dprinters/technology/polyjet-technology (20.09.2017).
  • Su, W.N., Erasenthiran, P., Dick, P.M. (2003). Investigation of Fully Dense Laser Sintering of Tool Steel Powder Using A Pulsed Nd: Yag (Neodymium-Dopedyttrium Aluminium Garnet) Laser. Proceedings of the Institution of Mech. Engineers Part C. Journal of Mech. Eng. Sci., 217, 127–138.
  • Threeding. (2017). Binder jetting 3-B printing technology. https://www.threeding.com/blog/%E2%80%8Bbinder-jetting-3d-printing-technology (24.09.2017).
  • Turhan, S., Özsoy, A. (2016). DMLS Yöntemiyle İmal Edilen Ti-6Al-4V Alaşım Özelliklerine İşlem Parametrelerinin Etkisi. SDU Uluslararası Teknolojik Araştırmalar Dergisi, 8, 2, 15-27.
  • Wagner, C. (2003). Untersuchungen zum Selektiven Lasersintern von Metallen. Dissertation, Aachen, Germany.
  • Wallace, J. vd. (2014). Validating Continuous Digital Light Processing (cDLP) Additive Manufacturing Accuracy and Tissue Engineering Utility of a Dye-initiator Package. Biofabrication, 6, 015003, 14.
  • Wang, X.C., Laoui, T., Bonse, J., Froyen, L. (2002). Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation. Int. Journal of Adv. Manufact. Technol., 42, 351–357.
  • Weider, Z.S. (2017). The future of additive manufacturing. Imperical College London. http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/engineering/imse/newssum mary/news_30-5-2017-12-2-51 (30.05.2017).
  • White, D. (1999). Ultrasonic Object Consolidation. US Patent US6519500B1, USA. Wohlers, T., Gorne, T. (2014). History of Additive Manufacturing, Wöhler Reports. Wöhlers Associates Inc. USA.
  • Xometry. (2017). Binder jetting. https://www.xometry.com/blog/3d-printing-processes (21.09.2017).
  • Yılmaz, D. (2015). Katmanlı İmalat Teknolojileri ve Havacılık Uygulamaları. Sektör Değerlendirme Raporu, STM Mühendislik Teknoloji Danışmanlık, 1-22, Ankara.
  • Yu, N. (2005). Process Parameters Optimization for Direct Metal Laser Sintering (DMLS). A Dissertation Submitted for the Degree of Doctor Philosophy, Department of Mechanical Engineering, National University of Singapore.
  • Zhang, D. (2004). Entwicklung des Selective Laser Melting (SLM) fur Aluminium Werkstoffe. Dissertation, Aachen, Germany.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Bekir Yalçın

Berkay Ergene

Publication Date December 30, 2017
Published in Issue Year 2017 Volume: 9 Issue: 3

Cite

IEEE B. Yalçın and B. Ergene, “ENDÜSTRİDE YENİ EĞİLİM OLAN 3-D EKLEMELİ İMALAT YÖNTEMİ VE METALURJİSİ”, IJTS, vol. 9, no. 3, pp. 65–88, 2017.

Dergi isminin Türkçe kısaltması "UTBD" ingilizce kısaltması "IJTS" şeklindedir.

Dergimizde yayınlanan makalelerin tüm bilimsel sorumluluğu yazar(lar)a aittir. Editör, yardımcı editör ve yayıncı dergide yayınlanan yazılar için herhangi bir sorumluluk kabul etmez.