Araştırma Makalesi
BibTex RIS Kaynak Göster

TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ

Yıl 2017, Cilt: 22 Sayı: 1, 189 - 196, 27.04.2017
https://doi.org/10.17482/uumfd.309477

Öz

Bu çalışmada, arkaplan verisi ile gerçekleştirme
verisi arasında konuşulan dil anlamında bir uyumsuzluk olması durumunda Türkçe
konuşmalar için konuşmacı tanıma performansı incelenmiştir. Gauss karışım
modeli - genel arkaplan modeli sınıflandırıcısı ile mel-frekansı kepstral
katsayıları konuşmacılara özgü öznitelikler olarak seçilmiştir. 47 erkek ve 26
bayan konuşmacıdan oluşan Türkçe veritabanı ile yapılan deneylerde görülmüştür
ki arkaplan modelini eğitmek için kullanılan seslerin dili ile konuşmacı doğrulama
deneylerinde kullanılan dil farklı olduğunda konuşmacı doğrulama performansı
dramatik bir şekilde düşmektedir. Örneğin, erkek konuşmacılar için Türkçe ses
verileri ile arkaplan modeli eğitildiğinde %1.73 eşit hata oranı elde
edilirken, İngilizce sesler ile eğitildiğinde %12.34 eşit hata oranı elde
edilmiştir. 

Kaynakça

  • Akbacak M. and Hansen, J. H. L, (2007) Language normalization for bilingual speaker recognition systems, IEEE International Conference on Acostics, Speech and Signal Processing, 257-260. doi:10.1109/ICASSP.2007.366898
  • Benesty, J. Sondhi, M. M. and Huang, Y. A., (2007) Springer Handbook of Speech Processing, Springer-Verlag, New York.
  • Bosaris Toolkit (2010). Access address: https://sites.google.com/site/bosaristoolkit/ (Accessed in 17.11.2016)
  • Büyük, O., and Arslan, L. M., (2012a) Model selection and score normalization for text-dependent single utterance speaker verification, Turkish Journal of Electrical Engineering and Computer Science, 20(2), 1277-1295. doi:10.3906/elk-1103-35
  • Büyük, O., and Arslan, L. M., (2012b) Combining log-spectral mean subtraction at different frequency resolutions for handset-channel compensation in single utterance speaker verification, IET Signal Processing, 6(9), 824-828. doi:10.1049/iet-spr.2011.0270
  • Dempster, A. P., Laird, N. M., and Rubin, D. B., (1977) Maximum likelihood from incomplete data via EM algorithm, Journal of the Royal Statistical Society, 39(1), 1-38. doi:10.2307/2984875
  • Hansen J. H.L and Hasan, T. (2015) Speaker recognition by machines and humans: A tutorial review, IEEE Signal Processing Magazine, 32(6), 74-99. doi:10.1109/MSP.2015.2462851
  • Luengo, I., Navas, E., Sainz, I, Saratxaga, I., Sanchez, J., Odriozola, I and Hernaez, I. (2008) Text independent speaker identification in multilingual environments, LREC, 1814-1817.
  • Ma, B. and Meng, H., (2004) English-Chinese bilingual text-independent speaker verification, IEEE International Conference on Acostics, Speech and Signal Processing, 293-296. doi: 10.1109/ICASSP.2004.1327105
  • Ma, B., Meng, H. M., and Mak, M. -W., (2007) Effects of device mismatch, language mismatch and environmental mismatch on speaker verification, IEEE International Conference on Acostics, Speech and Signal Processing, 301-304. doi:10.1109/ICASSP.2007.366909
  • Misra, A. and Hansen, J. H. L., (2014) Spoken language mismatch in speaker verification: An investigation with NIST-SRE and CRSS bi-ling corpora, Spoken Language Technology, 372-377. doi:10.1109/SLT.2014.7078603
  • Reynolds, D. A., Rose, R. C., (1995) Robust text-independent speaker identification using Gaussian mixture speaker models, IEEE Transactions on Speech and Audio Processing, 3(1), 72-83. doi:10.1109/89.365379
  • Reynolds, D. A., Quatieri, T. F., and Dunn, R. B., (2000) Speaker verification using adapted Gaussian mixture models, Digital Signal Processing, 10(1), 19-41. doi:10.1006/dspr.1999.0361

Effect of Language Mismatch on Turkish Speaker Verification

Yıl 2017, Cilt: 22 Sayı: 1, 189 - 196, 27.04.2017
https://doi.org/10.17482/uumfd.309477

Öz

In this paper, effect of language mismatch between background data
and evaluation data is analyzed for text-independent speaker recognition in
particular for Turkish spoken language. Gaussian mixture model with universal
background model (GMM-UBM) classifier is utilized using Mel-frequency cepstral
coefficients (MFCCs) as speaker-specific features. Experiments conducted on a Turkish
speech database consisting of 47 male and 26 female speakers reveals that Turkish
speaker recognition performance dramatically degrades in case of language
mismatch between UBM and the evaluation data. For example 1.73% and 12.34%
equal error rates (EERs) are obtained for male speakers when UBM is trained
using Turkish and English data, respectively. 

Kaynakça

  • Akbacak M. and Hansen, J. H. L, (2007) Language normalization for bilingual speaker recognition systems, IEEE International Conference on Acostics, Speech and Signal Processing, 257-260. doi:10.1109/ICASSP.2007.366898
  • Benesty, J. Sondhi, M. M. and Huang, Y. A., (2007) Springer Handbook of Speech Processing, Springer-Verlag, New York.
  • Bosaris Toolkit (2010). Access address: https://sites.google.com/site/bosaristoolkit/ (Accessed in 17.11.2016)
  • Büyük, O., and Arslan, L. M., (2012a) Model selection and score normalization for text-dependent single utterance speaker verification, Turkish Journal of Electrical Engineering and Computer Science, 20(2), 1277-1295. doi:10.3906/elk-1103-35
  • Büyük, O., and Arslan, L. M., (2012b) Combining log-spectral mean subtraction at different frequency resolutions for handset-channel compensation in single utterance speaker verification, IET Signal Processing, 6(9), 824-828. doi:10.1049/iet-spr.2011.0270
  • Dempster, A. P., Laird, N. M., and Rubin, D. B., (1977) Maximum likelihood from incomplete data via EM algorithm, Journal of the Royal Statistical Society, 39(1), 1-38. doi:10.2307/2984875
  • Hansen J. H.L and Hasan, T. (2015) Speaker recognition by machines and humans: A tutorial review, IEEE Signal Processing Magazine, 32(6), 74-99. doi:10.1109/MSP.2015.2462851
  • Luengo, I., Navas, E., Sainz, I, Saratxaga, I., Sanchez, J., Odriozola, I and Hernaez, I. (2008) Text independent speaker identification in multilingual environments, LREC, 1814-1817.
  • Ma, B. and Meng, H., (2004) English-Chinese bilingual text-independent speaker verification, IEEE International Conference on Acostics, Speech and Signal Processing, 293-296. doi: 10.1109/ICASSP.2004.1327105
  • Ma, B., Meng, H. M., and Mak, M. -W., (2007) Effects of device mismatch, language mismatch and environmental mismatch on speaker verification, IEEE International Conference on Acostics, Speech and Signal Processing, 301-304. doi:10.1109/ICASSP.2007.366909
  • Misra, A. and Hansen, J. H. L., (2014) Spoken language mismatch in speaker verification: An investigation with NIST-SRE and CRSS bi-ling corpora, Spoken Language Technology, 372-377. doi:10.1109/SLT.2014.7078603
  • Reynolds, D. A., Rose, R. C., (1995) Robust text-independent speaker identification using Gaussian mixture speaker models, IEEE Transactions on Speech and Audio Processing, 3(1), 72-83. doi:10.1109/89.365379
  • Reynolds, D. A., Quatieri, T. F., and Dunn, R. B., (2000) Speaker verification using adapted Gaussian mixture models, Digital Signal Processing, 10(1), 19-41. doi:10.1006/dspr.1999.0361
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Cemal Hanilçi

Yayımlanma Tarihi 27 Nisan 2017
Gönderilme Tarihi 5 Aralık 2016
Kabul Tarihi 21 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 1

Kaynak Göster

APA Hanilçi, C. (2017). TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(1), 189-196. https://doi.org/10.17482/uumfd.309477
AMA Hanilçi C. TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ. UUJFE. Nisan 2017;22(1):189-196. doi:10.17482/uumfd.309477
Chicago Hanilçi, Cemal. “TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 1 (Nisan 2017): 189-96. https://doi.org/10.17482/uumfd.309477.
EndNote Hanilçi C (01 Nisan 2017) TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 1 189–196.
IEEE C. Hanilçi, “TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ”, UUJFE, c. 22, sy. 1, ss. 189–196, 2017, doi: 10.17482/uumfd.309477.
ISNAD Hanilçi, Cemal. “TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/1 (Nisan 2017), 189-196. https://doi.org/10.17482/uumfd.309477.
JAMA Hanilçi C. TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ. UUJFE. 2017;22:189–196.
MLA Hanilçi, Cemal. “TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 1, 2017, ss. 189-96, doi:10.17482/uumfd.309477.
Vancouver Hanilçi C. TÜRKÇE KONUŞMACI DOĞRULAMADA DİL UYUMSUZLUĞUNUN ETKİSİ. UUJFE. 2017;22(1):189-96.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr