Araştırma Makalesi
BibTex RIS Kaynak Göster

Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays

Yıl 2018, Cilt: 23 Sayı: 2, 45 - 54, 31.08.2018
https://doi.org/10.17482/uumfd.406443

Öz

This paper deals with the problem of the global
asymptotic stability of the class of Takagi-Sugeno Fuzzy Cohen-Grossberg neural
networks with multiple time delays. By constructing a suitable fuzzy Lyapunov
functional, we present a new delay-independent sufficient condition for the
global asymptotic stability of the equilibrium point for delayed Takagi-Sugeno
Fuzzy Cohen-Grossberg neural networks with respect to the Lipschitz activation
functions. The obtained condition simply relies on the network parameters of the
neural system. Therefore, the equilibrium and stability properties of the
neural network model considered in this paper can be easily verified by
exploiting some basic properties of some certain classes of matrices.

Kaynakça

  • Ahn, C. K. (2011) Takagi-Sugeno fuzzy Hopfield neural networks for H-infinity nonlinear system identification, Neural Processing Letters, 34(1), 59-70. doi: 10.1007/s11063-011-9183-z
  • Arik, S. and Orman, Z. (2005) Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Physics Letters A, 341(5-6), 410-421. doi:10.1016/j.physleta.2005.04.095
  • Balasubramaniam, P. and Ali, M. S. (2011) Stability analysis of Takagi-Sugeno fuzzy Cohen-Grossberg BAM neural networks with discrete and distributed time-varying delays, Mathematical and Computer Modelling, 53(1-2), 151-160. doi:10.1016/j.mcm.2010.07.028
  • Bao, G., Wen, S. and Zeng, Z. (2012) Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type, Neural Networks, 33, 32-41. doi:10.1016/j.neunet.2012.04.003
  • Bao, H. (2016) Existence and exponential stability of periodic solution for BAM fuzzy Cohen-Grossberg neural networks with mixed delays, Neural Processing Letters, 43(3), 871-885. doi: 10.1007/s11063-015-9455-0
  • Chandran, R. and Balasubramaniam, P. (2013) Delay dependent exponential stability for fuzzy recurrent neural networks with interval time-varying delay, Neural Processing Letters, 37(2), 147-161. doi: 10.1007/s11063-012-9239-8
  • Cohen, M.A. and Grossberg, S. (1983) Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions on Systems, Man and Cybernetics, 13(5), 815-821.
  • Gan, Q., Xu, R. and Yang, P. (2010) Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays and reaction-diffusion terms, Neural Processing Letters, 32(1), 45-57. doi: 10.1007/s11063-010-9144-y
  • Gan, Q. (2013) Exponential synchronization of stochastic fuzzy cellular neural networks with reaction-diffusion terms via periodically intermittent control, Neural Processing Letters, 37(3), 393-410. doi: 10.1007/s11063-012-9254-9
  • He, D. and Xu, D. (2008) Attracting and invariant sets of fuzzy Cohen-Grossberg neural networks with time-varying delays, Physics Letters A, 372(47), 7057-7062. doi:10.1016/j.physleta.2008.10.035
  • Hou, Y.Y, Liao, T.L. and Yan, J.J. (2007) Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays, IEEE Transactions on Systems, Man and Cybernetics, 37(3), 720-726. doi: 10.1109/TSMCB.2006.889628
  • Huang, H., Ho, D.W.C. and Lam, J. (2005) Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE Transactions on Circuits Systems-I, Fundamental Theory and Applications, 52(5), 251-255. doi: 10.1109/TCSII.2005.846305
  • Jian, J. and Jiang, W. (2017) Lagrange exponential stability for fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets and Systems, 277, 65-80. doi: 10.1016/j.fss.2014.12.006
  • Li, C., Li, Y. and Ye, Y. (2010) Exponential stability of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects, Communications in Nonlinear Science and Numerical Simulation, 15(11), 3599-3606. doi:10.1016/j.cnsns.2010.01.001
  • Mathiyalagan, K., Park, J. H., Sakthivel, R. and Anthoni, S. M. (2014) Delay fractioning approach to robust exponential stability of fuzzy Cohen-Grossberg neural networks, Applied Mathematics and Computation, 230, 451-463. doi: 10.1016/j.amc.2013.12.063
  • Nie, X., Zheng, W. X. and Cao, J. (2015) Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays, Neural Networks, 71, 27-36. doi: 10.1016/j.neunet.2015.07.009
  • Senan, S. (2018) An analysis of global stability of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with time delays, Neural Processing Letters, https://doi.org/10.1007/s11063-018-9792-x.
  • Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116-132.
  • Tseng, K.H, Tsai, J. S. and Lu, C. Y. (2012) Design of delay-dependent exponential estimator for T-S Fuzzy Neural networks with mixed time-varying interval delays using hybrid Taguchi-Genetic algorithm, Neural Processing Letters, 36(1), 49-67. doi: 10.1007/s11063-012-9222-4
  • Xie, W. and Zhu, Q. (2015) Mean square exponential stability of stochastic fuzzy delayed Cohen–Grossberg neural networks with expectations in the coefficients, Neurocomputing, 166, 133-139. doi: 10.1016/j.neucom.2015.04.020
  • Yamamoto, H. and Furuhashi, T. (2001) A new sufficient condition for stable fuzzy control system and its design method, IEEE Transactions on Fuzzy Systems, 9(4), 554-569.
  • Yang, W. (2014) Periodic solution for fuzzy Cohen-Grossberg BAM neural networks with both time-varying and distributed delays and variable coefficients, Neural Processing Letters, 40(1), 51-73. doi: 10.1007/s11063-013-9310-0
  • Zheng, C.D., Shan, Q. H., Zhang, H. and Wang, Z. (2013) On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching, IEEE Transactions on Neural Networks and Learning Systems, 24(5), 800-811. doi: 10.1109/TNNLS.2013.2244613
  • Zheng, C. D., Zhang, X. and Wang, Z. (2016) Mode and delay-dependent stochastic stability conditions of fuzzy neural networks with Markovian jump parameters, Neural Processing Letters, 43(1), 195-217. doi: 10.1007/s11063-015-9413-x

TAKAGİ-SUGENO BULANIK COHEN-GROSSBERG TİPİ ZAMAN GECİKMELİ YAPAY SİNİR AĞLARINDA KARARLILIK ANALİZİ

Yıl 2018, Cilt: 23 Sayı: 2, 45 - 54, 31.08.2018
https://doi.org/10.17482/uumfd.406443

Öz

Bu çalışma çoklu zaman gecikmeli Takagi-Sugeno Bulanık
Cohen-Grossberg tipi yapay sinir ağlarının global asimtotik kararlılık problemi
ile ilgilenmektedir. Uygun bulanık Lyapunov fonksiyonelleri kullanılarak ve
aktivasyon fonksiyonlarının Lipschitz olduğu dikkate alnarak, gecikmeli Takagi-Sugeno
Bulanık Cohen-Grossberg yapay sinir ağlarında denge noktasının global asimtotik
gecikme parametrelerinden bağımsız olarak, yeni yeterli bir kararlılık koşulu
sunulmuştur. Elde edilen koşul sadece sinir ağının sistem parametrelerine bağlı
olarak ifade edilmiştir. Bu nedenle, bu çalışmada çalışılan  yapay sinir ağı modelinin denge ve kararlılık
özellikleri, bazı özel matris sınıflarının  temel özellikleri kullanarak kolaylıkla
doğrulanabilir.

Kaynakça

  • Ahn, C. K. (2011) Takagi-Sugeno fuzzy Hopfield neural networks for H-infinity nonlinear system identification, Neural Processing Letters, 34(1), 59-70. doi: 10.1007/s11063-011-9183-z
  • Arik, S. and Orman, Z. (2005) Global stability analysis of Cohen-Grossberg neural networks with time varying delays, Physics Letters A, 341(5-6), 410-421. doi:10.1016/j.physleta.2005.04.095
  • Balasubramaniam, P. and Ali, M. S. (2011) Stability analysis of Takagi-Sugeno fuzzy Cohen-Grossberg BAM neural networks with discrete and distributed time-varying delays, Mathematical and Computer Modelling, 53(1-2), 151-160. doi:10.1016/j.mcm.2010.07.028
  • Bao, G., Wen, S. and Zeng, Z. (2012) Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type, Neural Networks, 33, 32-41. doi:10.1016/j.neunet.2012.04.003
  • Bao, H. (2016) Existence and exponential stability of periodic solution for BAM fuzzy Cohen-Grossberg neural networks with mixed delays, Neural Processing Letters, 43(3), 871-885. doi: 10.1007/s11063-015-9455-0
  • Chandran, R. and Balasubramaniam, P. (2013) Delay dependent exponential stability for fuzzy recurrent neural networks with interval time-varying delay, Neural Processing Letters, 37(2), 147-161. doi: 10.1007/s11063-012-9239-8
  • Cohen, M.A. and Grossberg, S. (1983) Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE Transactions on Systems, Man and Cybernetics, 13(5), 815-821.
  • Gan, Q., Xu, R. and Yang, P. (2010) Stability analysis of stochastic fuzzy cellular neural networks with time-varying delays and reaction-diffusion terms, Neural Processing Letters, 32(1), 45-57. doi: 10.1007/s11063-010-9144-y
  • Gan, Q. (2013) Exponential synchronization of stochastic fuzzy cellular neural networks with reaction-diffusion terms via periodically intermittent control, Neural Processing Letters, 37(3), 393-410. doi: 10.1007/s11063-012-9254-9
  • He, D. and Xu, D. (2008) Attracting and invariant sets of fuzzy Cohen-Grossberg neural networks with time-varying delays, Physics Letters A, 372(47), 7057-7062. doi:10.1016/j.physleta.2008.10.035
  • Hou, Y.Y, Liao, T.L. and Yan, J.J. (2007) Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays, IEEE Transactions on Systems, Man and Cybernetics, 37(3), 720-726. doi: 10.1109/TSMCB.2006.889628
  • Huang, H., Ho, D.W.C. and Lam, J. (2005) Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE Transactions on Circuits Systems-I, Fundamental Theory and Applications, 52(5), 251-255. doi: 10.1109/TCSII.2005.846305
  • Jian, J. and Jiang, W. (2017) Lagrange exponential stability for fuzzy Cohen-Grossberg neural networks with time-varying delays, Fuzzy Sets and Systems, 277, 65-80. doi: 10.1016/j.fss.2014.12.006
  • Li, C., Li, Y. and Ye, Y. (2010) Exponential stability of fuzzy Cohen-Grossberg neural networks with time delays and impulsive effects, Communications in Nonlinear Science and Numerical Simulation, 15(11), 3599-3606. doi:10.1016/j.cnsns.2010.01.001
  • Mathiyalagan, K., Park, J. H., Sakthivel, R. and Anthoni, S. M. (2014) Delay fractioning approach to robust exponential stability of fuzzy Cohen-Grossberg neural networks, Applied Mathematics and Computation, 230, 451-463. doi: 10.1016/j.amc.2013.12.063
  • Nie, X., Zheng, W. X. and Cao, J. (2015) Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays, Neural Networks, 71, 27-36. doi: 10.1016/j.neunet.2015.07.009
  • Senan, S. (2018) An analysis of global stability of Takagi-Sugeno fuzzy Cohen-Grossberg neural networks with time delays, Neural Processing Letters, https://doi.org/10.1007/s11063-018-9792-x.
  • Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116-132.
  • Tseng, K.H, Tsai, J. S. and Lu, C. Y. (2012) Design of delay-dependent exponential estimator for T-S Fuzzy Neural networks with mixed time-varying interval delays using hybrid Taguchi-Genetic algorithm, Neural Processing Letters, 36(1), 49-67. doi: 10.1007/s11063-012-9222-4
  • Xie, W. and Zhu, Q. (2015) Mean square exponential stability of stochastic fuzzy delayed Cohen–Grossberg neural networks with expectations in the coefficients, Neurocomputing, 166, 133-139. doi: 10.1016/j.neucom.2015.04.020
  • Yamamoto, H. and Furuhashi, T. (2001) A new sufficient condition for stable fuzzy control system and its design method, IEEE Transactions on Fuzzy Systems, 9(4), 554-569.
  • Yang, W. (2014) Periodic solution for fuzzy Cohen-Grossberg BAM neural networks with both time-varying and distributed delays and variable coefficients, Neural Processing Letters, 40(1), 51-73. doi: 10.1007/s11063-013-9310-0
  • Zheng, C.D., Shan, Q. H., Zhang, H. and Wang, Z. (2013) On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching, IEEE Transactions on Neural Networks and Learning Systems, 24(5), 800-811. doi: 10.1109/TNNLS.2013.2244613
  • Zheng, C. D., Zhang, X. and Wang, Z. (2016) Mode and delay-dependent stochastic stability conditions of fuzzy neural networks with Markovian jump parameters, Neural Processing Letters, 43(1), 195-217. doi: 10.1007/s11063-015-9413-x
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Neyir Özcan Semerci

Samet Barış Bu kişi benim

Yayımlanma Tarihi 31 Ağustos 2018
Gönderilme Tarihi 15 Mart 2018
Kabul Tarihi 15 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 2

Kaynak Göster

APA Özcan Semerci, N., & Barış, S. (2018). Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(2), 45-54. https://doi.org/10.17482/uumfd.406443
AMA Özcan Semerci N, Barış S. Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays. UUJFE. Ağustos 2018;23(2):45-54. doi:10.17482/uumfd.406443
Chicago Özcan Semerci, Neyir, ve Samet Barış. “Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks With Time Delays”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 2 (Ağustos 2018): 45-54. https://doi.org/10.17482/uumfd.406443.
EndNote Özcan Semerci N, Barış S (01 Ağustos 2018) Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 2 45–54.
IEEE N. Özcan Semerci ve S. Barış, “Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays”, UUJFE, c. 23, sy. 2, ss. 45–54, 2018, doi: 10.17482/uumfd.406443.
ISNAD Özcan Semerci, Neyir - Barış, Samet. “Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks With Time Delays”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/2 (Ağustos 2018), 45-54. https://doi.org/10.17482/uumfd.406443.
JAMA Özcan Semerci N, Barış S. Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays. UUJFE. 2018;23:45–54.
MLA Özcan Semerci, Neyir ve Samet Barış. “Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks With Time Delays”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 2, 2018, ss. 45-54, doi:10.17482/uumfd.406443.
Vancouver Özcan Semerci N, Barış S. Stability Analysis of A Class of Takagı-Sugeno Fuzzy Cohen-Grossberg Neural Networks with Time Delays. UUJFE. 2018;23(2):45-54.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr