Research Article
BibTex RIS Cite

Modeling and Analysis of a Bus Active Suspension System with Simscape

Year 2019, Volume: 24 Issue: 1, 351 - 366, 30.04.2019
https://doi.org/10.17482/uumfd.428898

Abstract

In this work a Simscape model of quarter bus
with active suspension system will be designed and analyzed. Quarter vehicle
model will be used for this system. Same parameters and physical model of a
preliminary work (http://ctms.engin.umich.edu) will be used and results of this
work will be compared with preliminary one. Modelled system will be open loop
first and converted to closed loop by addition of feedback. Firstly elongation
of suspension system and secondly vertical acceleration of bus chassis will be
used as feedback. Results from systems with both feedbacks will be evaluated
according to passenger comfort and manufacturability. As results of this paper,
it was demonstrated that there are 
obvious similarities between the outcomes of
Simscape model and
mathematical model.  Also it have been
seen that feedback with vertical acceleration of chassis is produce best
outcomes in comparison to other systems. Besides with Simscape, there were
advantage of using similar user interface with real system and having ability
to change model effortlessly.

References

  • 1. Nagarkar, M.P., Patil, G.J.V. (2016). Multi-Objective Optimization of LQR Control Quarter Car Suspension System using Genetic Algorithm, FME Transactions, (2016)44. doi:10.5937/fmet1602187N
  • 2. Rajagopal, K. and Ponnusamy, L. (2014). Multi Objective Optimization of Vehicle Active Suspension System Using Debbo Based PID Controller, International Journal of Engineering and Technology, 6(1), 252-262.
  • 3. Savaresi, S.M., Poussot-Vassal, C., Spelta, C., Sename, O., Dugard, L., (2010) Semi-Active Suspension Control Design for Vehicles, Elsevier, ISBN: 978-0-08-096678-6. doi:10.1016/c2009-0-63839-3.
  • 4. Cui, M., Geng, L., Wu, Z. (2017). Random Modeling and Control of Nonlinear Active Suspension, Mathematical Problems In Engineering, 2017(1). doi:10.1155/2017/4045796
  • 5. Göhrle, C., Schindler A., Wagner A., Sawodny O., (2014). Design and vehicle implementation of preview active suspension controllers, IEEE Trans. Control Syst. Technol., Vol. 22, No. 3, pp. 1135–1142. doi:10.1109/tcst.2013.2272342
  • 6. Fuller, C.R., Elloit, S.J., Nelson P.A. (1996) Active Control of Vibrations, Academic Press London. doi:10.1016/b978-012269440-0/50007-8
  • 7. Fu, Z., Li, B., Ning, X., Xie, W., (2017) Online Adaptive Optimal Control of Vehicle Active Suspension Systems Using Single-Network Approximate Dynamic Programming, Mathematical Problems in Engineering, 2017(1). doi:10.1155/2017/4575926
  • 8. Alleyne, A., Hedrick, J. K., (1995). Nonlinear Adaptive Control Of Active Suspensions, IEEE Transactions on Control Systems Technology, 3(1). doi:10.1109/87.370714
  • 9. Van Der Sande, T.P.J., Gysen, B.L.J., Besselink, I.J.M., Paulides, J.J.H., Lomonova, E.A., nijmeijer, H. (2013). Robust Control Of An Electromagnetic Active Suspension System: Simulations And Measurements, Mechatronics, 23(2). doi:10.1016/j.mechatronics.2012.07.002
  • 10. Wang, W.Y., Chen, M.C., Su, S.F. (2012). Hierarchical T-S Fuzzy-Neural Control Of Anti-Lock Braking System And Active Suspension in a Vehicle, Automatica. A Journal of IFAC, the International Federation of Automatic Control, 48(8). doi:10.1016/j.automatica.2012.05.033
  • 11. Jahromi, A. F. and A. Zabihollah, (2010). Linear quadratic regulator and fuzzy controller application in full-car model of suspension system with magnetor-heological shock absorber, in Proceedings of IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, pp. 522–528. doi:10.1109/mesa.2010.5552010
  • 12. Wong, P.-K., Shaojia H., Tao X., Cheong W. H., Zhengchao X. (2012). Design of a new suspension system controlled by fuzzy-PID with wheelbase preview, Adv. Mech. Eng. II, Adv. Mech. Mater., Vol. 192, pp. 106–110. doi:10.4028/www.scientific.net/amm.192.106
  • 13. Lian, R.J., (2013). Enhanced Adaptive Self-Organizing Fuzzy Sliding-Mode Controller For Active Suspension Systems, IEEE Transactions on Industrial Electronics, 60(3). doi:10.1109/tie.2012.2190372
  • 14. Karaman V., Kayisli K. (2017). Sliding mode of vehicle suspension system under different road conditions, Internatıonal Journal Of Engıneerıng Scıence And Applıcatıon, Vol. 1, No. 2, 72-77.
  • 15. Sofiane B., Mohammed C. and Hamid R.K. (2016). A Robust Predıctıve Control Desıgn for Nonlınear Actıve Suspension Systems, Asian J. Control, Vol. 18, No. 1, pp. 122–132. doi:10.1002/asjc.1180
  • 16. Baez, F. (2014). Multi-objective optimization and performance evaluation of active, semi-active and passive suspensions for forestry machines, Master of science thesis, Department of Machine Design, Stockholm, Sweden.
  • 17. http://ctms.engin.umich.edu/CTMS/index.php?example=Suspension&section=SystemModeling, Erişim Tarihi: 10.06.2017, Konu: Sistem modeli ve parametreleri.
  • 18. ISO 8608:2016. Mechanical vibration - Road surface profiles - Reporting of measured data, International Organization for Standardization, Vernier, Geneva, Switzerland. doi:10.3403/00737928
  • 19. https://www.mathworks.com/matlabcentral/answers/262428-how-can-i-get-this-pattern, Erişim Tarihi: 18.06.2017, Konu: Matlabda ISO 8608’e göre yol profili oluşturulması.

OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ

Year 2019, Volume: 24 Issue: 1, 351 - 366, 30.04.2019
https://doi.org/10.17482/uumfd.428898

Abstract

Bu çalışmada fiziksel sistem simülasyon programı
Simscape kullanılarak aktif süspansiyon sisteminin modeli kurulmuş ve analizi
yapılmıştır. Bu sistem için çeyrek taşıt modeli kullanılmıştır. Sistem tasarımı
yapılırken literatürden alınmış başka bir çalışmayla
(http://ctms.engin.umich.edu)  aynı
fiziksel model ve parametreler kullanılmış ve alınan sonuçlar
karşılaştırılmıştır. Sistemin ilk olarak açık döngü modeli daha sonra kapalı
döngü modeli kurularak analizler yürütülmüştür. Sistemin geribeslemesi
öncelikle süspansiyon mesafesinden, sonra şasi dikey ivmelenmesinden alınmış ve
bu sonuçlara göre yolcu konforu ve üretilebilirlik değerlendirilmiştir.
Çalışmanın sonucunda Simscape ile modellenen sistemin matematik modelle aynı
davranışı gösterdiği görülmüştür. Bunun yanında ivme geribeslemeli sistemin
diğer sistemlerden daha iyi sonuçlar verdiği anlaşılmıştır.  Ayrıca Simscape kullanımı ile gerçek sisteme
benzer bir arayüzde çalışma imkanı yakalanmış,
model üzerindeki değişiklikler kolaylıkla
yapılmıştır.

References

  • 1. Nagarkar, M.P., Patil, G.J.V. (2016). Multi-Objective Optimization of LQR Control Quarter Car Suspension System using Genetic Algorithm, FME Transactions, (2016)44. doi:10.5937/fmet1602187N
  • 2. Rajagopal, K. and Ponnusamy, L. (2014). Multi Objective Optimization of Vehicle Active Suspension System Using Debbo Based PID Controller, International Journal of Engineering and Technology, 6(1), 252-262.
  • 3. Savaresi, S.M., Poussot-Vassal, C., Spelta, C., Sename, O., Dugard, L., (2010) Semi-Active Suspension Control Design for Vehicles, Elsevier, ISBN: 978-0-08-096678-6. doi:10.1016/c2009-0-63839-3.
  • 4. Cui, M., Geng, L., Wu, Z. (2017). Random Modeling and Control of Nonlinear Active Suspension, Mathematical Problems In Engineering, 2017(1). doi:10.1155/2017/4045796
  • 5. Göhrle, C., Schindler A., Wagner A., Sawodny O., (2014). Design and vehicle implementation of preview active suspension controllers, IEEE Trans. Control Syst. Technol., Vol. 22, No. 3, pp. 1135–1142. doi:10.1109/tcst.2013.2272342
  • 6. Fuller, C.R., Elloit, S.J., Nelson P.A. (1996) Active Control of Vibrations, Academic Press London. doi:10.1016/b978-012269440-0/50007-8
  • 7. Fu, Z., Li, B., Ning, X., Xie, W., (2017) Online Adaptive Optimal Control of Vehicle Active Suspension Systems Using Single-Network Approximate Dynamic Programming, Mathematical Problems in Engineering, 2017(1). doi:10.1155/2017/4575926
  • 8. Alleyne, A., Hedrick, J. K., (1995). Nonlinear Adaptive Control Of Active Suspensions, IEEE Transactions on Control Systems Technology, 3(1). doi:10.1109/87.370714
  • 9. Van Der Sande, T.P.J., Gysen, B.L.J., Besselink, I.J.M., Paulides, J.J.H., Lomonova, E.A., nijmeijer, H. (2013). Robust Control Of An Electromagnetic Active Suspension System: Simulations And Measurements, Mechatronics, 23(2). doi:10.1016/j.mechatronics.2012.07.002
  • 10. Wang, W.Y., Chen, M.C., Su, S.F. (2012). Hierarchical T-S Fuzzy-Neural Control Of Anti-Lock Braking System And Active Suspension in a Vehicle, Automatica. A Journal of IFAC, the International Federation of Automatic Control, 48(8). doi:10.1016/j.automatica.2012.05.033
  • 11. Jahromi, A. F. and A. Zabihollah, (2010). Linear quadratic regulator and fuzzy controller application in full-car model of suspension system with magnetor-heological shock absorber, in Proceedings of IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, pp. 522–528. doi:10.1109/mesa.2010.5552010
  • 12. Wong, P.-K., Shaojia H., Tao X., Cheong W. H., Zhengchao X. (2012). Design of a new suspension system controlled by fuzzy-PID with wheelbase preview, Adv. Mech. Eng. II, Adv. Mech. Mater., Vol. 192, pp. 106–110. doi:10.4028/www.scientific.net/amm.192.106
  • 13. Lian, R.J., (2013). Enhanced Adaptive Self-Organizing Fuzzy Sliding-Mode Controller For Active Suspension Systems, IEEE Transactions on Industrial Electronics, 60(3). doi:10.1109/tie.2012.2190372
  • 14. Karaman V., Kayisli K. (2017). Sliding mode of vehicle suspension system under different road conditions, Internatıonal Journal Of Engıneerıng Scıence And Applıcatıon, Vol. 1, No. 2, 72-77.
  • 15. Sofiane B., Mohammed C. and Hamid R.K. (2016). A Robust Predıctıve Control Desıgn for Nonlınear Actıve Suspension Systems, Asian J. Control, Vol. 18, No. 1, pp. 122–132. doi:10.1002/asjc.1180
  • 16. Baez, F. (2014). Multi-objective optimization and performance evaluation of active, semi-active and passive suspensions for forestry machines, Master of science thesis, Department of Machine Design, Stockholm, Sweden.
  • 17. http://ctms.engin.umich.edu/CTMS/index.php?example=Suspension&section=SystemModeling, Erişim Tarihi: 10.06.2017, Konu: Sistem modeli ve parametreleri.
  • 18. ISO 8608:2016. Mechanical vibration - Road surface profiles - Reporting of measured data, International Organization for Standardization, Vernier, Geneva, Switzerland. doi:10.3403/00737928
  • 19. https://www.mathworks.com/matlabcentral/answers/262428-how-can-i-get-this-pattern, Erişim Tarihi: 18.06.2017, Konu: Matlabda ISO 8608’e göre yol profili oluşturulması.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ahmet Yasin Kalkanlı

Gürsel Şefkat

Publication Date April 30, 2019
Submission Date May 31, 2018
Acceptance Date April 3, 2019
Published in Issue Year 2019 Volume: 24 Issue: 1

Cite

APA Kalkanlı, A. Y., & Şefkat, G. (2019). OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(1), 351-366. https://doi.org/10.17482/uumfd.428898
AMA Kalkanlı AY, Şefkat G. OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ. UUJFE. April 2019;24(1):351-366. doi:10.17482/uumfd.428898
Chicago Kalkanlı, Ahmet Yasin, and Gürsel Şefkat. “OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 1 (April 2019): 351-66. https://doi.org/10.17482/uumfd.428898.
EndNote Kalkanlı AY, Şefkat G (April 1, 2019) OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 1 351–366.
IEEE A. Y. Kalkanlı and G. Şefkat, “OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ”, UUJFE, vol. 24, no. 1, pp. 351–366, 2019, doi: 10.17482/uumfd.428898.
ISNAD Kalkanlı, Ahmet Yasin - Şefkat, Gürsel. “OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/1 (April 2019), 351-366. https://doi.org/10.17482/uumfd.428898.
JAMA Kalkanlı AY, Şefkat G. OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ. UUJFE. 2019;24:351–366.
MLA Kalkanlı, Ahmet Yasin and Gürsel Şefkat. “OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 1, 2019, pp. 351-66, doi:10.17482/uumfd.428898.
Vancouver Kalkanlı AY, Şefkat G. OTOBÜS AKTİF SÜSPANSİYON SİSTEMİNİN SIMSCAPE İLE MODELLENMESİ VE ANALİZİ. UUJFE. 2019;24(1):351-66.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.