Research Article
BibTex RIS Cite

Determinatıon of Best Wall Thickness for High Strenght Low Alloy (HSLA) Steel Front Collision Railsin Vehicles

Year 2019, Volume: 24 Issue: 2, 461 - 476, 30.08.2019
https://doi.org/10.17482/uumfd.520999

Abstract

In this study, the rigid wall test was simulated in a
virtual environment and the effect of high strength low alloy steel front
collision rail wall thickness on the crash performance of a vehicle was
investigated and the best wall thickness was determined for the front collision
rails. The FEE340 material in the HSLA (High-Strength Low-Alloy) steel group
was used in the front collision rails and the effects of the six different
material wall thicknesses used in the front collision rails were compared with
regard to the crash performance of the vehicle. The crash analyses of the
frontal collision rails with various thicknesses were performed by the Abaqus
finite element software. Total displacement, crush force efficiency (CFE), the
amount of force delivered to the passenger compartment and the amount of energy
damped by each collision member results were acquired from the simulations. For
the vehicle model used in the simulations, when the amounts of force delivered
to the passenger life cage, acceleration and displacement were evaluated, it
was seen that the best wall thickness for the HSLA steel front collision rail
was 2 mm.

References

  • 1. Deb, A., Gunti, R. S., Chou, C., Dutta, U. (2015). Use of truncated finite element modeling for efficient design optimization of an automotive front end structure (No. 2015-01-0496). SAE Technical Paper.
  • 2. Du, Q. (2016). Uncertainty optimization of thin-walled beam crashworthiness based on approximate model with step encryption technology. SAE International Journal of Materials and Manufacturing, 9(3), 622-630.
  • 3. Ensarioglu C., Gulcimen Cakan B., Reis M., Koluk H., Celik H., Uguz A., Cakir M. C. (2018). Reinforcement of a Thermoplastic Crash-Box with Aluminum Foam and Tie Beams. Academic Conference on Engineering, IT and Artificial Intelligence (AC-EITAI 2018), Prag.
  • 4. Eren, I., Gür, Y., Aksoy, Z. (2009). Finite element analysis of collapse of front side rails with new types of crush initiators. International journal of automotive technology, 10(4), 451-457.
  • 5. George Mason University, (2016). 2010 Toyota Yaris Finite Element Model Validation Detail Mesh, Center for Collosion Safety and Analysis. (Doi: 10.13021/G8CC7G)
  • 6. Ghannam, M. Y., Niesluchowski, M., Culkeen, P. M. (2002). Analysis of a Frontal Rail Structure in a Frontal Collision (No. 2002-01-0688). SAE Technical Paper.
  • 7. Gulcimen Cakan B., Reis M., Ensarioglu C., Koluk H., Yeni H., Uguz A., Cakir M. C. (2018). Termoplastik çarpışma kutularında alüminyum köpük takviyesinin çarpışma karakteristiğine etkisi. 18th International Conference on Machine Design and Production, 3-6 July, Eskişehir.
  • 8. Hussain, N. N., Regalla, S. P., Rao, Y. V. D. (2017). Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box. Materials Today: Proceedings, 4(2), 3252-3262.
  • 9. Kim, H. S. (2001). Analysis of crash response of aluminium foam-filled front side rail of a passenger car. International journal of crashworthiness, 6(2), 189-208.
  • 10. Li, Q. F., Liu, Y. J., Wang, H. D., Yan, S. Y. (2009). Finite element analysis and shape optimization of automotive crash-box subjected to low velocity impact. In Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on (Vol. 2, pp. 791-794). IEEE.
  • 11. Liu, X. T., Liu, C. H., Shi, S. L., Zhao, L. H., Huang, H. (2010). The analysis of front rail crash on mini-bus chassis. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (Vol. 2, pp. 14-16). IEEE.
  • 12. Öztürk, İ., Kaya, N. (2008). Otomobil ön tampon çarpışma analizi ve optimizasyonu. Uludağ University Journal of The Faculty of Engineering, 13(1).
  • 13. Peroni, L., Avalle, M., Belingardi, G. (2009). Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques. International journal of impact engineering, 36(3), 498-511.
  • 14. Rao Lakshmana C., Narayanamurthy V., Simha K. R. Y. (2016). Applied Impact Mechanics . Ane Books Pvt. Ltd. (ISBN : 978-11-1924-180-5).
  • 15. Saputra, H., & Rochardjo, H. S. (2017). The prediction of energy-absorption on the car crush box. In Science and Technology-Computer (ICST), 2017 3rd International Conference on (pp. 51-56). IEEE.
  • 16. Tahan, F. J., Park, C. K., Morgan, R. M., Cui, C., Brar, B., Shanks, K., Kan, C. D. (2013). The Effect of Reduced Mass on Frontal Crashworthiness. In The pro-ceedings of the IRCOBI 2013 Conference.
  • 17. Wang, T., Wang, L., Wang, C., Zou, X. (2018). Crashworthiness analysis and multi-objective optimization of a commercial vehicle frame: A mixed meta-modeling-based method. Advances in Mechanical Engineering, 10(5), 1687814018778480.

TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ

Year 2019, Volume: 24 Issue: 2, 461 - 476, 30.08.2019
https://doi.org/10.17482/uumfd.520999

Abstract

Bu çalışmada,
rijit duvar testi sanal ortamda simule edilerek yüksek mukavemetli düşük
alaşımlı çelik ön çarpışma kolu et kalınlığının aracın çarpışma performansına
etkisi incelenmiş ve en uygun et kalınlığı tespit edilmiştir. Ön çarpışma
kollarında HSLA (High-Strength Low-Alloy) çelik grubundaki FEE340 malzemesi
kullanılmış ve altı farklı et kalınlığının aracın çarpışma performansına
etkileri karşılaştırılmıştır. Simülasyonlarda çarpışma kolu, çarpışma kutusu ve
ön tampon (destek) traversinden oluşan yarım araç modeli kullanılmıştır. Farklı
kalınlığa sahip ön çarpışma kollarının çarpışma analizleri Abaqus sonlu
elemanlar yazılımı ile gerçekleştirilmiştir. Simülasyonlardan, toplam
deplasman, çarpışma kuvveti verimliliği (CFE), yolcu kabinine iletilen kuvvet
miktarı ve her bir çarpışma elemanı tarafından sönümlenen enerji miktarı
sonuçları elde edilmiştir. Simülasyonda kullanılan taşıt modeli için, yolcu
kabinine iletilen kuvvet, ivme ve deplasman miktarları değerlendirildiğinde
HSLA çelik ön çarpışma kolu için en uygun et kalınlığının 2 mm olduğu
görülmüştür. 

References

  • 1. Deb, A., Gunti, R. S., Chou, C., Dutta, U. (2015). Use of truncated finite element modeling for efficient design optimization of an automotive front end structure (No. 2015-01-0496). SAE Technical Paper.
  • 2. Du, Q. (2016). Uncertainty optimization of thin-walled beam crashworthiness based on approximate model with step encryption technology. SAE International Journal of Materials and Manufacturing, 9(3), 622-630.
  • 3. Ensarioglu C., Gulcimen Cakan B., Reis M., Koluk H., Celik H., Uguz A., Cakir M. C. (2018). Reinforcement of a Thermoplastic Crash-Box with Aluminum Foam and Tie Beams. Academic Conference on Engineering, IT and Artificial Intelligence (AC-EITAI 2018), Prag.
  • 4. Eren, I., Gür, Y., Aksoy, Z. (2009). Finite element analysis of collapse of front side rails with new types of crush initiators. International journal of automotive technology, 10(4), 451-457.
  • 5. George Mason University, (2016). 2010 Toyota Yaris Finite Element Model Validation Detail Mesh, Center for Collosion Safety and Analysis. (Doi: 10.13021/G8CC7G)
  • 6. Ghannam, M. Y., Niesluchowski, M., Culkeen, P. M. (2002). Analysis of a Frontal Rail Structure in a Frontal Collision (No. 2002-01-0688). SAE Technical Paper.
  • 7. Gulcimen Cakan B., Reis M., Ensarioglu C., Koluk H., Yeni H., Uguz A., Cakir M. C. (2018). Termoplastik çarpışma kutularında alüminyum köpük takviyesinin çarpışma karakteristiğine etkisi. 18th International Conference on Machine Design and Production, 3-6 July, Eskişehir.
  • 8. Hussain, N. N., Regalla, S. P., Rao, Y. V. D. (2017). Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box. Materials Today: Proceedings, 4(2), 3252-3262.
  • 9. Kim, H. S. (2001). Analysis of crash response of aluminium foam-filled front side rail of a passenger car. International journal of crashworthiness, 6(2), 189-208.
  • 10. Li, Q. F., Liu, Y. J., Wang, H. D., Yan, S. Y. (2009). Finite element analysis and shape optimization of automotive crash-box subjected to low velocity impact. In Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on (Vol. 2, pp. 791-794). IEEE.
  • 11. Liu, X. T., Liu, C. H., Shi, S. L., Zhao, L. H., Huang, H. (2010). The analysis of front rail crash on mini-bus chassis. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on (Vol. 2, pp. 14-16). IEEE.
  • 12. Öztürk, İ., Kaya, N. (2008). Otomobil ön tampon çarpışma analizi ve optimizasyonu. Uludağ University Journal of The Faculty of Engineering, 13(1).
  • 13. Peroni, L., Avalle, M., Belingardi, G. (2009). Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques. International journal of impact engineering, 36(3), 498-511.
  • 14. Rao Lakshmana C., Narayanamurthy V., Simha K. R. Y. (2016). Applied Impact Mechanics . Ane Books Pvt. Ltd. (ISBN : 978-11-1924-180-5).
  • 15. Saputra, H., & Rochardjo, H. S. (2017). The prediction of energy-absorption on the car crush box. In Science and Technology-Computer (ICST), 2017 3rd International Conference on (pp. 51-56). IEEE.
  • 16. Tahan, F. J., Park, C. K., Morgan, R. M., Cui, C., Brar, B., Shanks, K., Kan, C. D. (2013). The Effect of Reduced Mass on Frontal Crashworthiness. In The pro-ceedings of the IRCOBI 2013 Conference.
  • 17. Wang, T., Wang, L., Wang, C., Zou, X. (2018). Crashworthiness analysis and multi-objective optimization of a commercial vehicle frame: A mixed meta-modeling-based method. Advances in Mechanical Engineering, 10(5), 1687814018778480.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Fahri Bilbay

Betül Gülçimen Çakan

Cihat Ensarioğlu

Mustafa Çakır

Publication Date August 30, 2019
Submission Date February 1, 2019
Acceptance Date June 26, 2019
Published in Issue Year 2019 Volume: 24 Issue: 2

Cite

APA Bilbay, F., Gülçimen Çakan, B., Ensarioğlu, C., Çakır, M. (2019). TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 461-476. https://doi.org/10.17482/uumfd.520999
AMA Bilbay F, Gülçimen Çakan B, Ensarioğlu C, Çakır M. TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ. UUJFE. August 2019;24(2):461-476. doi:10.17482/uumfd.520999
Chicago Bilbay, Fahri, Betül Gülçimen Çakan, Cihat Ensarioğlu, and Mustafa Çakır. “TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no. 2 (August 2019): 461-76. https://doi.org/10.17482/uumfd.520999.
EndNote Bilbay F, Gülçimen Çakan B, Ensarioğlu C, Çakır M (August 1, 2019) TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 461–476.
IEEE F. Bilbay, B. Gülçimen Çakan, C. Ensarioğlu, and M. Çakır, “TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ”, UUJFE, vol. 24, no. 2, pp. 461–476, 2019, doi: 10.17482/uumfd.520999.
ISNAD Bilbay, Fahri et al. “TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (August 2019), 461-476. https://doi.org/10.17482/uumfd.520999.
JAMA Bilbay F, Gülçimen Çakan B, Ensarioğlu C, Çakır M. TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ. UUJFE. 2019;24:461–476.
MLA Bilbay, Fahri et al. “TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol. 24, no. 2, 2019, pp. 461-76, doi:10.17482/uumfd.520999.
Vancouver Bilbay F, Gülçimen Çakan B, Ensarioğlu C, Çakır M. TAŞITLARDA YÜKSEK MUKAVEMETLİ DÜŞÜK ALAŞIMLI (HSLA) ÇELİK ÖN ÇARPIŞMA KOLLARI İÇİN EN UYGUN ET KALINLIĞININ BELİRLENMESİ. UUJFE. 2019;24(2):461-76.

Announcements:

30.03.2021-Beginning with our April 2021 (26/1) issue, in accordance with the new criteria of TR-Dizin, the Declaration of Conflict of Interest and the Declaration of Author Contribution forms fulfilled and signed by all authors are required as well as the Copyright form during the initial submission of the manuscript. Furthermore two new sections, i.e. ‘Conflict of Interest’ and ‘Author Contribution’, should be added to the manuscript. Links of those forms that should be submitted with the initial manuscript can be found in our 'Author Guidelines' and 'Submission Procedure' pages. The manuscript template is also updated. For articles reviewed and accepted for publication in our 2021 and ongoing issues and for articles currently under review process, those forms should also be fulfilled, signed and uploaded to the system by authors.