Research Article
BibTex RIS Cite

Effect of subacute malathion application on oxidative stress biomarkers

Year 2021, Volume: 6 Issue: 3, 193 - 201, 31.12.2021
https://doi.org/10.31797/vetbio.917112

Abstract

In this study, it was aimed to investigate the effects of malathion on oxidative stress biomarkers and liver enzymes and the protection of caffeic acid phenethyl ester against malathione. In the study, a total of 40 (200-240 g) adult male Spraque Dawley rats with 10 animals in each group were used. In the study, 5 ml / kg corn oil by gavage in the control (C) group, 40 mg / kg malathion by gavage in the malathion (MAL) group, CAPE (10 µmol / kg) intraperitoneally in the malathion + caffeic acid phenethyl ester (MAL + CAPE) group. After 1 hour, malathion (40 mg / kg) was administered by gavage, and CAPE (10 µmol / kg) was administered intraperitoneally to the caffeic acid phenethyl ester (CAPE) group. At the end of 15 days of application, the blood of the rats was intracardiac under ketamine / xylazine anesthesia and the animals were applied cervical dislocation method. Paraoxonase (PON), aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities and high density lipoprotein (HDL), malondialdehyde (MDA) and nitric oxide (NO) levels were analyzed in plasma obtained from blood samples. When the analysis results were evaluated, plasma PON activity and HDL levels decreased (P<0.01) in MAL and MAL+CAPE groups compared to the control group, while AST-ALT activities (P<0.05), MDA and NO levels increased (p<0.01) was detected. According to the results obtained from the study, it was determined that malathion caused significant changes in oxidative stress biomarkers, while CAPE could prevent these changes and be protective against malathion toxicity

References

  • Abdel-Salam, O.M.E., Youness, E.R., Mohammed, N.A., Yassen, N.N., Khadrawy, Y.A., El-Toukhy, S.E., & Sleem, A.A. (2017). Nitric oxide synthase inhibitors protect against brain and liver damage caused by acute malathion intoxication. Asian Pacific Journalof Tropical Medicine, 10, 773-786.
  • Abdel-Salam, O.M.E., Galal, A.F., Hassanane, M.M., Salem, L.M., Nada, S.A., & Morsy, F.A. (2018). Grape seed extract alone or combined with atropine in treatment of malathion induced neuro- and genotoxicity. Journal of Nanoscience Nanotechnology, 18, 564-575.
  • Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., & Sebzevari, O. (2003). Biochemical evidence for free radical induced lipid peroxidation as a mechanisim for subchronic toxicity of malathion in blood and liver of rats. Human and Experimental Toxicology, 22, 205-211.
  • Alp, H., Aytekin, I., Atakişi, O., & Öğün, M. (2011). The effects of caffeic acid phenethyl ester and ellagic acid on oxidative stress created by acute malathion toxicity in rat. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 6(2), 117-124.
  • Alp, H., Sak, M.E., Evsen, M.S., Fırat, U,, Evliyaoğlu, O., Penbegül, N., Sancaktutar, A.A., Söylemez, H., & Tuzcu, M. (2012). Effects of malathion in fetal kidney tissues in pregnant rats: teratogenic effects ınduced by different doses. Kafkas Universitesi Veteriner Fakültesi Dergisi, 18, 221-226.
  • Anwar, J., Spanevello R.M., Thomé, G., Stefanello, N., Schmatz, R., Gutierres, J., Vieira, J., Baldissarelli, J., Carvalho, F.B., Rosa, M.M., Rubin, M.A., Fiorenza, A., Morsch, V.M., & Schetinger, M.R.C. (2012). Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacology, Biochemistry and Behavior, 103, 386-394.
  • Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bısgaıer, C.L., Newton, R.S., & La Du, BN. (1999). Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radical Biology and Medicine, 26, 892-904.
  • Banskota, A.H., Tezuka, Y., & Kadota, S. (2001). Recent progress in pharmacological research of propolis. Phytotherapy Research, 15, 561-571.
  • Bogen, K.T., & Singhal, A. (2017). Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data. Journal of Envıronmental Scıence and Health, Part B, 52(2), 138–146.
  • Borrelli, F., Maffıa, P., Pinto L., Ianaro, A., Russo, A., Capasso, F., & Ialenti, A. (2002). Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia, 73, 53-63.
  • Byung, P.Y. (1994). Cellular defenses against damage from reactive species. Physiological Reviews. 74(1), 139-172.
  • Castaldo, S., & Capasso, F. (2002). Propolis, an old remedy used in modern medicine. Fitoterapia, 73, 1-6.
  • Çoban, F.K., İnce, S., Küçükkurt, İ., Demirel, H.H., & Hazman, Ö. ( 2015). Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug and Chemical Toxicology, 38(4), 391–399.
  • Çoban, F.K., Bulduk, İ., Liman, R., İnce, S., Cigerci, İ., & Hazman, Ö. (2016). Oleuropein alleviates malathion-induced oxidative stress and DNA damage in rats. Toxicological & Environmental Chemistry, 98(1), 101-108.
  • Deveci, H.A., Karapehlivan, M., Kaya, I., Kükürt, A., & Alpay, M. (2015). Akut klorprifos-etil zehirlenmesine karşı kafeik asit fenetil ester’in koruyucu etkisi. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 62, 255-260.
  • Deveci, H.A., Ünal, S., Karapehlivan, M., Ayata, M.K., Gaffaroğlu, M., Kaya, İ., & Yılmaz, M. (2017). Effects of glyphosate (herbicide) on serum paraoxonase activity, high density lipoprotein, total antioxidant and oxidant levels in Kars Creek Transcaucasıan Barbs (Capoeta capoeta [Guldenstaedt, 1773]). Fresenius Environmental Bulletin, 26(5), 3514-3518.
  • Deveci, H.A., & Karapehlivan, M. (2018). Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pesticide Biochemistry and Physiolology, 144, 36-41.
  • Eaton, D.L., Daroff, R.B., Autrup, H., Bridges, J., Buffler, P., Costa, L.G., Coyle, J., McKhann, G., Mobley, W.C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P.S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38, 1-125.
  • Eckerson, H.W., Romson, J., Wyte, C.M., & La Du, B.N. (1983). The human serum paraoxonase polymorphism: Identification of phenotypes by their response to salts. American Journal of Human Genetics, 35, 214-227.
  • El-Demerdash FM. (2011). Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food and Chemical Toxicology, 49, 1346-1352.
  • Elelaimy, I.A., Ibrahim, H.M., Ghaffar, F.R.A., & Alawthan, Y.S. (2012). Evaluation of sub-chronic chlorpyrifos poisoning on immunological and biochemical changes in rats and protective effect of eugenol. Journal of Applied Pharmaceutical Science, 2(6), 51-61.
  • Eyer, P., Szinicz, L., Thiermann, H., Worek, F., & Zilker, T. (2007). Testing of antidotes for organophosphorus compounds: Experimental procedures and clinical reality. Toxicology, 233, 108-119.
  • Hazarika, A., Sarka, S.N., Hajare, S., Kataria, M., & Malik, J.K. (2003). Influence of malathion pretreatment on the toxicity of anilofos in male rats: a biochemical interaction study. Toxicology, 185, 1-8.
  • Hosseini, S.A., Saidijam, M., Karimi, J., Azari, R.Y., Hosseini, V., & Ranjbar, A. (2019). Cerium oxide nanoparticle effects on paraoxonase-1 activity and oxidative toxic stress induced by malathion: a potential antioxidant compound, yes or no? Indian Journal of Clinical Biochemistry, 34, 336-341.
  • İnce, S,, Arslan-Acaröz, D., Demirel, H.H., Varol, N., Özyurek, H.A., Zemheri, F., & Küçükkürt İ. (2017). Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomedicine & Pharmacotherapy, 96: 263-268.
  • Jaouad, L., Milochevitch, C., & Khalil, A. (2003). PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radical Resarch, 37, 77–83.
  • John, S., Kale, M., Rathore, N., & Bhatnagar, D. (2001). Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. Jounal of Nutrition and Biochemistry, 12, 500-504.
  • Kalender, S., Uzun, F.G., Durak, D., Demir, F., & Kalender, Y. (2010). Malathion-induced hepatotoxicity in rats: the effects of vitamins C and E. Food and Chemical Toxicology, 48, 633–638.
  • Karami-Mohajeri, S., & Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: A systematic review. Human & Experimental Toxicology, 30(9), 1119-1140.
  • Kaya, S., Pirinçci, İ., & Bilgili, A. (2002). Veteriner Hekimliğinde Toksikoloji. Medisan Yayınevi, 414-415.
  • Khalifa, K., & Alkhalaf, M.I. (2020). Effects of black seed and thyme leaves dietary supplements against malathion insecticide-induced toxicity in experimental rat model. Journal of King Saud University-Science, 32, 914–919.
  • Khan, S.M., Sobti, R.C., & Kataria, L., (2005). Pesticide-induced alteration in mice hepatooxidative status and protective effects of black tea extract. Clinica Chimica Acta, 358, 131-138.
  • Mackness, M.I., Arrol, S., Abbott, C.A., & Durrington, P.N. (1993). Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis, 104, 129-35.
  • Mansour, S.A., & Mossa, A.H. (2009). Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pesticide Biochemistry and Physiology, 93, 34-39.
  • Meyuhas, S., Assali, M., Huleihil, M., Huleihel, M. (2015). Antimicrobial activities of caffeic acid phenethyl ester. Journal of Molecular Biochemistry, 4, 21-31.
  • Miranda, K.M., Espey, M.G., & Wink, D.A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5, 62- 71.
  • Mohammadzadeh, L., Abnous, K., Razavi, B.M., & Hosseinzadeh, H. (2020). Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects. Nutritional Neuroscience, 23, 221–236.
  • Nili-Ahmadabadi, A., Pourkhalili, N., Fouladdel, S., Pakzad, M., Mostafalou, S., Hassani, S., Baeeri, M., Azizi, E., Ostad, S.N., Hosseini, R., Sharifzadeh, M., & Abdollahi, M. (2013). On the biochemical and molecular mechanisms by which malathion induces dysfunction in pancreatic islets in vivo and in vitro. Pesticide Biochemistry and Physiology, 106, 51–60.
  • Nur, G., & Deveci, H.A. (2018). Histopathological and biochemical responses to the oxidative stress induced by glyphosate-based herbicides in the rainbow trout (Oncorhynchus mykiss). Journal of Cellular Neuroscience and Oxidative Stress, 10(1), 656-665.
  • Nur, G., Husunet, M.T., Güler, I., Deveci, A., Koç, E., Nur, O., & Kilicle, P.A. (2018). The effect of caffeic acid phenethyl ester (CAPE) on hepatic histopathology and oxidative stress in rats treated with malathion, Medicine Science 7(3), 604-9.
  • Öktem, F., Özgüner, F., Sulak, O., Olgar, S., Aktürk, O., Yılmaz, H.R., & Altuntaş, I. (2005). Lithium induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Molecular and Cellular Biochemistry, 77(1-2), 109-115.
  • Peter, J.V., Moran, J.L., & Graham, P. (2006). Oxime therapy and outcomes in human organophosphate poisoning: An evaluation using meta-analytic techniques. Critical Care Medicine, 34, 502-510.
  • Stephen, B., Kyle, L., Yong, X., Cynthia, A., Donald, E., Earl, F., & James, E. (1997). Role of oxidative stress in the mechanism of dieldrin's hepatotoxicity. Annals of Clinical and Laboratory Science, 27, 196-208.
  • Tabakoğlu, E., & Durgut, R. (2013). Veteriner Hekimlikte Oksidatif Stres ve Bazı Önemli Hastalıklarda Oksidatif Stresin Etkileri, AVKAE Derg. 3(1), 69-75.
  • Ullah, S., Li, Z., Hasan, Z., Khan, S.U., & Fahad, S. (2018). Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicology and Environmental Safety, 161, 270–280.
  • Ural, M.Ş. (2013). Chlorpyrifos-induced changes in oxidant/antioxidant status and haematological parameters of Cyprinus carpio carpio: Ameliorative effect of lycopene. Chemosphere. 90, 2059- 2064.
  • Uzun, F.G., & Kalender, Y. (2013). Chlorpyrifos induced hepatotoxic and hematologic changes in rats: The role of quercetin and catechin. Food and Chemical Toxicology, 55, 549–556.
  • Varol, S., Başarslan, S.K., Fırat, U., Alp, H., Uzar, E., Arıkanoğlu, A., Evliyaoğlu, O., Acar, A., Yücel, Y., Kıbrıslı, E., & Gökalp, O. (2015). Detection of borderline dosage of malathion intoxication in a rat’s brain. European Review for Medical and Pharmacological Sciences, 19, 2318–2323.
  • Vural, N. (1996). Toksikoloji. Ankara Üniversitesi Eczacılık Fakültesi Yayınları, 73, 342-373.
  • Watson, A.D., Berliner, J.A., Rama, S.Y., La Du, B.N., Faul, K.F., Fogelman, A.M., & Navab, M. (1995). Protective effect of high density lipoprotein associated Paraoxonase: Inhibition of the biological activity of minimally oxidized low density lipoprotein. Journal of Clinical Investigation, 96, 2882-2891.
  • Yoshioka, T., Kawada, K., Shimada, T., & Mori, M. (1979). Lipid peroxidation in maternal and cord blood and protective mechanism against activated oxygen toxicity in the blood. American Journal of Obstetrics & Gynecology, 135, 372-376.

Subakut malathion uygulamasının oksidatif stres biyobelirteçlerine etkisi

Year 2021, Volume: 6 Issue: 3, 193 - 201, 31.12.2021
https://doi.org/10.31797/vetbio.917112

Abstract

Bu çalışmada malathionun oksidatif stres biyobelirteçleri ve karaciğer enzimleri üzerine etkileri ile kafeik asit fenetil esterin malathiona karşı koruyuculuğunun araştırılması amaçlandı. Çalışmada her grupta 10 adet hayvan olacak şekilde toplam 40 adet (200-240 g) erişkin erkek Spraque Dawley ırkı rat kullanıldı. Çalışmada kontrol (K) grubuna gavaj yoluyla 5 ml/kg mısır yağı, malathion (MAL) grubuna gavaj yoluyla 40 mg/kg malathion, malathion+kafeik asit fenetil ester (MAL+CAPE) grubuna intraperitoneal yolla CAPE (10 µmol/kg) ve 1 saat sonra gavaj yoluyla malathion (40 mg/kg), kafeik asit fenetil ester (CAPE) grubuna ise intraperitoneal yolla CAPE (10 µmol/kg) uygulandı. 15 günlük uygulama sonunda ratların ketamin/ksilazin anestezi altında intrakardiyak olarak kanları alındı ve hayvanlara servikal dislokasyon yöntemi uygulandı. Alınan kan örneklerinden elde edilen plazmada paraoksonaz (PON), aspartat aminotransferaz (AST), alanin aminotransferaz (ALT) aktiviteleri ile yüksek dansiteli lipoprotein (HDL), malondialdehit (MDA) ve nitrik oksit (NO) düzeyleri analiz edildi. Analiz sonuçları değerlendirildiğinde, kontrol grubuna göre MAL ve MAL+CAPE gruplarında plazma PON aktivitesi ve HDL düzeylerinde azalma (P<0.01) olduğu, AST-ALT aktivitelerinde (P<0,05) MDA ve NO düzeylerinde ise (p<0.01) artış olduğu tespit edildi. Çalışmadan elde edilen sonuçlara göre, malathionun oksidatif stres biyobelirteçlerinde önemli değişiklikler meydana getirdiği, CAPE’nin ise bu değişiklikleri önleyebileceği ve malathion toksikasyonuna karşı koruyucu olabileceği belirlendi.

References

  • Abdel-Salam, O.M.E., Youness, E.R., Mohammed, N.A., Yassen, N.N., Khadrawy, Y.A., El-Toukhy, S.E., & Sleem, A.A. (2017). Nitric oxide synthase inhibitors protect against brain and liver damage caused by acute malathion intoxication. Asian Pacific Journalof Tropical Medicine, 10, 773-786.
  • Abdel-Salam, O.M.E., Galal, A.F., Hassanane, M.M., Salem, L.M., Nada, S.A., & Morsy, F.A. (2018). Grape seed extract alone or combined with atropine in treatment of malathion induced neuro- and genotoxicity. Journal of Nanoscience Nanotechnology, 18, 564-575.
  • Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., & Sebzevari, O. (2003). Biochemical evidence for free radical induced lipid peroxidation as a mechanisim for subchronic toxicity of malathion in blood and liver of rats. Human and Experimental Toxicology, 22, 205-211.
  • Alp, H., Aytekin, I., Atakişi, O., & Öğün, M. (2011). The effects of caffeic acid phenethyl ester and ellagic acid on oxidative stress created by acute malathion toxicity in rat. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 6(2), 117-124.
  • Alp, H., Sak, M.E., Evsen, M.S., Fırat, U,, Evliyaoğlu, O., Penbegül, N., Sancaktutar, A.A., Söylemez, H., & Tuzcu, M. (2012). Effects of malathion in fetal kidney tissues in pregnant rats: teratogenic effects ınduced by different doses. Kafkas Universitesi Veteriner Fakültesi Dergisi, 18, 221-226.
  • Anwar, J., Spanevello R.M., Thomé, G., Stefanello, N., Schmatz, R., Gutierres, J., Vieira, J., Baldissarelli, J., Carvalho, F.B., Rosa, M.M., Rubin, M.A., Fiorenza, A., Morsch, V.M., & Schetinger, M.R.C. (2012). Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacology, Biochemistry and Behavior, 103, 386-394.
  • Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bısgaıer, C.L., Newton, R.S., & La Du, BN. (1999). Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radical Biology and Medicine, 26, 892-904.
  • Banskota, A.H., Tezuka, Y., & Kadota, S. (2001). Recent progress in pharmacological research of propolis. Phytotherapy Research, 15, 561-571.
  • Bogen, K.T., & Singhal, A. (2017). Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data. Journal of Envıronmental Scıence and Health, Part B, 52(2), 138–146.
  • Borrelli, F., Maffıa, P., Pinto L., Ianaro, A., Russo, A., Capasso, F., & Ialenti, A. (2002). Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia, 73, 53-63.
  • Byung, P.Y. (1994). Cellular defenses against damage from reactive species. Physiological Reviews. 74(1), 139-172.
  • Castaldo, S., & Capasso, F. (2002). Propolis, an old remedy used in modern medicine. Fitoterapia, 73, 1-6.
  • Çoban, F.K., İnce, S., Küçükkurt, İ., Demirel, H.H., & Hazman, Ö. ( 2015). Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug and Chemical Toxicology, 38(4), 391–399.
  • Çoban, F.K., Bulduk, İ., Liman, R., İnce, S., Cigerci, İ., & Hazman, Ö. (2016). Oleuropein alleviates malathion-induced oxidative stress and DNA damage in rats. Toxicological & Environmental Chemistry, 98(1), 101-108.
  • Deveci, H.A., Karapehlivan, M., Kaya, I., Kükürt, A., & Alpay, M. (2015). Akut klorprifos-etil zehirlenmesine karşı kafeik asit fenetil ester’in koruyucu etkisi. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 62, 255-260.
  • Deveci, H.A., Ünal, S., Karapehlivan, M., Ayata, M.K., Gaffaroğlu, M., Kaya, İ., & Yılmaz, M. (2017). Effects of glyphosate (herbicide) on serum paraoxonase activity, high density lipoprotein, total antioxidant and oxidant levels in Kars Creek Transcaucasıan Barbs (Capoeta capoeta [Guldenstaedt, 1773]). Fresenius Environmental Bulletin, 26(5), 3514-3518.
  • Deveci, H.A., & Karapehlivan, M. (2018). Chlorpyrifos-induced parkinsonian model in mice: Behavior, histopathology and biochemistry. Pesticide Biochemistry and Physiolology, 144, 36-41.
  • Eaton, D.L., Daroff, R.B., Autrup, H., Bridges, J., Buffler, P., Costa, L.G., Coyle, J., McKhann, G., Mobley, W.C., Nadel, L., Neubert, D., Schulte-Hermann, R., & Spencer, P.S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38, 1-125.
  • Eckerson, H.W., Romson, J., Wyte, C.M., & La Du, B.N. (1983). The human serum paraoxonase polymorphism: Identification of phenotypes by their response to salts. American Journal of Human Genetics, 35, 214-227.
  • El-Demerdash FM. (2011). Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food and Chemical Toxicology, 49, 1346-1352.
  • Elelaimy, I.A., Ibrahim, H.M., Ghaffar, F.R.A., & Alawthan, Y.S. (2012). Evaluation of sub-chronic chlorpyrifos poisoning on immunological and biochemical changes in rats and protective effect of eugenol. Journal of Applied Pharmaceutical Science, 2(6), 51-61.
  • Eyer, P., Szinicz, L., Thiermann, H., Worek, F., & Zilker, T. (2007). Testing of antidotes for organophosphorus compounds: Experimental procedures and clinical reality. Toxicology, 233, 108-119.
  • Hazarika, A., Sarka, S.N., Hajare, S., Kataria, M., & Malik, J.K. (2003). Influence of malathion pretreatment on the toxicity of anilofos in male rats: a biochemical interaction study. Toxicology, 185, 1-8.
  • Hosseini, S.A., Saidijam, M., Karimi, J., Azari, R.Y., Hosseini, V., & Ranjbar, A. (2019). Cerium oxide nanoparticle effects on paraoxonase-1 activity and oxidative toxic stress induced by malathion: a potential antioxidant compound, yes or no? Indian Journal of Clinical Biochemistry, 34, 336-341.
  • İnce, S,, Arslan-Acaröz, D., Demirel, H.H., Varol, N., Özyurek, H.A., Zemheri, F., & Küçükkürt İ. (2017). Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. Biomedicine & Pharmacotherapy, 96: 263-268.
  • Jaouad, L., Milochevitch, C., & Khalil, A. (2003). PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radical Resarch, 37, 77–83.
  • John, S., Kale, M., Rathore, N., & Bhatnagar, D. (2001). Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. Jounal of Nutrition and Biochemistry, 12, 500-504.
  • Kalender, S., Uzun, F.G., Durak, D., Demir, F., & Kalender, Y. (2010). Malathion-induced hepatotoxicity in rats: the effects of vitamins C and E. Food and Chemical Toxicology, 48, 633–638.
  • Karami-Mohajeri, S., & Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: A systematic review. Human & Experimental Toxicology, 30(9), 1119-1140.
  • Kaya, S., Pirinçci, İ., & Bilgili, A. (2002). Veteriner Hekimliğinde Toksikoloji. Medisan Yayınevi, 414-415.
  • Khalifa, K., & Alkhalaf, M.I. (2020). Effects of black seed and thyme leaves dietary supplements against malathion insecticide-induced toxicity in experimental rat model. Journal of King Saud University-Science, 32, 914–919.
  • Khan, S.M., Sobti, R.C., & Kataria, L., (2005). Pesticide-induced alteration in mice hepatooxidative status and protective effects of black tea extract. Clinica Chimica Acta, 358, 131-138.
  • Mackness, M.I., Arrol, S., Abbott, C.A., & Durrington, P.N. (1993). Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis, 104, 129-35.
  • Mansour, S.A., & Mossa, A.H. (2009). Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pesticide Biochemistry and Physiology, 93, 34-39.
  • Meyuhas, S., Assali, M., Huleihil, M., Huleihel, M. (2015). Antimicrobial activities of caffeic acid phenethyl ester. Journal of Molecular Biochemistry, 4, 21-31.
  • Miranda, K.M., Espey, M.G., & Wink, D.A. (2001). A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide, 5, 62- 71.
  • Mohammadzadeh, L., Abnous, K., Razavi, B.M., & Hosseinzadeh, H. (2020). Crocin-protected malathion-induced spatial memory deficits by inhibiting TAU protein hyperphosphorylation and antiapoptotic effects. Nutritional Neuroscience, 23, 221–236.
  • Nili-Ahmadabadi, A., Pourkhalili, N., Fouladdel, S., Pakzad, M., Mostafalou, S., Hassani, S., Baeeri, M., Azizi, E., Ostad, S.N., Hosseini, R., Sharifzadeh, M., & Abdollahi, M. (2013). On the biochemical and molecular mechanisms by which malathion induces dysfunction in pancreatic islets in vivo and in vitro. Pesticide Biochemistry and Physiology, 106, 51–60.
  • Nur, G., & Deveci, H.A. (2018). Histopathological and biochemical responses to the oxidative stress induced by glyphosate-based herbicides in the rainbow trout (Oncorhynchus mykiss). Journal of Cellular Neuroscience and Oxidative Stress, 10(1), 656-665.
  • Nur, G., Husunet, M.T., Güler, I., Deveci, A., Koç, E., Nur, O., & Kilicle, P.A. (2018). The effect of caffeic acid phenethyl ester (CAPE) on hepatic histopathology and oxidative stress in rats treated with malathion, Medicine Science 7(3), 604-9.
  • Öktem, F., Özgüner, F., Sulak, O., Olgar, S., Aktürk, O., Yılmaz, H.R., & Altuntaş, I. (2005). Lithium induced renal toxicity in rats: protection by a novel antioxidant caffeic acid phenethyl ester. Molecular and Cellular Biochemistry, 77(1-2), 109-115.
  • Peter, J.V., Moran, J.L., & Graham, P. (2006). Oxime therapy and outcomes in human organophosphate poisoning: An evaluation using meta-analytic techniques. Critical Care Medicine, 34, 502-510.
  • Stephen, B., Kyle, L., Yong, X., Cynthia, A., Donald, E., Earl, F., & James, E. (1997). Role of oxidative stress in the mechanism of dieldrin's hepatotoxicity. Annals of Clinical and Laboratory Science, 27, 196-208.
  • Tabakoğlu, E., & Durgut, R. (2013). Veteriner Hekimlikte Oksidatif Stres ve Bazı Önemli Hastalıklarda Oksidatif Stresin Etkileri, AVKAE Derg. 3(1), 69-75.
  • Ullah, S., Li, Z., Hasan, Z., Khan, S.U., & Fahad, S. (2018). Malathion induced oxidative stress leads to histopathological and biochemical toxicity in the liver of rohu (Labeo rohita, Hamilton) at acute concentration. Ecotoxicology and Environmental Safety, 161, 270–280.
  • Ural, M.Ş. (2013). Chlorpyrifos-induced changes in oxidant/antioxidant status and haematological parameters of Cyprinus carpio carpio: Ameliorative effect of lycopene. Chemosphere. 90, 2059- 2064.
  • Uzun, F.G., & Kalender, Y. (2013). Chlorpyrifos induced hepatotoxic and hematologic changes in rats: The role of quercetin and catechin. Food and Chemical Toxicology, 55, 549–556.
  • Varol, S., Başarslan, S.K., Fırat, U., Alp, H., Uzar, E., Arıkanoğlu, A., Evliyaoğlu, O., Acar, A., Yücel, Y., Kıbrıslı, E., & Gökalp, O. (2015). Detection of borderline dosage of malathion intoxication in a rat’s brain. European Review for Medical and Pharmacological Sciences, 19, 2318–2323.
  • Vural, N. (1996). Toksikoloji. Ankara Üniversitesi Eczacılık Fakültesi Yayınları, 73, 342-373.
  • Watson, A.D., Berliner, J.A., Rama, S.Y., La Du, B.N., Faul, K.F., Fogelman, A.M., & Navab, M. (1995). Protective effect of high density lipoprotein associated Paraoxonase: Inhibition of the biological activity of minimally oxidized low density lipoprotein. Journal of Clinical Investigation, 96, 2882-2891.
  • Yoshioka, T., Kawada, K., Shimada, T., & Mori, M. (1979). Lipid peroxidation in maternal and cord blood and protective mechanism against activated oxygen toxicity in the blood. American Journal of Obstetrics & Gynecology, 135, 372-376.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Veterinary Sciences
Journal Section Research Articles
Authors

Haci Ahmet Deveci 0000-0002-3862-1991

Gökhan Nur 0000-0002-5861-8538

Pinar Aksu Kılıçle 0000-0002-3567-5775

Publication Date December 31, 2021
Submission Date April 15, 2021
Acceptance Date September 10, 2021
Published in Issue Year 2021 Volume: 6 Issue: 3

Cite

APA Deveci, H. A., Nur, G., & Aksu Kılıçle, P. (2021). Subakut malathion uygulamasının oksidatif stres biyobelirteçlerine etkisi. Journal of Advances in VetBio Science and Techniques, 6(3), 193-201. https://doi.org/10.31797/vetbio.917112

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download