Review
BibTex RIS Cite

An Investigation on the Interaction Between Mathematics and Arts: Geometrical Analysis of the Compositions of Paintings

Year 2024, , 145 - 156, 29.01.2024
https://doi.org/10.17484/yedi.1330095

Abstract

There has been an ongoing interaction between mathematics and the arts for centuries. The examples illustrating this interaction can be seen at different periods of art history. Various examples of mathematical approaches in painting are encountered in different periods of art history. Using the principles of art under the influence of the mathematics discipline and making use of geometry in compositions has a prominent role in creating works of art. In particular, the creation of pictorial compositions by using geometry has allowed geometrical investigations on the arrangements of the composition of in works of art. This research presents studies on geometric analysis of the compositions of paintings produced in the classical art period and critical studies on this matter within the scope of interdisciplinary education in mathematics and visual arts. The study categorized major geometrical concepts used in the analysis of compositions of paintings under five categories: (1) golden ratio and golden rectangle; (2) musical consonance proportions and other basic proportions; (3) the use of rabatment; (4) the use and construction of geometric shapes, (5) the use of dynamic elements (e.g., dynamic symmetry, dynamic musical consonances, diagonal compositions, serpentine curve). This study also raises critical issues and concerns about the geometric analysis of paintings, emphasizing the need for caution when making generalizations about these analyses. Furthermore, it discusses the reasons behind the disconnection between painting and mathematics regarding the geometrical analysis of compositions and suggests ways of developing continuities between the two disciplines on this topic. This study sheds light on studies on the design of interdisciplinary education programs in mathematics and arts.

References

  • Barker, N. J. (2000). ‘Diverse passion’: Mode, interval and affect in Poussin’s paintings. Music in Art, 25(1-2), s. 5-24. https://www.jstor.org/stable/41818356
  • Bigalı, Ş. (1999). Resim sanatı. Türkiye İş Bankası Kültür Yayınları.
  • Blake, E. M. (1920). Dynamic symmetry—A criticism. The Art Bulletin, 3(3), s. 107-127. https://doi.org/10.1080/00043079.1920.11409693
  • Bouleau, C. (2014). The painter's secret geometry: A study of composition in art. Dover Publications.
  • Carpenter, R. (1921). Dynamic symmetry: A criticism. American Journal of Archaeology, 25(1), s. 18-36.
  • Carrier, D. (1991). Review of Courbet's realism; Realism, writing, disfiguration. On Thomas Eakins and Stephen Crane by M. Fried. History and Theory, 30(3), s. 368-381. https://doi.org/10.2307/2505565
  • Ditner, D. C. (1983). Claude and the ideal landscape tradition in Great Britain. The Bulletin of the Cleveland Museum of Art, 70(4), s. 147-163.
  • Emmer, M. (1994). Art and visual mathematics. Leonardo, 27(3), s. 237-240.
  • Emmer, M. (2005). The visual mind II. MIT Press.
  • Erickson, B. (1986). Art and geometry: Proportioning devices in pictorial composition. Leonardo, 19(3), s. 211-215.
  • Ernst, B. (2012). The magic mirror of M. C. Escher. Taschen.
  • Falbo, C. (2005). The golden ratio—A contrary viewpoint. The College Mathematics Journal, 36(2), s. 123-134. https://doi.org/10.1080/07468342.2005.11922119
  • Fathauer, R. W. (2007). A survey of recent mathematical art exhibitions. Journal of Mathematics and the Arts, 1(3), s. 181-190. https://doi.org/10.1080/17513470701689167
  • Fischler, R. (1981). On the application of the golden ratio in the visual arts. Leonardo, 14(1), s. 31-32.
  • Gamwell, L. (2016). Mathematics and art: A cultural history. Princeton University Press.
  • de Haas, K. H. (1917). The geometric basis of pictorial art. The Art World, 1(6), s. 436-440. https://doi.org/10.2307/25587830
  • Hambidge, J. (1920). Dynamic symmetry: The Greek vase. Yale University Press.
  • Hambidge, J. (1967). The elements of dynamic symmetry. Dover Publications.
  • Herz-Fischler, R. (1983). An examination of claims concerning Seurat and the golden number. Gazette des beaux-arts, 101, s. 109-112.
  • Kemp, M. (1990). The science of art: Optical themes in Western Art from Brunelleschi to Seurat. Yale University Press.
  • Kus, M. ve Cakiroglu, E. (2022). Mathematics in the informal setting of an art studio: Students’ visuospatial thinking processes in a studio thinking-based environment. Educational Studies in Mathematics, 110(3), s. 545-571. https://doi.org/10.1007/s10649-022-10142-8
  • Lawrence, C. (2023). A Decade of MoMath: TEN acity, In TEN sity, and Po TEN tial. The Mathematical Intelligencer, 1-6. https://doi.org/10.1007/s00283-022-10257-z
  • Markowsky, G. (1992). Misconceptions about the golden ratio. The College Mathematics Journal, 23(1), s. 2-19. https://doi.org/10.1080/07468342.1992.11973428
  • McManus, I. C., Cook, R. ve Hunt, A. (2010). Beyond the golden section and normative aesthetics: Why do individuals differ so much in their aesthetic preferences for rectangles? Psychology of Aesthetics, Creativity, and the Arts, 4(2), s. 113-126. https://doi.org/10.1037/a0017316
  • Ocvirk, O.G., Stinson, R.E., Wigg, P.R., Bone, R.O. ve Cayton, D.L. (2015). Sanatın temelleri: Teori ve uygulama. Karakalem Kitabevi Yayınları.
  • Poore, H. R. (1967). Pictorial composition: An introduction. Courier Corporation.
  • Sertöz. A. S. (2019). Öklid’in elemanları. TÜBİTAK.
  • Taubes, F. (1949). Pictorial composition and the art of drawing. Dodd Mead ve Company,
  • Wilson, J. (2021). Dynamic symmetry: A history and analysis. Journal of Mathematics and the Arts, 15(1), s. 19-32. https://doi.org/10.1080/17513472.2020.1805157
  • Winner, E., Goldstein, T. R. ve Vincent-Lancrin, S. (2013). Educational research and innovation art for art’s sake? OECD.

Matematik ve Sanat Etkileşimi Üzerine Bir İnceleme: Resim Kompozisyonlarında Geometrik Çözümlemeler

Year 2024, , 145 - 156, 29.01.2024
https://doi.org/10.17484/yedi.1330095

Abstract

Matematik ve sanat disiplinlerinin yüzyıllardır etkileşim içinde olduğu bilinmektedir. Sanat tarihinin farklı dönemlerinde resim sanatında matematiksel yaklaşımların çeşitli örnekleriyle karşılaşılmaktadır. Sanatın ilkelerini matematik disiplini etkisinde kullanmak ve sanat eserlerinin kompozisyonlarında geometriden faydalanmak gibi konular sanatçıların eser üretiminde etkili olmuştur. Özellikle sanat eserlerinin kompozisyonlarının geometriden faydalanılarak oluşturulması, eserin kompozisyon düzeni konusunda geometrik incelemelere olanak sunmuştur. Bu çalışma, matematik ve sanat disiplinlerinin etkileşimi bağlamında, klasik sanat döneminde üretilen resim kompozisyonlarının geometrik analizine yönelik çalışmaları ve bu konudaki eleştirel çalışmaları sunmaktadır. Çalışma, resim kompozisyonlarının analizinde kullanılan başlıca geometrik kavramları beş kategoride sınıflandırmıştır: (1) altın oran ve altın dikdörtgen; (2) müzikal uyum oranları ve diğer temel oranlar; (3) rabatment kullanımı; (4) geometrik şekillerin kullanımı ve inşası, (5) dinamik elemanların kullanımı (örneğin, dinamik simetri, dinamik müzikal uyum oranları, köşegensel/diyagonal kompozisyonlar, kıvrımlı eğri). Bu çalışma, aynı zamanda, resimlerin geometrik çözümlenmesine ilişkin kritik konuları ve kaygıları da gündeme getirerek bu çözümlemeler konusunda genellemeler yapılırken dikkatli olunması gerektiğini vurgulamaktadır. Ayrıca çalışma günümüzde kompozisyonların geometrik çözümlenmesinde resim ve matematik disiplinleri arasındaki kopukluğun nedenlerini tartışarak bu konuda iki disiplin arasındaki sürekliliği geliştirmenin yollarını önermektedir. Bu çalışmanın matematik ve sanat eğitimi programlarının tasarımına yönelik çalışmalara ışık tutacağı düşünülmektedir.

References

  • Barker, N. J. (2000). ‘Diverse passion’: Mode, interval and affect in Poussin’s paintings. Music in Art, 25(1-2), s. 5-24. https://www.jstor.org/stable/41818356
  • Bigalı, Ş. (1999). Resim sanatı. Türkiye İş Bankası Kültür Yayınları.
  • Blake, E. M. (1920). Dynamic symmetry—A criticism. The Art Bulletin, 3(3), s. 107-127. https://doi.org/10.1080/00043079.1920.11409693
  • Bouleau, C. (2014). The painter's secret geometry: A study of composition in art. Dover Publications.
  • Carpenter, R. (1921). Dynamic symmetry: A criticism. American Journal of Archaeology, 25(1), s. 18-36.
  • Carrier, D. (1991). Review of Courbet's realism; Realism, writing, disfiguration. On Thomas Eakins and Stephen Crane by M. Fried. History and Theory, 30(3), s. 368-381. https://doi.org/10.2307/2505565
  • Ditner, D. C. (1983). Claude and the ideal landscape tradition in Great Britain. The Bulletin of the Cleveland Museum of Art, 70(4), s. 147-163.
  • Emmer, M. (1994). Art and visual mathematics. Leonardo, 27(3), s. 237-240.
  • Emmer, M. (2005). The visual mind II. MIT Press.
  • Erickson, B. (1986). Art and geometry: Proportioning devices in pictorial composition. Leonardo, 19(3), s. 211-215.
  • Ernst, B. (2012). The magic mirror of M. C. Escher. Taschen.
  • Falbo, C. (2005). The golden ratio—A contrary viewpoint. The College Mathematics Journal, 36(2), s. 123-134. https://doi.org/10.1080/07468342.2005.11922119
  • Fathauer, R. W. (2007). A survey of recent mathematical art exhibitions. Journal of Mathematics and the Arts, 1(3), s. 181-190. https://doi.org/10.1080/17513470701689167
  • Fischler, R. (1981). On the application of the golden ratio in the visual arts. Leonardo, 14(1), s. 31-32.
  • Gamwell, L. (2016). Mathematics and art: A cultural history. Princeton University Press.
  • de Haas, K. H. (1917). The geometric basis of pictorial art. The Art World, 1(6), s. 436-440. https://doi.org/10.2307/25587830
  • Hambidge, J. (1920). Dynamic symmetry: The Greek vase. Yale University Press.
  • Hambidge, J. (1967). The elements of dynamic symmetry. Dover Publications.
  • Herz-Fischler, R. (1983). An examination of claims concerning Seurat and the golden number. Gazette des beaux-arts, 101, s. 109-112.
  • Kemp, M. (1990). The science of art: Optical themes in Western Art from Brunelleschi to Seurat. Yale University Press.
  • Kus, M. ve Cakiroglu, E. (2022). Mathematics in the informal setting of an art studio: Students’ visuospatial thinking processes in a studio thinking-based environment. Educational Studies in Mathematics, 110(3), s. 545-571. https://doi.org/10.1007/s10649-022-10142-8
  • Lawrence, C. (2023). A Decade of MoMath: TEN acity, In TEN sity, and Po TEN tial. The Mathematical Intelligencer, 1-6. https://doi.org/10.1007/s00283-022-10257-z
  • Markowsky, G. (1992). Misconceptions about the golden ratio. The College Mathematics Journal, 23(1), s. 2-19. https://doi.org/10.1080/07468342.1992.11973428
  • McManus, I. C., Cook, R. ve Hunt, A. (2010). Beyond the golden section and normative aesthetics: Why do individuals differ so much in their aesthetic preferences for rectangles? Psychology of Aesthetics, Creativity, and the Arts, 4(2), s. 113-126. https://doi.org/10.1037/a0017316
  • Ocvirk, O.G., Stinson, R.E., Wigg, P.R., Bone, R.O. ve Cayton, D.L. (2015). Sanatın temelleri: Teori ve uygulama. Karakalem Kitabevi Yayınları.
  • Poore, H. R. (1967). Pictorial composition: An introduction. Courier Corporation.
  • Sertöz. A. S. (2019). Öklid’in elemanları. TÜBİTAK.
  • Taubes, F. (1949). Pictorial composition and the art of drawing. Dodd Mead ve Company,
  • Wilson, J. (2021). Dynamic symmetry: A history and analysis. Journal of Mathematics and the Arts, 15(1), s. 19-32. https://doi.org/10.1080/17513472.2020.1805157
  • Winner, E., Goldstein, T. R. ve Vincent-Lancrin, S. (2013). Educational research and innovation art for art’s sake? OECD.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Painting
Journal Section Derleme Makaleler
Authors

Mehtap Kuş 0000-0001-7891-9912

Ece Nur Demir Yılmaz 0000-0003-0240-1804

Publication Date January 29, 2024
Submission Date July 19, 2023
Acceptance Date December 14, 2023
Published in Issue Year 2024

Cite

APA Kuş, M., & Demir Yılmaz, E. N. (2024). Matematik ve Sanat Etkileşimi Üzerine Bir İnceleme: Resim Kompozisyonlarında Geometrik Çözümlemeler. Yedi(31), 145-156. https://doi.org/10.17484/yedi.1330095

18409

This work is licensed under a Creative Commons Attribution 4.0 International License.