Araştırma Makalesi
BibTex RIS Kaynak Göster

Astaksantin'in Serebral İskemi-Reperfüzyonlu Sıçanlarda Doza Bağlı Etkisi

Yıl 2023, Cilt: 4 Sayı: 2, 42 - 49, 13.09.2023

Öz

İskemiye karşı en hassas organ olan beyinde iskemiden kaynaklanan hastalıklar artık yaygınlaşarak sosyal ve ekonomik sorunlara yol açmaktadır. Organizmanın oluşturduğu antioksidan savunma sisteminin yetersizliği sonucu artan serbest radikaller, serbest radikallerin artmasına neden olur ve bu da başta kanser olmak üzere çeşitli hastalıkların ve yaşlanma süreçlerinin gelişmesine katkıda bulunur. Çalışmamızda güçlü bir antioksidan olan Astaksantinin (AST) antioksidan sistem ile beyin üzerindeki koruyucu etkisinin araştırılması amaçlandı.
Araştırmamız Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Anatomi Anabilim Dalı'nda gerçekleştirildi. Deneyde toplam 32 adet erkek sıçan kullanıldı ve sıçanlar her grupta 8 adet olmak üzere 4 gruba ayrıldı. Çalışmamızda sıçanlara farklı dozlarda AST verilerek a. carotis communis iskemi-reperfüzyon modeli üzerindeki koruyucu etkisi araştırıldı. Sıçanlara ameliyattan 30 dakika önce intraperitoneal olarak AST verildi. Sonrasında 15 dakika süreyle iskemi uygulandı. İskeminin ardından sıçanlar 24 saat reperfüzyonda bırakıldı. Sonrasında intrakardiyak perfüzyonla kan örnekleri alındı; Malondialdehit (MDA), Süperoksit dismutaz (SOD), Katalaz (CAT) düzeyleri belirlendi.
Biyokimyasal sonuçlara göre Sham grubunda SOD ve CAT düzeylerinde anlamlı derecede azalma gözlemlenmiştir. Bu da iskemi sonrası artan serbest radikaller karşısında antioksidan savunma sisteminin yetersiz olduğunu göstermektedir. Öte yandan AST ile tedavi edilen grupta anlamlı bir artış gözlemlenmiştir. Bu sonuç bize AST'nin antioksidan sistem üzerinde önemli bir koruyucu etkiye sahip olduğunu göstermektedir. Sham grubunda görülen MDA düzeylerindeki anlamlı artış iskemi sonrası beyinde oksidatif hasarın oluştuğunu göstermektedir. AST25 grubuna baktığımızda anlamlı bir düzeyde azalma gözlemledik. Bu sonuçta AST'nin beyin üzerinde önemli bir koruyucu etkisinin olduğunu destekler niteliktedir. AST 75 grubuna baktığımızda ise kontrol grubunun düzeylerinin altına düştüğünü gözlemledik. Bu da bize bu dozun AST'nin beyin üzerinde tam bir koruyucu etkiye sahip olduğunu göstermektedir.
Sham grubu, kontrol grubuyla karşılaştırıldığında serebral kortekste önemli hasar ve yüksek sayıda nekrotik nöron gözlemlenmiştir. AST verilen gruplarda oldukça sağlam bir görünüme sahip ve hasar seviyeleri azalmış nöronların varlığı tespit edilmiştir. Bu bulgu AST'nin sınırlı derecede nörolojik koruma sağlayabileceğini göstermektedir.
Histolojik veriler, AST'nin beyin hasarına karşı bir dereceye kadar önleyici etkinlik sergilediğini göstermektedir. Astaksantin, oksidatif hasarı azaltmada, özellikle 75 mg/kg dozajında, antioksidan savunma sistemi üzerinde dikkate değer bir koruyucu etki sergilemektedir. Histolojik değerlendirmelerin objektifliğini ve netliğini arttırmak için niceliksel analizler ve değerlendirmeler yapmak ve tespit edilen değişiklikleri kategorize etmek faydalı olacaktır.

Kaynakça

  • 1. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66. https://doi. org/10.1016/j.brainresrev.2006.11.003
  • 2. Majino G, Jorris I. Apopitosis, oncosis, and necrosis –an overview of the cell death. Am J Pathol. 1995;146:3–15. Available at: https://pubmed.ncbi.nlm.nih.gov/7856735/
  • 3. Zimmerman BJ, Granger DN. Reperfusion injury. Surg Clin North Am. 1992;72:65–83. https://doi.org/10.1016/S0039-6109(16)45628-8
  • 4. Collard CD, Gelman S, Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133– 1138. https://doi.org/10.1097/00000542-200106000-00030
  • 5. Vardanian AJ, Busuttil RW, Kepiec-Weglinski J. Molecular mediators of liver ischemia and reperfusion injury: a brief review. Mol Med. 2008;14(5-6):337– 345. https://doi.org/10.2119/2007-00134.Vardanian
  • 6. Wahul AB, Joshi PC, Kumar A, Chakravarty S. Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in bilateral common carotid arterial occlusion (BCCAo) mouse model. J Chem Neuroanat. 2018;92:1–15. https://doi.org/10.1016/j.jchemneu.2018.04.006
  • 7. Ma M, Uekawa K, Hasegawa Y, Nakagawa T, Katayama T, Sueta D, et al. Pretreatment with rosuvastatin protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress and inflammation. Brain Res. 2013;1519:87–94. https://doi.org/10.1016/j.brainres.2013.04.040
  • 8. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011;14:1505–1517. https://doi.org/10.1089/ars.2010.3576
  • 9. Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17:1391–1401. https://doi.org/10.1038/nm.2507
  • 10. Daverey A, Agrawal SK. Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia. Neurosci Lett. 2020;738:135351. https://doi.org/10.1016/j.neulet.2020.135351
  • 11. Nguyen TP, Koyama M, Nakasaki K. Effects of oxygen supply rate on organic matter decomposition and microbial communities during composting in a controlled lab-scale composting system. Waste Manag. 2022;153:275–282. https://doi.org/10.1016/j.wasman.2022.09.004
  • 12. Lindblom RPF, Tovedal T, Norlin B, Hillered L, Englund E, Thelin S. Mechanical reperfusion following prolonged global cerebral ischemia attenuates brain injury. J Cardiovasc Transl Res. 2020. https://doi.org/10.1007/ s12265-020-10058-9
  • 13. Zeng X, Wang H, Xing X, Wang Q, Li W. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion-induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11:e0151620. https://doi.org/10.1371/journal.pone.0151620
  • 14. Zheng YF, Bae SH, Kwon MJ, Park JB, Choi HD, Shin WG, et al. Inhibitory effects of astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities. Food Chem Toxicol. 2013;59:78–85.https://doi.org/10.1016/j.fct.2013.04.053
  • 15. Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol. 2020;145. https://doi.org/10.1016/j.fct.2020.111714
  • 16. Bjerkeng B, Peisker M, von Schwartzenberg K, Ytrestyl T, Åsgård T. Digestibility and muscle retention of astaxanthin in Atlantic salmon, Salmo salar, fed diets with the red yeast Phaffia rhodozyma in comparison with synthetic formulated astaxanthin. Aquaculture. 2007;269:476–489. https://doi.org/10.1016/j.aquaculture.2007.04.070
  • 17. Akkoyun HT, Uyar A, Bengu AŞ, Bayramoglu-Akkoyun M, Arihan O, Keles OF. Protective effect of astaxanthin in the lung injury caused by ischemiareperfusion of the lower extremities. J Anim Plant Sci. 2019;29(1):82–90.
  • 18. Zuluaga M, Barzegari A, Letourneur D, Gueguen V, Pavon-Djavid G. Oxidative stress regulation on endothelial cells by hydrophilic astaxanthin complex: chemical, biological, and molecular antioxidant activity evaluation. Oxid Med Cell Longev. 2017;2017:8073798. https://doi.org/10.1155/2017/8073798
  • 19. Yamagishi R, Aihara M. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis. Mol Vis. 2014;20:1796–1805.
  • 20. Zhang XS, Zhang X, Wu Q, Li W, Wang CX, Xie GB, et al. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res. 2014;192(1):206–213. https://doi.org/10.1016/j.jss.2014.05.029
  • 21. Galasso C, Orefice I, Pellone P, Cirino P, Miele R, Ianora A, et al. On the neuroprotective role of astaxanthin: new perspectives? Mar Drugs. 2018;16:247. https://doi.org/10.3390/md16080247
  • 22. Lee DH, Lee YJ, Kwon KH, Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr. 2010;47(2):121–129. https://doi.org/10.3164/ jcbn.10-29
  • 23. Taksima T, Chonpathompikunlert P, Sroyraya M, Hutamekalin P, Limpawattana M, Klaypradit W. Effects of astaxanthin from shrimp shell on oxidative stress and behavior in animal model of Alzheimer’s disease. Mar Drugs. 2019;17:628. https://doi.org/10.3390/md17110628
  • 24. Shen DF, Qi HP, Ma C, Chang MX, Zhang WN, Song RR. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson’s disease by regulating miR-7/SNCA axis. Neurosci Res. 2021;165:51–60. https://doi.org/10.1016/j.neures.2020.04.003
  • 25. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34:497–500. https://doi.org/10.1093/ clinchem/34.3.497
  • 26. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hidroxynonenal. Methods Enzymol. 1990;186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H
  • 27. Aebi H. Catalase. In: Bergmeyer U, editor. Methods of enzymatic analysis. NY & London: Academic Press; 1974. pp. 673–680. https://doi.org/10.1016/B978- 0-12-091302-2.50032-3
  • 28. Kietzmann T, Knabe W, Schmidt-Kastner R. Hypoxia and hypoxia-inducible factor modulated gene expression in brain: involvement in neuroprotection and cell death. Eur Arch Psychiatry Clin Neurosci. 2001;251:170–178. https://doi.org/10.1007/s004060170037
  • 29. Agardh CD, Zhang H, Smith ML, Siesjö BK. Free radical production and ischemic brain damage: influence of postischemic oxygentension. Int J Dev Neurosci. 1991;9:127–138. https://doi.org/10.1016/0736-5748(91)90003-5
  • 30. Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke. 2001;32:2712–2716. https://doi.org/10.1161/hs1101.098653
  • 31. Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, orthiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37:472–479. https://doi.org/10.1097/00006123-199510000-00019
  • 32. Hillered L, Hallström A, Segersuard S, Persson L, Ungerstedt U. Dynamics of extra-cellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab.1989;9:607–616. https://doi.org/10.1038/jcbfm.1989.87
  • 33. Selakovic V, Korenic A, Radenovic L. Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. Int J Dev Neurosci. 2011;29(6):645–654. https://doi.org/10.1016/j. ijdevneu.2011.02.009
  • 34. Volpe BT, Hirst W. The characterization of an amnesic syndrome following hypoxic-ischemic injury. Arch Neurol. 1983;40:436–440. https://doi. org/10.1001/archneur.1983.04050070066017
  • 35. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33. https://doi.org/10.1016/S0022-510X(00)00386-5
  • 36. Aarts MM, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004;4:137–147. https://doi.org/10.2174/1566524043479202
  • 37. Fassett RG, Coombes JS. Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar Drugs. 2011;9:447–465. https://doi.org/10.3390/md9030447
  • 38. Shen H, Kuo CC, Chou J, Delvolve A, Jackson SN, Post J, et al. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 2009;23:1958–1968. https://doi.org/10.1096/fj.08-123281
  • 39. Cakir E, Cakir U, Tayman C, Turkmenoglu TT, Gonel A, Turan IO. Favorable effects of astaxanthin on brain damage due to ischemia-reperfusion injury. Comb Chem High Throughput Screen. 2020;23:214–224. https://doi.org/10.2174/1386207323666200219121600
  • 40. Liu Z, Cai Y, Zhang X, Zhu Z, He J. High serum levels of malondialdehyde and antioxidant enzymes are associated with post-stroke anxiety. Neurol Sci. 2018;39:999–1007. https://doi.org/10.1007/s10072-018-3287-4
  • 41. Jeeva JS, Sunitha J, Ananthalakshmi R, Rajkumari S, Ramesh M, Krishnan R. Enzymatic antioxidants and its role in oral diseases. J Pharm Bioallied Sci. 2015;7:S331–S333. https://doi.org/10.4103/0975-7406.163438
  • 42. Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 2015;5:123–127. https://doi.org/10.15171/bi.2015.20
  • 43. Tripathi DN, Jena GB. Astaxanthin intervention ameliorates cyclophosphamideinduced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38, and phase-II enzymes. Mutat Res. 2010;696:69–80. https://doi.org/10.1016/j.mrgentox.2009.12.014
  • 44. Al-Amin MM, Rahman MM, Khan FR, Zaman F, Mahmud Reza H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acidinduced mice model of autism. Behav Brain Res. 2015;286:112–121. https://doi.org/10.1016/j.bbr.2015.02.041
  • 45. Lu Y, Xie T, He XX, Mao ZF, Jia LJ, Wang, W. P., et al. Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus. Neurosci Lett. 2015;597:49–53. https://doi. org/10.1016/j.neulet.2015.04.018
  • 46. Filipsky T, Ríha M, Macakova K, Anzenbacherova E, Karlickova J, Mladenka P. Antioxidant effects of coumarins include direct radical scavenging, metal chelation, and inhibition of ROS-producing enzymes. Curr Top Med Chem. 2015;15(5):415–431. https://doi.org/10.2174/1568026615666150206152233
  • 47. Lee DH, Lee YJ, Kwon KH. Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr. 2010;47(2):121–129. https://doi.org/10.3164/ jcbn.10-29
  • 48. Yue ZY, Dong H, Wang YF, Liu Y, Song CY, Yang WC, et al. Propofol prevents neuronal mtDNA deletion and cerebral damage due to ischemia/reperfusion injury in rats. Brain Res. 2015;1594:108–114. https://doi.org/10.1016/j.brainres.2014.10.016
  • 49. Xue Y, Qu Z, Fu J, Zhen J, Wang W, Cai Y, et al. The protective effect of astaxanthin on learning and memory deficits and oxidative stress in a mouse model of repeated cerebral ischemia/reperfusion. Brain Res Bull. 2017;131:221–228. https://doi.org/10.1016/j.brainresbull.2017.04.019

Effect of Dose-Related Astaxanthin on Rats with Cerebral Ischemia-Reperfusion

Yıl 2023, Cilt: 4 Sayı: 2, 42 - 49, 13.09.2023

Öz

The prevalence of cerebral ischemia-related diseases, which mostly affect the brain, has become pervasive and is associated with significant societal and economic challenges. The deficiency of the organism's antioxidant defense system results in an elevation of free radicals, which in turn contributes to the development of a range of illnesses and aging processes, with a particular emphasis on cancer. The objective of our research was to examine the potential protective impact of astaxanthin (AST), a potent antioxidant, on the antioxidant system inside the brain.
The research was carried out in the Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University. Within the experimental framework, a total of 32 male rats were utilized, with each group consisting of 8 rats separated into 4 subgroups. The present work aimed to examine the potential protective impact of AST, delivered at varying dosages, in a rat model of carotid artery ischemia-reperfusion. DMSO and AST were delivered intraperitoneally to the rats 30 minutes before to the surgery. A 15-minute period of ischemia was conducted. After a period of 24 hours of reperfusion, the rats underwent decapitation. The researchers obtained intracardiac blood samples and subsequently analyzed the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT).
According to the biochemical results, a significant decrease in the levels of SOD and CAT in the sham group indicates that the antioxidant defense system was inadequate in the face of increased free radicals after ischemia. A significant increase in the AST-treated group indicates that AST has a significant protective effect on the antioxidant system. A significant increase in MDA levels in the Sham group indicates that oxidative damage occurred in the cerebrum after ischemia. A significant decrease in the AST 25 group indicates that AST has a significant protective effect on the brain. When the levels of AST 75 group fall below the levels of the control group, this dose indicates that AST has a complete protective effect on the brain.
The Sham group had significant damage and a high number of necrotic neurons in the cerebral cortex in comparison to the control group. The groups who received AST exhibited the presence of neurons with a rather intact appearance and reduced levels of damage. This finding suggests that AST may confer a limited degree of neuroprotection.
The histological data indicate that AST exhibits a degree of preventive efficacy against cerebral injury. Astaxanthin (AST) exhibits a notable protective impact on the antioxidant defense system, particularly at a dosage of 75mg/kg, in mitigating oxidative damage. To enhance the objectivity and clarity of histological evaluations, it is beneficial to conduct quantitative analyses and assessments, as well as categorize the detected alterations.

Kaynakça

  • 1. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66. https://doi. org/10.1016/j.brainresrev.2006.11.003
  • 2. Majino G, Jorris I. Apopitosis, oncosis, and necrosis –an overview of the cell death. Am J Pathol. 1995;146:3–15. Available at: https://pubmed.ncbi.nlm.nih.gov/7856735/
  • 3. Zimmerman BJ, Granger DN. Reperfusion injury. Surg Clin North Am. 1992;72:65–83. https://doi.org/10.1016/S0039-6109(16)45628-8
  • 4. Collard CD, Gelman S, Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133– 1138. https://doi.org/10.1097/00000542-200106000-00030
  • 5. Vardanian AJ, Busuttil RW, Kepiec-Weglinski J. Molecular mediators of liver ischemia and reperfusion injury: a brief review. Mol Med. 2008;14(5-6):337– 345. https://doi.org/10.2119/2007-00134.Vardanian
  • 6. Wahul AB, Joshi PC, Kumar A, Chakravarty S. Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in bilateral common carotid arterial occlusion (BCCAo) mouse model. J Chem Neuroanat. 2018;92:1–15. https://doi.org/10.1016/j.jchemneu.2018.04.006
  • 7. Ma M, Uekawa K, Hasegawa Y, Nakagawa T, Katayama T, Sueta D, et al. Pretreatment with rosuvastatin protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress and inflammation. Brain Res. 2013;1519:87–94. https://doi.org/10.1016/j.brainres.2013.04.040
  • 8. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011;14:1505–1517. https://doi.org/10.1089/ars.2010.3576
  • 9. Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17:1391–1401. https://doi.org/10.1038/nm.2507
  • 10. Daverey A, Agrawal SK. Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia. Neurosci Lett. 2020;738:135351. https://doi.org/10.1016/j.neulet.2020.135351
  • 11. Nguyen TP, Koyama M, Nakasaki K. Effects of oxygen supply rate on organic matter decomposition and microbial communities during composting in a controlled lab-scale composting system. Waste Manag. 2022;153:275–282. https://doi.org/10.1016/j.wasman.2022.09.004
  • 12. Lindblom RPF, Tovedal T, Norlin B, Hillered L, Englund E, Thelin S. Mechanical reperfusion following prolonged global cerebral ischemia attenuates brain injury. J Cardiovasc Transl Res. 2020. https://doi.org/10.1007/ s12265-020-10058-9
  • 13. Zeng X, Wang H, Xing X, Wang Q, Li W. Dexmedetomidine protects against transient global cerebral ischemia/reperfusion-induced oxidative stress and inflammation in diabetic rats. PLoS One. 2016;11:e0151620. https://doi.org/10.1371/journal.pone.0151620
  • 14. Zheng YF, Bae SH, Kwon MJ, Park JB, Choi HD, Shin WG, et al. Inhibitory effects of astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities. Food Chem Toxicol. 2013;59:78–85.https://doi.org/10.1016/j.fct.2013.04.053
  • 15. Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol. 2020;145. https://doi.org/10.1016/j.fct.2020.111714
  • 16. Bjerkeng B, Peisker M, von Schwartzenberg K, Ytrestyl T, Åsgård T. Digestibility and muscle retention of astaxanthin in Atlantic salmon, Salmo salar, fed diets with the red yeast Phaffia rhodozyma in comparison with synthetic formulated astaxanthin. Aquaculture. 2007;269:476–489. https://doi.org/10.1016/j.aquaculture.2007.04.070
  • 17. Akkoyun HT, Uyar A, Bengu AŞ, Bayramoglu-Akkoyun M, Arihan O, Keles OF. Protective effect of astaxanthin in the lung injury caused by ischemiareperfusion of the lower extremities. J Anim Plant Sci. 2019;29(1):82–90.
  • 18. Zuluaga M, Barzegari A, Letourneur D, Gueguen V, Pavon-Djavid G. Oxidative stress regulation on endothelial cells by hydrophilic astaxanthin complex: chemical, biological, and molecular antioxidant activity evaluation. Oxid Med Cell Longev. 2017;2017:8073798. https://doi.org/10.1155/2017/8073798
  • 19. Yamagishi R, Aihara M. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis. Mol Vis. 2014;20:1796–1805.
  • 20. Zhang XS, Zhang X, Wu Q, Li W, Wang CX, Xie GB, et al. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res. 2014;192(1):206–213. https://doi.org/10.1016/j.jss.2014.05.029
  • 21. Galasso C, Orefice I, Pellone P, Cirino P, Miele R, Ianora A, et al. On the neuroprotective role of astaxanthin: new perspectives? Mar Drugs. 2018;16:247. https://doi.org/10.3390/md16080247
  • 22. Lee DH, Lee YJ, Kwon KH, Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr. 2010;47(2):121–129. https://doi.org/10.3164/ jcbn.10-29
  • 23. Taksima T, Chonpathompikunlert P, Sroyraya M, Hutamekalin P, Limpawattana M, Klaypradit W. Effects of astaxanthin from shrimp shell on oxidative stress and behavior in animal model of Alzheimer’s disease. Mar Drugs. 2019;17:628. https://doi.org/10.3390/md17110628
  • 24. Shen DF, Qi HP, Ma C, Chang MX, Zhang WN, Song RR. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson’s disease by regulating miR-7/SNCA axis. Neurosci Res. 2021;165:51–60. https://doi.org/10.1016/j.neures.2020.04.003
  • 25. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34:497–500. https://doi.org/10.1093/ clinchem/34.3.497
  • 26. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hidroxynonenal. Methods Enzymol. 1990;186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H
  • 27. Aebi H. Catalase. In: Bergmeyer U, editor. Methods of enzymatic analysis. NY & London: Academic Press; 1974. pp. 673–680. https://doi.org/10.1016/B978- 0-12-091302-2.50032-3
  • 28. Kietzmann T, Knabe W, Schmidt-Kastner R. Hypoxia and hypoxia-inducible factor modulated gene expression in brain: involvement in neuroprotection and cell death. Eur Arch Psychiatry Clin Neurosci. 2001;251:170–178. https://doi.org/10.1007/s004060170037
  • 29. Agardh CD, Zhang H, Smith ML, Siesjö BK. Free radical production and ischemic brain damage: influence of postischemic oxygentension. Int J Dev Neurosci. 1991;9:127–138. https://doi.org/10.1016/0736-5748(91)90003-5
  • 30. Kontos HA. Oxygen radicals in cerebral ischemia: the 2001 Willis lecture. Stroke. 2001;32:2712–2716. https://doi.org/10.1161/hs1101.098653
  • 31. Drummond JC, Cole DJ, Patel PM, Reynolds LW. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, orthiopental: a comparison of the extent of cerebral injury. Neurosurgery. 1995;37:472–479. https://doi.org/10.1097/00006123-199510000-00019
  • 32. Hillered L, Hallström A, Segersuard S, Persson L, Ungerstedt U. Dynamics of extra-cellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab.1989;9:607–616. https://doi.org/10.1038/jcbfm.1989.87
  • 33. Selakovic V, Korenic A, Radenovic L. Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. Int J Dev Neurosci. 2011;29(6):645–654. https://doi.org/10.1016/j. ijdevneu.2011.02.009
  • 34. Volpe BT, Hirst W. The characterization of an amnesic syndrome following hypoxic-ischemic injury. Arch Neurol. 1983;40:436–440. https://doi. org/10.1001/archneur.1983.04050070066017
  • 35. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33. https://doi.org/10.1016/S0022-510X(00)00386-5
  • 36. Aarts MM, Tymianski M. Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med. 2004;4:137–147. https://doi.org/10.2174/1566524043479202
  • 37. Fassett RG, Coombes JS. Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar Drugs. 2011;9:447–465. https://doi.org/10.3390/md9030447
  • 38. Shen H, Kuo CC, Chou J, Delvolve A, Jackson SN, Post J, et al. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 2009;23:1958–1968. https://doi.org/10.1096/fj.08-123281
  • 39. Cakir E, Cakir U, Tayman C, Turkmenoglu TT, Gonel A, Turan IO. Favorable effects of astaxanthin on brain damage due to ischemia-reperfusion injury. Comb Chem High Throughput Screen. 2020;23:214–224. https://doi.org/10.2174/1386207323666200219121600
  • 40. Liu Z, Cai Y, Zhang X, Zhu Z, He J. High serum levels of malondialdehyde and antioxidant enzymes are associated with post-stroke anxiety. Neurol Sci. 2018;39:999–1007. https://doi.org/10.1007/s10072-018-3287-4
  • 41. Jeeva JS, Sunitha J, Ananthalakshmi R, Rajkumari S, Ramesh M, Krishnan R. Enzymatic antioxidants and its role in oral diseases. J Pharm Bioallied Sci. 2015;7:S331–S333. https://doi.org/10.4103/0975-7406.163438
  • 42. Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 2015;5:123–127. https://doi.org/10.15171/bi.2015.20
  • 43. Tripathi DN, Jena GB. Astaxanthin intervention ameliorates cyclophosphamideinduced oxidative stress, DNA damage and early hepatocarcinogenesis in rat: role of Nrf2, p53, p38, and phase-II enzymes. Mutat Res. 2010;696:69–80. https://doi.org/10.1016/j.mrgentox.2009.12.014
  • 44. Al-Amin MM, Rahman MM, Khan FR, Zaman F, Mahmud Reza H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acidinduced mice model of autism. Behav Brain Res. 2015;286:112–121. https://doi.org/10.1016/j.bbr.2015.02.041
  • 45. Lu Y, Xie T, He XX, Mao ZF, Jia LJ, Wang, W. P., et al. Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus. Neurosci Lett. 2015;597:49–53. https://doi. org/10.1016/j.neulet.2015.04.018
  • 46. Filipsky T, Ríha M, Macakova K, Anzenbacherova E, Karlickova J, Mladenka P. Antioxidant effects of coumarins include direct radical scavenging, metal chelation, and inhibition of ROS-producing enzymes. Curr Top Med Chem. 2015;15(5):415–431. https://doi.org/10.2174/1568026615666150206152233
  • 47. Lee DH, Lee YJ, Kwon KH. Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr. 2010;47(2):121–129. https://doi.org/10.3164/ jcbn.10-29
  • 48. Yue ZY, Dong H, Wang YF, Liu Y, Song CY, Yang WC, et al. Propofol prevents neuronal mtDNA deletion and cerebral damage due to ischemia/reperfusion injury in rats. Brain Res. 2015;1594:108–114. https://doi.org/10.1016/j.brainres.2014.10.016
  • 49. Xue Y, Qu Z, Fu J, Zhen J, Wang W, Cai Y, et al. The protective effect of astaxanthin on learning and memory deficits and oxidative stress in a mouse model of repeated cerebral ischemia/reperfusion. Brain Res Bull. 2017;131:221–228. https://doi.org/10.1016/j.brainresbull.2017.04.019
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Araştırma makalesi
Yazarlar

Bengi Yeğin 0000-0003-0730-5627

Semih Öz 0000-0002-1543-2223

Dilek Burukoğlu Dönmez 0000-0002-6454-4424

Hilmi Özden 0000-0003-2466-2757

Mehmet Cengiz Üstüner 0000-0001-9802-3988

Sibel Canbaz Kabay 0000-0003-4808-2191

Ferruh Yücel 0000-0002-1238-1483

Yayımlanma Tarihi 13 Eylül 2023
Gönderilme Tarihi 28 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 2

Kaynak Göster

AMA Yeğin B, Öz S, Burukoğlu Dönmez D, Özden H, Üstüner MC, Canbaz Kabay S, Yücel F. Effect of Dose-Related Astaxanthin on Rats with Cerebral Ischemia-Reperfusion. YIU Saglik Bil Derg. Eylül 2023;4(2):42-49.