Research Article
BibTex RIS Cite
Year 2022, , 300 - 309, 30.06.2022
https://doi.org/10.29133/yyutbd.1039398

Abstract

Bu çalışmada, domateste bazı hastalık ve zararlılar için geliştirilen SCAR ve CAPS markörlerinin moleküler markör destekli seleksiyon çalışmalarında geçerliliğini kontrol etmek amaçlanmıştır. Bu amaçla Domates lekeli solgunluk virüsü (TSWV), Fusarium solgunluğu (FOL), Domates yaprak kıvırcıklığı virüsü (TYLCV), kök-ur nematodu (RKN), gibi hastalık ve zararlılara dayanıklılık için geliştirilmiş olan moleküler markörler test edilmiştir. Bu markörlerden, TSWV için SCAR Scr-001 markörü, FOL için CAPS TAO1 markörü ve P743DF3-P743DR3, P743DF1-P743DR1, At2F- At2R SCAR markörleri; TYLCV için SCAR P6-25 markörü, RKN için SCAR Mi-23 ve PMİ markörleri kullanılmıştır. Bu markörlerin kontrolü, 9’u ticari 12’si yerli çeşit ve kontrol grubu olarak da Mountain Merit, NCICELBR ve NCI123S genotipleri olmak üzere 24 domates genotipinde PCR yöntemiyle yapılmıştır. TSWV için SCAR Scr-001 markörü; FOL için TAO1 CAPS markörü ve P743DF3-P743DR3, P743DF1-P743DR1, At2-F- At2-R SCAR markörleri; TYLCV için P6-25 SCAR markörü ve RKN için SCAR Mi-23 ve PMİ markörlerinden sonuç alınabilmiştir. Bu bağlamda sonuç alınan SCAR ve CAPS markörlerinin domateste moleküler yardımlı seleksiyon çalışmalarında etkin bir şekilde kullanılabileceği sonucuna varılmıştır.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi, bilimsel araştırma projeleri başkanlığı (BAP)

Project Number

2015-FBE-YL277

Thanks

Bu makalenin oluşturulmasında kullanılan veriler, Van Yüzüncü Yıl Üniversitesi, bilimsel araştırma projeleri başkanlığı tarafından 2015-FBE-YL277 projeyle desteklenen yüksek lisans tezinden alınmıştır. Ayrıca çalışmamızda kullandığımız tohumlar için tohum kaynağı sağlayan North Carolina Üniversitesin’den Dr. Majid FOOLAD Dr. Dilip R. PANTHEE'ye ve Eskişehir Osmangazi Üniversitesi'nden Dr. Kenan SÖNMEZ'e ve tohum firmalarına teşekkür ederiz.

References

  • Agrios, G. N. (1997). Genetics of plant disease. Plant Pathology, 115-142.
  • Aydınlı, G. (2015). Domateste kök-ur nematodları (Meloidogyne spp.)’na dayanıklılık: Mi geni ve virülent popülasyon oluşumu. Derim, 32(2), 211-224.
  • Anfoka, G. H., Abhary, M., & Stevens, M. R. (2006). Occurrence of Tomato spotted wilt virus (TSWV) in Jordan. EPPO Bulletin, 36(3), 517-522.
  • Arens, P., Mansilla, C., Deinum, D., Cavellini, L., Moretti, A., Rolland, S., & Mathis, R. (2010). Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and Applied Genetics, 120(3), 655-664.
  • Azeri, T. (1981). Preliminary report of tomato spotted wilt virus (TSWV) and its epidemy on tobacco in the Canakkale region of Turkey. Journal of Turkish phytopathology. 10(2/3), 79-87.
  • Barillas, A. C., Mejia, L., Sanchez-Perez, A., & Maxwell, D. P. (2008). CAPS and SCAR markers for detection of I-3 gene introgression for resistance to Fusarium oxysporium f. sp. lycopersici race 3. Rep Tomato Genetic. Coop, 58, 11-17.
  • Barone, A., & Frusciante, L. (2007). Molecular marker-assisted selection for resistance to pathogens in tomato. Marker-Assisted Selection, Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish, 153-164.
  • Bayram, M., Sensoy, S., & Dasgan, H. Y. (2010). August. Iron (Fe) deficiency tolerance in tomato recombinant inbred lines obtained from tolerant and sensitive genotypes. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): III International Symposium 918, 575-582.
  • Chen, H. M., Lin, C. Y., Yoshida, M., Hanson, P., & Schafleitner, R. (2015). Multiplex PCR for detection of tomato yellow leaf curl disease and root-knot nematode resistance genes in tomato (Solanum lycopersicum L.). International Journal of Plant Breeding and Genetics, 9(2), 44-56.
  • Cho, JJ., Mau, RFL., German, TL., Hartmann, RW., Yudin, LS., Gonsalves, D., & Provvidenti, R. (1989). A multidisciplinary approach to management of Tomato spotted wilt virus in Hawaii. Plant Disease, 73, 375-383.
  • Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1491), 557-572.
  • Danso, Y., Akromah, R., & Osei, K. (2011). Molecular marker screening of tomato, (Solanum lycopersicum L.) Germplasm for root-knot nematodes (Meloidogyne species) resistance. African Journal of Biotechnology, 10(9), 1511-1515.
  • Dax, E., Livneh, O., Aliskevicius, E., Edelbaum, O., Kedar, N., Gavish, N., & Sela, I. (1998). A SCAR marker linked to the ToMV resistance gene, Tm2 2, in tomato. Euphytica, 101(1), 73-77.
  • Devran, Z., & Elekçioğlu, İ. H. (2004). The Screening of F2 Plants for the root-knot nematode resistance gene, Mi by PCR in tomato. Turkish Journal of Agriculture and Forestry, 28(4), 253-257.
  • De Castro, A. P., Blanca, J. M., Díez, M. J., & Vinals, F. N. (2007). Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. European Journal of Plant Pathology, 117(4), 347-356.
  • Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
  • El Mehrach, K., Hatimi, A., Gharsallah Chouchane, S., Salus, M. S., Martin, C. T., Maxwell, D. P., & Vidavski, F. (2005). PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Horticulture. 695, 263-270.
  • FAO. (2016). Statistic database. http://faostat.fao.org/. Erişim tarihi: 10.07.2017.
  • Foolad, M., Zhang, L., Khan, A. A., Nino-Liu, D., & Lin, G. (2002). Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum× L. hirsutum cross. Theoretical and Applied Genetics, 104(6-7), 945-958.
  • Garcia, B. E., Mejia, L., Salus, M. S., Martin, C. T., Seah, S., Williamson, V. M., & Maxwell, D. P. (2007). A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm. PCR-Based Markers Protocols. Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 pp:1-13.
  • Garland, S., Sharman, M., Persley, D., & McGrath, D. (2005). The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Australian Journal of Agricultural Research, 56(3), 285-289.
  • Gözel, U., Çiğdem, Y. U. R. T., & Özel Ç. (2016). Molecular markers used in nematode taxonomy. Turkish Bulletin of Entomology, 6(2), 179-189.
  • Grube, R. C., Radwanski, E. R., & Jahn, M. (2000). Comparative genetics of disease resistance within the Solanaceae. Genetics, 155(2), 873-887.
  • Güldür, M. E. (1997). Şanlıurfa ili için yeni bir virüs: Domates lekeli solgunluk virüsü (TSWV). Harran Üniv. Ziraat Fak. Dergisi, 1(3), 71-76.
  • Güllü, M., & Çalı, S. (1994). Doğu Akdeniz Bölgesi örtüaltı sebze alanlarında görülen virüs hastalıklarının belirlenmesi üzerinde araştırmalar. Bitki Koruma Bülteni. 34 (3-4), 79-93.
  • Iberkleid, I., Ozalvo, R., Feldman, L., Elbaz, M., Patricia, B., & Horowitz, S. B. (20149. Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. Phytopathology, 104(5), 484-496.
  • Jiang, G., Qu, W., Cruz, Y., Chang, C. J., Ho, G. Y., Klein, R. S., & Burk, R. D. (1997). PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. Journal of clinical microbiology, 35(6), 1304-1310.
  • Kaur, S., Dhaliwal, M. S., Cheema, D. S., Jindal, S. K., & Gaikwad, A. K. (2014). Screening of Tomato (Solanum lycopersicum L.) Germplasm for Root-Knot Nematode Resistance using Conventional and Molecular Marker Technicus. Indian Journal of Nematology, 44(1), 56-61.
  • Kuklev, M. Y., Fesenko, I. A., & Karlov, G. I. (2009). Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Russian Journal of Genetics, 45(5), 575-579.
  • Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R., & Pandey, B. K. (2009). Potential of molecular markers in plant biotechnology. Plant Omics, 2(4), 141.
  • Luna, A. P., Morilla, G., Voinnet, O., & Bejarano, E. R. (2012). Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. Molecular Plant-Microbe İnteractions, 25(10), 1294-1306.
  • Özbek, A. G. (2016). Development of High-yielding and Disease Resistant Processing Tomato Lines Using Molecular Marker Technology Master's thesis, İzmir Institute of Technology
  • Özarslandan, A., Ekbiç, E., & Elekçioğlu, İ.H. (2010). Domateste kök-ur nematodu ( Meloidogyne javanic a (Treub, 1885) Chitwood)’na dayanıklılık sağlayan Mi 1.2 geninin Mi23 SCAR markırı ile belirlenmesi. Türkiye Entomoloji Dergisi, 35(4), 677-686.
  • Park, Y.H., Lee, Y.J., Kang, J.,Choi, Y.W., & Son, B. (2008). Development of gene-based DNA marker for verticillium wilt resistance in tomato. Korean Journal of Horticultural Science & Technology 26(3), 313-319.
  • Pandey, K. K., Pandey, P. K., Kalloo, G., & Banerjee, M. K. (2003). Resistance to early blight of tomato with respect to various parameters of disease epidemics. Journal of General Plant Pathology, 69(6), 364-371.
  • Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. CABI Publishing, New York, ISBN 085199 529 2, USA. 541.
  • Pınar, H., Atilla, A., Keleş, D., Mutlu, N., Denli, N., & Mustafa, Ü. (2013a). Domates hatlarında Fusarium oxysporum f. sp. lycopersici’ye dayanıklılığın moleküler markörler yardımıyla belirlenmesi. Derim, 30(1), 15-23.
  • Pınar, H., Atilla, A., Keleş, D., Mutlu, N., Denli, N., & Mustafa, Ü. (2013b). Domateste bazı hastalık ve zararlılara dayanıklı hat ve çeşit geliştirmede moleküler markörlerin kullanımı. Alatarım, 12(1), 10-18.
  • Prasanna, H. C., D. P., Rai, G.K, Krishna, R., Kashyap, S.P., Singh, N. K., & Malathi, V.G. (2015). Pyramiding Ty-2 ve Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathology, 64(2), 256-264.
  • Roselló, S., Ricarte, B., José Díez, M., & Nuez, F. (2001). Resistance to tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars. Euphytica, 119(3), 357-367.
  • Staniaszek, M., Kozik, E. U., & Marczewski, W. (2007). A. CAPS marker TAO1902 diagnostic for the I-2 gene conferring resistance to Fusarium oxyporum f.sp. lycopersici race 2 in tomato. Plant Breeding, 126(3), 331-333.
  • Scott, J. W., Agrama, H. A., & Jones, J. P. (2004). RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. Journal of the American Society for Horticultural Science, 129(3), 394-400.
  • Sönmezoğlu, Ö. A., Yıldırım, A., Güleç, T. E., & Kandemir, N. (2010). Markör Destekli Seleksiyonun Bugday Islahında Kullanımı. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 105-112.
  • Şevik, M. A. (2015). Sebze Üretimini Tehdit Eden Viral Hastalık Etmeni: Domates lekeli solgunluk virüsü (Tomato spotted wilt virus–TSWV). Iğdır Üniversitesi Fen Bilimleri Enst. Dergisi 5(2), 17-23.
  • Vardar-Kanlıtepe, Ç., Aras, S., & Cansaran-Duman, D. (2010). Bitki ıslahında moleküler belirteçlerin kullanımı ve gen aktarimi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 67(1), 33-34.
  • Şalk, A., Arın, A., Deveci, M., & Polat, S. (2008). Özel Sebzecilik. NKÜ, Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Tekirdağ, 488.
  • Tanksley, S. D., Young, N. D., Paterson, A. H., & Bonierbale, M. W. (1989). RFLP mapping in plant breeding: new tools for an old science. Nature Biotechnology, 7(3), 257-264.
  • Tekinel, N., Dolar, MS., Sağsöz, S., & Salcan, Y. (1969). Mersin Bölgesinde ekonomik bakımdan önemli bazı sebzelerin virüsleri üzerinde araştırmalar. Bitki Koruma Bülteni, 9, 37-49.
  • TÜİK. (2016). Türkiye istatistik kurumu. Bitkisel üretim istatistikleri. http://www.tuik.gov.tr/. Erişim tarihi: 10.07.2017.
  • Uzun, A. (2010). Gen teknolojisi ve Biyogüvenlik Türk Bilimsel Derlemeler Dergisi 3(2), 67-79.
  • Yıldırım, A., & Kandemir, N. (2001). Genetik markörler ve analiz metodları. Özcan, S. Gürel, E., Babaoğlu, M. Bitki Biyoteknolojisi II. Genetik Mühendisliği ve Uygulamaları. Selçuk Üniv. Vakıf Yayınları, 112-159.
  • Yudin, L. S., Cho, J. J., & Mitchell, W. C. (1986). Host range of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), with special reference to Leucaena glauca Environmental Entomology,15(6), 1292-1.

Validity Control of Markers Used in Molecular Marker Assisted Selection in Tomato

Year 2022, , 300 - 309, 30.06.2022
https://doi.org/10.29133/yyutbd.1039398

Abstract

This study aimed to check the validity of the SCAR and CAPS markers developed for certain diseases and pests on some tomato cultivars and genotypes in molecular marker-assisted selection. For this purpose, developed molecular markers for resistance were tested for tomato wilt virus (TSWV), Fusarium wilt (FOL), Tomato leaf curl virus (TYLCV), and root-knot nematode (RKN). SCAR Scr-001 markers for TSWV, TAO1 CAPS marker, and P743DF1-P743DR1, P743DF3- SCAR P6-25 markers for FOL; Scar P6-25 marker which TYLCV; SCAR Mi-23 and PMI, of RKN, CAPS APS and C8B markers for P743DR3, P743DF1-P743DR1, At2F- ToMV were selected. These selected markers were screened in 24 tomato genotypes, 9 of which were commercial and 12 local genotypes as well as the control group, Mountain Merit, NCICELBR, and NCI123S. SCAR Scr-001 marker for TSWV; TAO1 CAPS marker and P743DF3-P743DR3, P743DF1-P743DR1, At2-F-At2-R SCAR markers for FOL; P6-25 SCAR marker for TYLCV; and SCAR Mi-23 and PMI markers for RKN gave results. In this context, it was concluded that the mentioned markers could be efficiently used in marker-assisted selection studies in tomatoes.

Project Number

2015-FBE-YL277

References

  • Agrios, G. N. (1997). Genetics of plant disease. Plant Pathology, 115-142.
  • Aydınlı, G. (2015). Domateste kök-ur nematodları (Meloidogyne spp.)’na dayanıklılık: Mi geni ve virülent popülasyon oluşumu. Derim, 32(2), 211-224.
  • Anfoka, G. H., Abhary, M., & Stevens, M. R. (2006). Occurrence of Tomato spotted wilt virus (TSWV) in Jordan. EPPO Bulletin, 36(3), 517-522.
  • Arens, P., Mansilla, C., Deinum, D., Cavellini, L., Moretti, A., Rolland, S., & Mathis, R. (2010). Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical and Applied Genetics, 120(3), 655-664.
  • Azeri, T. (1981). Preliminary report of tomato spotted wilt virus (TSWV) and its epidemy on tobacco in the Canakkale region of Turkey. Journal of Turkish phytopathology. 10(2/3), 79-87.
  • Barillas, A. C., Mejia, L., Sanchez-Perez, A., & Maxwell, D. P. (2008). CAPS and SCAR markers for detection of I-3 gene introgression for resistance to Fusarium oxysporium f. sp. lycopersici race 3. Rep Tomato Genetic. Coop, 58, 11-17.
  • Barone, A., & Frusciante, L. (2007). Molecular marker-assisted selection for resistance to pathogens in tomato. Marker-Assisted Selection, Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish, 153-164.
  • Bayram, M., Sensoy, S., & Dasgan, H. Y. (2010). August. Iron (Fe) deficiency tolerance in tomato recombinant inbred lines obtained from tolerant and sensitive genotypes. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): III International Symposium 918, 575-582.
  • Chen, H. M., Lin, C. Y., Yoshida, M., Hanson, P., & Schafleitner, R. (2015). Multiplex PCR for detection of tomato yellow leaf curl disease and root-knot nematode resistance genes in tomato (Solanum lycopersicum L.). International Journal of Plant Breeding and Genetics, 9(2), 44-56.
  • Cho, JJ., Mau, RFL., German, TL., Hartmann, RW., Yudin, LS., Gonsalves, D., & Provvidenti, R. (1989). A multidisciplinary approach to management of Tomato spotted wilt virus in Hawaii. Plant Disease, 73, 375-383.
  • Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1491), 557-572.
  • Danso, Y., Akromah, R., & Osei, K. (2011). Molecular marker screening of tomato, (Solanum lycopersicum L.) Germplasm for root-knot nematodes (Meloidogyne species) resistance. African Journal of Biotechnology, 10(9), 1511-1515.
  • Dax, E., Livneh, O., Aliskevicius, E., Edelbaum, O., Kedar, N., Gavish, N., & Sela, I. (1998). A SCAR marker linked to the ToMV resistance gene, Tm2 2, in tomato. Euphytica, 101(1), 73-77.
  • Devran, Z., & Elekçioğlu, İ. H. (2004). The Screening of F2 Plants for the root-knot nematode resistance gene, Mi by PCR in tomato. Turkish Journal of Agriculture and Forestry, 28(4), 253-257.
  • De Castro, A. P., Blanca, J. M., Díez, M. J., & Vinals, F. N. (2007). Identification of a CAPS marker tightly linked to the Tomato yellow leaf curl disease resistance gene Ty-1 in tomato. European Journal of Plant Pathology, 117(4), 347-356.
  • Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.
  • El Mehrach, K., Hatimi, A., Gharsallah Chouchane, S., Salus, M. S., Martin, C. T., Maxwell, D. P., & Vidavski, F. (2005). PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Horticulture. 695, 263-270.
  • FAO. (2016). Statistic database. http://faostat.fao.org/. Erişim tarihi: 10.07.2017.
  • Foolad, M., Zhang, L., Khan, A. A., Nino-Liu, D., & Lin, G. (2002). Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum× L. hirsutum cross. Theoretical and Applied Genetics, 104(6-7), 945-958.
  • Garcia, B. E., Mejia, L., Salus, M. S., Martin, C. T., Seah, S., Williamson, V. M., & Maxwell, D. P. (2007). A co-dominant SCAR marker, Mi23, for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm. PCR-Based Markers Protocols. Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 pp:1-13.
  • Garland, S., Sharman, M., Persley, D., & McGrath, D. (2005). The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Australian Journal of Agricultural Research, 56(3), 285-289.
  • Gözel, U., Çiğdem, Y. U. R. T., & Özel Ç. (2016). Molecular markers used in nematode taxonomy. Turkish Bulletin of Entomology, 6(2), 179-189.
  • Grube, R. C., Radwanski, E. R., & Jahn, M. (2000). Comparative genetics of disease resistance within the Solanaceae. Genetics, 155(2), 873-887.
  • Güldür, M. E. (1997). Şanlıurfa ili için yeni bir virüs: Domates lekeli solgunluk virüsü (TSWV). Harran Üniv. Ziraat Fak. Dergisi, 1(3), 71-76.
  • Güllü, M., & Çalı, S. (1994). Doğu Akdeniz Bölgesi örtüaltı sebze alanlarında görülen virüs hastalıklarının belirlenmesi üzerinde araştırmalar. Bitki Koruma Bülteni. 34 (3-4), 79-93.
  • Iberkleid, I., Ozalvo, R., Feldman, L., Elbaz, M., Patricia, B., & Horowitz, S. B. (20149. Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. Phytopathology, 104(5), 484-496.
  • Jiang, G., Qu, W., Cruz, Y., Chang, C. J., Ho, G. Y., Klein, R. S., & Burk, R. D. (1997). PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. Journal of clinical microbiology, 35(6), 1304-1310.
  • Kaur, S., Dhaliwal, M. S., Cheema, D. S., Jindal, S. K., & Gaikwad, A. K. (2014). Screening of Tomato (Solanum lycopersicum L.) Germplasm for Root-Knot Nematode Resistance using Conventional and Molecular Marker Technicus. Indian Journal of Nematology, 44(1), 56-61.
  • Kuklev, M. Y., Fesenko, I. A., & Karlov, G. I. (2009). Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Russian Journal of Genetics, 45(5), 575-579.
  • Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R., & Pandey, B. K. (2009). Potential of molecular markers in plant biotechnology. Plant Omics, 2(4), 141.
  • Luna, A. P., Morilla, G., Voinnet, O., & Bejarano, E. R. (2012). Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. Molecular Plant-Microbe İnteractions, 25(10), 1294-1306.
  • Özbek, A. G. (2016). Development of High-yielding and Disease Resistant Processing Tomato Lines Using Molecular Marker Technology Master's thesis, İzmir Institute of Technology
  • Özarslandan, A., Ekbiç, E., & Elekçioğlu, İ.H. (2010). Domateste kök-ur nematodu ( Meloidogyne javanic a (Treub, 1885) Chitwood)’na dayanıklılık sağlayan Mi 1.2 geninin Mi23 SCAR markırı ile belirlenmesi. Türkiye Entomoloji Dergisi, 35(4), 677-686.
  • Park, Y.H., Lee, Y.J., Kang, J.,Choi, Y.W., & Son, B. (2008). Development of gene-based DNA marker for verticillium wilt resistance in tomato. Korean Journal of Horticultural Science & Technology 26(3), 313-319.
  • Pandey, K. K., Pandey, P. K., Kalloo, G., & Banerjee, M. K. (2003). Resistance to early blight of tomato with respect to various parameters of disease epidemics. Journal of General Plant Pathology, 69(6), 364-371.
  • Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. CABI Publishing, New York, ISBN 085199 529 2, USA. 541.
  • Pınar, H., Atilla, A., Keleş, D., Mutlu, N., Denli, N., & Mustafa, Ü. (2013a). Domates hatlarında Fusarium oxysporum f. sp. lycopersici’ye dayanıklılığın moleküler markörler yardımıyla belirlenmesi. Derim, 30(1), 15-23.
  • Pınar, H., Atilla, A., Keleş, D., Mutlu, N., Denli, N., & Mustafa, Ü. (2013b). Domateste bazı hastalık ve zararlılara dayanıklı hat ve çeşit geliştirmede moleküler markörlerin kullanımı. Alatarım, 12(1), 10-18.
  • Prasanna, H. C., D. P., Rai, G.K, Krishna, R., Kashyap, S.P., Singh, N. K., & Malathi, V.G. (2015). Pyramiding Ty-2 ve Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathology, 64(2), 256-264.
  • Roselló, S., Ricarte, B., José Díez, M., & Nuez, F. (2001). Resistance to tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars. Euphytica, 119(3), 357-367.
  • Staniaszek, M., Kozik, E. U., & Marczewski, W. (2007). A. CAPS marker TAO1902 diagnostic for the I-2 gene conferring resistance to Fusarium oxyporum f.sp. lycopersici race 2 in tomato. Plant Breeding, 126(3), 331-333.
  • Scott, J. W., Agrama, H. A., & Jones, J. P. (2004). RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. Journal of the American Society for Horticultural Science, 129(3), 394-400.
  • Sönmezoğlu, Ö. A., Yıldırım, A., Güleç, T. E., & Kandemir, N. (2010). Markör Destekli Seleksiyonun Bugday Islahında Kullanımı. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 105-112.
  • Şevik, M. A. (2015). Sebze Üretimini Tehdit Eden Viral Hastalık Etmeni: Domates lekeli solgunluk virüsü (Tomato spotted wilt virus–TSWV). Iğdır Üniversitesi Fen Bilimleri Enst. Dergisi 5(2), 17-23.
  • Vardar-Kanlıtepe, Ç., Aras, S., & Cansaran-Duman, D. (2010). Bitki ıslahında moleküler belirteçlerin kullanımı ve gen aktarimi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 67(1), 33-34.
  • Şalk, A., Arın, A., Deveci, M., & Polat, S. (2008). Özel Sebzecilik. NKÜ, Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Tekirdağ, 488.
  • Tanksley, S. D., Young, N. D., Paterson, A. H., & Bonierbale, M. W. (1989). RFLP mapping in plant breeding: new tools for an old science. Nature Biotechnology, 7(3), 257-264.
  • Tekinel, N., Dolar, MS., Sağsöz, S., & Salcan, Y. (1969). Mersin Bölgesinde ekonomik bakımdan önemli bazı sebzelerin virüsleri üzerinde araştırmalar. Bitki Koruma Bülteni, 9, 37-49.
  • TÜİK. (2016). Türkiye istatistik kurumu. Bitkisel üretim istatistikleri. http://www.tuik.gov.tr/. Erişim tarihi: 10.07.2017.
  • Uzun, A. (2010). Gen teknolojisi ve Biyogüvenlik Türk Bilimsel Derlemeler Dergisi 3(2), 67-79.
  • Yıldırım, A., & Kandemir, N. (2001). Genetik markörler ve analiz metodları. Özcan, S. Gürel, E., Babaoğlu, M. Bitki Biyoteknolojisi II. Genetik Mühendisliği ve Uygulamaları. Selçuk Üniv. Vakıf Yayınları, 112-159.
  • Yudin, L. S., Cho, J. J., & Mitchell, W. C. (1986). Host range of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), with special reference to Leucaena glauca Environmental Entomology,15(6), 1292-1.
There are 52 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Ceylan Uçar 0000-0001-9056-9353

Suat Şensoy 0000-0001-7129-6185

Project Number 2015-FBE-YL277
Publication Date June 30, 2022
Acceptance Date March 30, 2022
Published in Issue Year 2022

Cite

APA Uçar, C., & Şensoy, S. (2022). Validity Control of Markers Used in Molecular Marker Assisted Selection in Tomato. Yuzuncu Yıl University Journal of Agricultural Sciences, 32(2), 300-309. https://doi.org/10.29133/yyutbd.1039398
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.