Research Article
BibTex RIS Cite

Droplet Kinematic in Hollow Cone Polyacetal (POM) Sprayer Nozzles

Year 2019, , 94 - 105, 29.03.2019
https://doi.org/10.29133/yyutbd.494076

Abstract

This
study is aimed to determine the effect of orifice diameter, swirl plate and
spray pressure variables on the spray characteristics which define the droplet
kinematics of hollow cone nozzle plates. In the trials, the nozzle plates with
1.0 mm, 1.2 mm, 1.6 mm, 2.0 mm and 2.4 mm orifice diameter made of polyacetal
material and blue (2-slot), brown (3-slot), yellow (2-slot) and stainless steel
(2- slot) swirl plates were used. All applications were made in the spray
pressure range of 2-12 bar. In the combinations with the nozzle plate and the
swirl plate, the droplet velocity varied in the range of 3.63-22.13 m/s and the
droplet velocity increased as the spray pressure increased. The increase in
spray pressure had no any effect on variation of the kinetic energy of the
drop. However, as the diameter of the nozzle orifice increased, the kinetic
energy of the droplet decreased. As the spray pressure increased, the terminal
velocity of the droplet decreased. But, increasing the orifice diameter of
nozzle plates resulted in an increase in terminal velocity of drop. When the
spray pressure is 2 bar, the distance from which the droplet is released in the
air from the orifice has increased. The average drift in the nozzle orifice
groups ranged from 8.5% to 13.5% when the pressure was 2 bar, while the average
increase in the pressure of 12 bar ranged from 15.3% to 19.9%. Correlation
analysis was performed between the variables that define the droplet kinematic
in hollow cone nozzles and the relations between the statistically significant
variables were shown with equations.

References

  • Al Heidary M, Douzals JP, Sinfort C, Vallet A (2014). Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel. AgEng 2014, Jul 2014, Zurich, Switzerland.
  • Albuz® 2009. Disc&Core Ceramic Hollow-Cone Nozzle Catalogue. http://albuz-spray.com (Erişim tarihi: Aralık 2009).
  • Almekinders H, Ozkan HE, Reichard DL, Carpenter TG, Brazee RD (1993). Deposition efficiency of air-assisted, charged sprays in a wind tunnel. T. ASAE 36 (2): 321-325.
  • Arag® (2004). Nozzle Holder, Caps and Nozzle Tips Catalogue. www.aragnet.it. (Erişim tarihi: Aralık 2004)
  • Arag® (2017). Nozzle Holder, Caps and Nozzle Tips Catalogue (Revision). www.aragnet.com. (Erişim tarihi: Aralık 2017)
  • Bache DH, Johnstone DR (1992). Microclimate and spray dispersion. West Sussex, UK: Ellis Harwood.
  • Bode LE, Butler BJ, Pearson SL, Bouse LF (1983). Characteristics of the micromax rotary atomizer. T ASAE 24 (4): 999-1004.
  • Dursun E, Karahan Y, Çilingir İ (2000). Türkiye’de üretilen konik hüzmeli bazı meme plakalarında delik çapı ve düzgünlüğünün belirlenmesi. Tarım Bilimleri Dergisi 6 (3): 135-140.
  • Hipkins P, Grisso RB (2014). Droplet Chart / Selection Guide. Virginia Cooperative Extention, Virginia State University, Publication, 442-031.
  • Hypro® (2014). Hypro Nozzle Catalogue. http://www.hypro-eu.com. (Erişim tarihi: Aralık 2014)
  • Krishnan P, Williams TH, Kemble LJ (1988). Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. T ASAE 31 (2): 386-389.
  • Kruger GR, Klein RN, Ogg CL (2013). Spray Drift of Pesticides. Nebreska Extention. http://extensionpublications.unl.edu/assets/html/g1773/build/g1773.htm.
  • Nuyttens D, Baetens K, Schampheleire M De, Sonck B (2007). Effect of nozzle type, size, and pressure on spray droplet characteristics. Biosyst. Eng. 97 (3): 333-345.
  • Piché M, Panneton, B, Thériault, R 2000. Field evaluation of air-assisted boom spraying on broccoli and potato. T. ASAE 43 (4): 793-799.
  • Sayıncı B, Çomaklı M (2017). Poliasetal (POM) Meme Plakalarında Püskürtme Açısına Etki Eden Faktörler ve Pülverizasyon Karakteristikleri. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Tarım Makineleri Anabilim Dalı, Yüksek Lisans Tezi, Erzurum, s.78.
  • Sayıncı B, Kara M (2015). The effects of strainer types on flow characteristics of anti-drift (AD) and multi-range (LU) flat-fan nozzles. Tarım Bil. Derg. (J. Agr. Sci.) 21 (4): 558-571.
  • Sayıncı B (2014). Effect of filter types and sizes on flow characteristics of standard flat-fan nozzles. Tarım Mak. Bil. Derg. 10 (2): 129-138.
  • Sayıncı B (2015). Effect of strainer type, spray pressure, and orifice size on the discharge coefficient of standard flat-fan nozzles. Turkish J. Agr. Forestry 39: 692-704.
  • Sayıncı B (2016). The influence of strainer types on the flow and droplet velocity characteristics of ceramic flat-fan nozzles. Turkish J. Agr. Forestry 40: 25-37.
  • Serim AT, Özdemir YG (2012). Herbisit uygulamalarında kullanılan pülverizatör memelerinin damla büyüklük dağılımlarının belirlenmesi. Tar. Bil. Arş. Derg. 5 (2): 172-175.
  • Sidahmed MM, Awadalla HH, Haidar MA (2004). Symmetrical multi-foil shields for reducing spray drift. Biosyst. Eng. 88 (3): 305-312.
  • Spandl (2010). Comparing Drift Reduction Technology. Winfield Solutions, Shoreview, Minnesota. https://www.extension.umn.edu/agriculture/ag-professionals/cpm/2010.
  • Srivastava AK, Goering CE, Rohrbach RG (1993). Engineering Principles of Agricultural Machines. In: P.D. Hansen (Ed.), Chemical Application. Chapter 7, ASAE, Niles Road, St. Joseph, Michigan 49085, pp.265-324.
  • Teejet® (2014). Catalogue 51A-M, Disc-Core Type Cone Spray Tips. www.teejet.com.
  • Wolf (2017). Educating Applicators About Droplet Size. Wolf Consulting & Research LLC, https://tpsalliance.org/pdf/topics/Wolf-2-TPSA-2012.pdf (Erişim tarihi: Kasım 2017).

Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği

Year 2019, , 94 - 105, 29.03.2019
https://doi.org/10.29133/yyutbd.494076

Abstract

Bu
çalışmanın amacı, konik hüzmeli meme plakalarında orifis çapı, girdap plaketi
ve püskürtme basıncı değişkenlerinin damla kinematiğini tanımlayan
pülverizasyon karakteristiklerine olan etkisini belirlemektir. Denemelerde
poliasetal malzemeden üretilmiş 1.0 mm, 1.2 mm, 1.6 mm, 2.0 mm ve 2.4 mm orifis
çaplı meme plakaları ile mavi (2-slot), kahverengi (3-slot), sarı (2-slot) ve
paslanmaz çelik (2-slot) girdap plaketleri kullanılmıştır. Tüm uygulamalar 2-12
bar püskürtme basıncı aralığında yapılmıştır. Meme plakası ve girdap plaketi
kombinasyonlarda damla hızı 3.63-22.13 m/s aralığında değişmiş ve püskürtme
basıncı arttıkça damla hızının da arttığı belirlenmiştir. Püskürtme
basıncındaki artış damlanın kinetik enerjisini değiştirmemiştir. Ancak meme
orifis çapı arttıkça damlanın sahip olduğu kinetik enerji azalmıştır. Püskürtme
basıncı arttıkça damlanın terminal hızı azalırken, orifis çapındaki artış
terminal hızın artmasını sağlamıştır. Püskürtme basıncı 2 bar olduğunda
damlanın orifisten itibaren havada serbest kaldığı mesafe artmıştır. Meme
orifis gruplarında püskürtme basıncı 2 bar olduğunda ortalama sürüklenme
%8.5-%13.5 aralığında değişirken, 12 bar basınçta artarak ortalamalar
%15.3-%19.9 aralığında değişmiştir. Konik hüzmeli memelerde damla kinematiğini
tanımlayan değişkenler arasında korelasyon analizi yapılmış ve istatistiksel
açıdan önemli bulunan değişkenler arasındaki ilişkiler eşitliklerle
gösterilmiştir.

References

  • Al Heidary M, Douzals JP, Sinfort C, Vallet A (2014). Influence of nozzle type, nozzle arrangement and side wind speed on spray drift as measured in a wind tunnel. AgEng 2014, Jul 2014, Zurich, Switzerland.
  • Albuz® 2009. Disc&Core Ceramic Hollow-Cone Nozzle Catalogue. http://albuz-spray.com (Erişim tarihi: Aralık 2009).
  • Almekinders H, Ozkan HE, Reichard DL, Carpenter TG, Brazee RD (1993). Deposition efficiency of air-assisted, charged sprays in a wind tunnel. T. ASAE 36 (2): 321-325.
  • Arag® (2004). Nozzle Holder, Caps and Nozzle Tips Catalogue. www.aragnet.it. (Erişim tarihi: Aralık 2004)
  • Arag® (2017). Nozzle Holder, Caps and Nozzle Tips Catalogue (Revision). www.aragnet.com. (Erişim tarihi: Aralık 2017)
  • Bache DH, Johnstone DR (1992). Microclimate and spray dispersion. West Sussex, UK: Ellis Harwood.
  • Bode LE, Butler BJ, Pearson SL, Bouse LF (1983). Characteristics of the micromax rotary atomizer. T ASAE 24 (4): 999-1004.
  • Dursun E, Karahan Y, Çilingir İ (2000). Türkiye’de üretilen konik hüzmeli bazı meme plakalarında delik çapı ve düzgünlüğünün belirlenmesi. Tarım Bilimleri Dergisi 6 (3): 135-140.
  • Hipkins P, Grisso RB (2014). Droplet Chart / Selection Guide. Virginia Cooperative Extention, Virginia State University, Publication, 442-031.
  • Hypro® (2014). Hypro Nozzle Catalogue. http://www.hypro-eu.com. (Erişim tarihi: Aralık 2014)
  • Krishnan P, Williams TH, Kemble LJ (1988). Technical Note: Spray pattern displacement measurement technique for agricultural nozzles using spray table. T ASAE 31 (2): 386-389.
  • Kruger GR, Klein RN, Ogg CL (2013). Spray Drift of Pesticides. Nebreska Extention. http://extensionpublications.unl.edu/assets/html/g1773/build/g1773.htm.
  • Nuyttens D, Baetens K, Schampheleire M De, Sonck B (2007). Effect of nozzle type, size, and pressure on spray droplet characteristics. Biosyst. Eng. 97 (3): 333-345.
  • Piché M, Panneton, B, Thériault, R 2000. Field evaluation of air-assisted boom spraying on broccoli and potato. T. ASAE 43 (4): 793-799.
  • Sayıncı B, Çomaklı M (2017). Poliasetal (POM) Meme Plakalarında Püskürtme Açısına Etki Eden Faktörler ve Pülverizasyon Karakteristikleri. Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Tarım Makineleri Anabilim Dalı, Yüksek Lisans Tezi, Erzurum, s.78.
  • Sayıncı B, Kara M (2015). The effects of strainer types on flow characteristics of anti-drift (AD) and multi-range (LU) flat-fan nozzles. Tarım Bil. Derg. (J. Agr. Sci.) 21 (4): 558-571.
  • Sayıncı B (2014). Effect of filter types and sizes on flow characteristics of standard flat-fan nozzles. Tarım Mak. Bil. Derg. 10 (2): 129-138.
  • Sayıncı B (2015). Effect of strainer type, spray pressure, and orifice size on the discharge coefficient of standard flat-fan nozzles. Turkish J. Agr. Forestry 39: 692-704.
  • Sayıncı B (2016). The influence of strainer types on the flow and droplet velocity characteristics of ceramic flat-fan nozzles. Turkish J. Agr. Forestry 40: 25-37.
  • Serim AT, Özdemir YG (2012). Herbisit uygulamalarında kullanılan pülverizatör memelerinin damla büyüklük dağılımlarının belirlenmesi. Tar. Bil. Arş. Derg. 5 (2): 172-175.
  • Sidahmed MM, Awadalla HH, Haidar MA (2004). Symmetrical multi-foil shields for reducing spray drift. Biosyst. Eng. 88 (3): 305-312.
  • Spandl (2010). Comparing Drift Reduction Technology. Winfield Solutions, Shoreview, Minnesota. https://www.extension.umn.edu/agriculture/ag-professionals/cpm/2010.
  • Srivastava AK, Goering CE, Rohrbach RG (1993). Engineering Principles of Agricultural Machines. In: P.D. Hansen (Ed.), Chemical Application. Chapter 7, ASAE, Niles Road, St. Joseph, Michigan 49085, pp.265-324.
  • Teejet® (2014). Catalogue 51A-M, Disc-Core Type Cone Spray Tips. www.teejet.com.
  • Wolf (2017). Educating Applicators About Droplet Size. Wolf Consulting & Research LLC, https://tpsalliance.org/pdf/topics/Wolf-2-TPSA-2012.pdf (Erişim tarihi: Kasım 2017).
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Bahadır Sayıncı 0000-0001-7148-0855

Ruçhan Çömlek This is me 0000-0002-2240-4343

Mustafa Çomaklı This is me

Publication Date March 29, 2019
Acceptance Date February 15, 2019
Published in Issue Year 2019

Cite

APA Sayıncı, B., Çömlek, R., & Çomaklı, M. (2019). Konik Hüzmeli Poliasetal (POM) Pülverizatör Memelerinde Damla Kinematiği. Yuzuncu Yıl University Journal of Agricultural Sciences, 29(1), 94-105. https://doi.org/10.29133/yyutbd.494076
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.