Research Article
BibTex RIS Cite

Changes in Basic Soil Physical Properties of Agrochernozyems Under No-till Conditions

Year 2020, , 963 - 972, 31.12.2020
https://doi.org/10.29133/yyutbd.754479

Abstract

Agriculture is one of the leading branches of the economy in the Republic of Bashkortostan (Russia). Long-term agricultural use of land with the use of plowing led to a decrease in the thickness of humus-accumulation horizon of soils, reduction of organic matter and nutrients. There is also deterioration of water-physical properties, development of water and wind erosion, and decrease in yield. Recently, the use of soil-saving farming systems has started, including the use of No-Till soil tillage system. The paper presents the results of assessment of physical properties of agrochernozems in conditions of No-Till use. Such physical properties as bulk density, humidity, temperature, structural and aggregate composition were studied using methods and instruments adopted in soil science. It is shown that in the top layer of soil (0-20 cm) is the accumulation of soil moisture, but the capillary and total water capacity is lower than that in nature soil. At the same time, in cultivated soils faced to the No-Till system the values of bulk density were increased as well as ranges of resistance to penetration. This fact, porbalby was caused the impact of activity of heavy agricultural machinery. The declining of soil density can be reached by cultivation of sideral cultures and perennial grasses.

Supporting Institution

Russian Foundation for Basic Research; Russian Scientific Foundation

Project Number

19-34-90001; 17-16-01030

Thanks

Special thanks to the Prof. Dr. Ridvan Kizilkaya for his advises and improvements of manuscript

References

  • Babaev, M. P., Gurbanov, E. A., & Ramazanova, F. M. (2015). Main types of soil degradation in the Kura-Aras Lowland of Azerbaijan. Eurasian Soil Science, 48(4), 445–456. doi.org/10.1134/S106422931504002X
  • Bajocco, S., Smiraglia, D., Scaglione, M., Raparelli, E., & Salvati, L. (2018). Exploring the role of land degradation on agricultural land use change dynamics. Science of The Total Environment, 636, 1373–1381. doi.org/10.1016/j.scitotenv.2018.04.412
  • Baude, M., Meyer, B. C., & Schindewolf, M. (2019). Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of The Total Environment, 659, 1526–1536. doi.org/10.1016/j.scitotenv.2018.12.455
  • Bednář, M., & Šarapatka, B. (2018). Relationships between physical-geographical factors and soil degradation on agricultural land. Environmental Research, 164, 660–668. doi.org/10.1016/j.envres.2018.03.042
  • Begum Nasir Ahmad, N. S., Mustafa, F. B., Yusoff, S. Y. M., & Gideon, D. (2020). A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research. doi.org/10.1016/j.iswcr.2020.04.001
  • Ferreira, C. dos R., Silva Neto, E. C. da, Pereira, M. G., Guedes, J. do N., Rosset, J. S., & Anjos, L. H. C. dos. (2020). Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil and Tillage Research, 198, 104533. doi.org/10.1016/j.still.2019.104533
  • Gabbasova, I. M., Suleimanov, R. R., Garipov, T. T., Komissarov, M. A., Sidorova, L. V., Galimzyanova, N. F., Liebelt, P., Abakumov, E. V., Gimaletdinova, G. A., & Prostyakova, Z. G. (2018). The use of local fertilizers supplemented with trichoderma koningii oudem. At no-till vs. Conventional tillage of agrochernozem in southern ural. Agricultural Biology, 53(5), 1004–1012. doi.org/10.15389/agrobiology.2018.5.1004eng
  • Gabbasova, I. M., Suleimanov, R. R., Khabirov, I. K., Komissarov, M. A., Fruehauf, M., Liebelt, P., Garipov, T. T., Sidorova, L. V., & Khaziev, F. Kh. (2016). Temporal changes of eroded soils depending on their agricultural use in the southern Cis-Ural region. Eurasian Soil Science, 49(10), 1204–1210. doi.org/10.1134/S1064229316100070
  • Gabbasova, I. M., Suleimanov, R. R., Khabirov, I. K., Komissarov, M. A., Garipov, T. T., Sidorova, L. V., Asylbaev, I. G., Rafikov, B. V., & Yaubasarov, R. B. (2015). Assessment of the agrochernozem status in trans-Ural steppe under application of No-Till management system. Russian Agricultural Sciences, 41(1), 34–39. doi.org/10.3103/S1068367415010061
  • Gao, W., Whalley, W. R., Tian, Z., Liu, J., & Ren, T. (2016). A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil and Tillage Research, 155, 190–198. doi.org/10.1016/j.still.2015.08.004
  • Govers, G., Van Oost, K., & Wang, Z. (2014). Scratching the Critical Zone: The Global Footprint of Agricultural Soil Erosion. Procedia Earth and Planetary Science, 10, 313–318. doi.org/10.1016/j.proeps.2014.08.023
  • Gurbanov, E. A. (2010). Soil degradation due to erosion under furrow irrigation. Eurasian Soil Science, 43(12), 1387–1393. doi.org/10.1134/S1064229310120094
  • Gürsoy, S., & Türk, Z. (2019). Effects of land rolling on soil properties and plant growth in chickpea production. Soil and Tillage Research, 195, 104425. doi.org/10.1016/j.still.2019.104425
  • Huang, R., Huang, J., Zhang, C., Ma, H., Zhuo, W., Chen, Y., Zhu, D., Wu, Q., & Mansaray, L. R. (2020). Soil temperature estimation at different depths, using remotely-sensed data. Journal of Integrative Agriculture, 19(1), 277–290. doi.org/10.1016/S2095-3119(19)62657-2
  • Kadilnikov I.P. (Ed). (1964). Physiographic zoning of Bashkir ASSR. Bashkir State University Press, Ufa, Russia. (Ru).
  • Khaziev F.Kh. (2012). Soils Ecology of Bashkortostan. Gilem Press, Ufa, Russia. (Ru).
  • Khaziev F.Kh. (Ed). (1997). Soils of Bashkortostan. Vol. 2. Fertility Reproduction: Zonal and Ecological Aspects. Gilem Press, Ufa, Russia. (Ru).
  • Li, Fa-yong, Liang, X., Liu, Z., & Tian, G. (2019). No-till with straw return retains soil total P while reducing loss potential of soil colloidal P in rice-fallow systems. Agriculture, Ecosystems & Environment, 286, 106653. doi.org/10.1016/j.agee.2019.106653
  • Lin, L., He, Y., & Chen, J. (2016). The influence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil. Journal of Integrative Agriculture, 15(5), 1112–1120. doi.org/10.1016/S2095-3119(15)61204-7
  • Luetzenburg, G., Bittner, M. J., Calsamiglia, A., Renschler, C. S., Estrany, J., & Poeppl, R. (2020). Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz – Austria, Can Revull – Spain. Science of The Total Environment, 704, 135389. doi.org/10.1016/j.scitotenv.2019.135389
  • Neugschwandtner, R. W., Száková, J., Pachtrog, V., Tlustoš, P., Černý, J., Kulhánek, M., Kaul, H.-P., Euteneuer, P., Moitzi, G., & Wagentristl, H. (2020). Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment. International Agrophysics, 34(1), 133–140. doi.org/10.31545/intagr/114880
  • Ni, J., Cheng, Y., Wang, Q., Ng, C. W. W., & Garg, A. (2019). Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494–502. doi.org/10.1016/j.jhydrol.2019.02.009
  • Nowak, A., & Schneider, C. (2017). Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland). Science of The Total Environment, 590–591, 620–632. doi.org/10.1016/j.scitotenv.2017.03.006
  • Nunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J., & Ryan, M. (2018). No-till and cropping system diversification improve soil health and crop yield. Geoderma, 328, 30–43. doi.org/10.1016/j.geoderma.2018.04.031
  • Pacheco, F. A. L., Sanches Fernandes, L. F., Valle Junior, R. F., Valera, C. A., & Pissarra, T. C. T. (2018). Land degradation: Multiple environmental consequences and routes to neutrality. Current Opinion in Environmental Science & Health, 5, 79–86. doi.org/10.1016/j.coesh.2018.07.002
  • Pankova E.I. & Novikova A.F. (2000). Soil degradation processes on agricultural lands of Russia. Eurasian Soil Science. 33, 319–330. (Ru).
  • Park, J.-H., Meusburger, K., Jang, I., Kang, H., & Alewell, C. (2014). Erosion-induced changes in soil biogeochemical and microbiological properties in Swiss Alpine grasslands. Soil Biology and Biochemistry, 69, 382–392. doi.org/10.1016/j.soilbio.2013.11.021
  • Paula, A. L. de, Giarola, N. F. B., de Lima, R. P., Wiecheteck, L. H., & da Silva, A. P. (2020). Methodological aspects of the quantification of dispersible clay and their relations with soil properties along a catena under no-till system. International Agrophysics, 34(2), 273–280. doi.org/10.31545/intagr/118438
  • Piazza, G., Pellegrino, E., Moscatelli, M. C., & Ercoli, L. (2020). Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil and Tillage Research, 196, 104482. doi.org/10.1016/j.still.2019.104482
  • Radford, B. J., Yule, D. F., McGarry, D., & Playford, C. (2007). Amelioration of soil compaction can take 5 years on a Vertisol under no till in the semi-arid subtropics. Soil and Tillage Research, 97(2), 249–255. doi.org/10.1016/j.still.2006.01.005
  • Sarapatka, B., Cap, L., & Bila, P. (2018). The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma, 314, 20–26. doi.org/10.1016/j.geoderma.2017.10.037 Shein E.V. & Karpachevskii L.O. (Eds). (2007). Theories and Methods in Soil Physics. Grif and K Press, Moscow, Russia. (Ru).
  • Sithole, N. J., & Magwaza, L. S. (2019). Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil and Tillage Research, 194, 104317. doi.org/10.1016/j.still.2019.104317
  • Skaalsveen, K., Ingram, J., & Urquhart, J. (2020). The role of farmers’ social networks in the implementation of no-till farming practices. Agricultural Systems, 181, 102824. doi.org/10.1016/j.agsy.2020.102824
  • Smetanová, A., Follain, S., David, M., Ciampalini, R., Raclot, D., Crabit, A., & Le Bissonnais, Y. (2019). Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape. Journal of Environmental Management, 235, 282–292. doi.org/10.1016/j.jenvman.2019.01.063
  • Travnikova, L. S., Artem’eva, Z. S., & Sorokina, N. P. (2010). Distribution of the particle-size fractions in soddy-podzolic soils subjected to sheet erosion. Eurasian Soil Science, 43(4), 459–467. doi.org/10.1134/S1064229310040137
  • Vanwalleghem, T., Gómez, J. A., Infante Amate, J., González de Molina, M., Vanderlinden, K., Guzmán, G., Laguna, A., & Giráldez, J. V. (2017). Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17, 13–29. doi.org/10.1016/j.ancene.2017.01.002
  • Vávra, J., Duží, B., Lapka, M., Cudlínová, E., & Rikoon, J. S. (2019). Socio-economic context of soil erosion: A comparative local stakeholders’ case study from traditional agricultural region in the Czech Republic. Land Use Policy, 84, 127–137. doi.org/10.1016/j.landusepol.2019.03.005
  • Wilson, G. V., Zhang, T., Wells, R. R., & Liu, B. (2020). Consolidation effects on relationships among soil erosion properties and soil physical quality indicators. Soil and Tillage Research, 198, 104550. doi.org/10.1016/j.still.2019.104550
  • Yin, W., Chai, Q., Guo, Y., Fan, Z., Hu, F., Fan, H., Zhao, C., Yu, A., & Coulter, J. A. (2020). Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Research, 249, 107758. doi.org/10.1016/j.fcr.2020.107758
  • Zambon, I., Colantoni, A., Carlucci, M., Morrow, N., Sateriano, A., & Salvati, L. (2017). Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environmental Impact Assessment Review, 64, 37–46. doi.org/10.1016/j.eiar.2017.01.003

Toprak İşlemesiz Koşullar Altında Agrochernozyemlerin Temel Fiziksel Özelliklerindeki Değişimler

Year 2020, , 963 - 972, 31.12.2020
https://doi.org/10.29133/yyutbd.754479

Abstract

Tarım, Başkurdistan Cumhuriyeti'nde (Rusya) ekonominin önde gelen dallarından biridir. Toprağın uzun süreli tarımsal kullanımı, toprağın humus birikimi horizon kalınlığının azalmasına, organik madde ve besin maddelerinin azalmasına neden olmaktadır. Ayrıca su-fiziksel özelliklerinde bir bozulma, su ve rüzgar erozyonunun artması ve verimlilikte bir azalma söz konusu olmaktadır. Son zamanlarda, toprak işlemesiz sistem kullanımı da dahil olmak üzere, toprak korumalı tarım sistemlerinin kullanımı başlamıştır. Bu çalışmada agrokernozemlerin fiziksel özelliklerinin toprak işlemesiz sistem kullanımı koşulları altında değerlendirilmesinin sonuçlarını sunmaktadır. Toprağın kütle yoğunluğu, nem, sıcaklık, yapısal ve agrega bileşimi gibi fiziksel özellikleri, toprak biliminde kabul edilen yöntemler ve araçlar kullanılarak incelenmiştir. Üst toprak tabakasında (0-20 cm) toprak nemi birikiminin olduğu, kılcal ve toplam nem kapasitesi değerlerinin yanı sıra kütle yoğunluğunun doğadaki toprağının değerlerine yaklaştığı ve tarımsal ürünlerin büyümesi ve gelişmesi için en uygun olduğu gösterilmiştir. Yapısal ve agrega bileşimi, suyun zararlı etkilerine aşırı derecede yüksek dirençleri ile mükemmel agrega hali ile karakterize edilir. Ancak tek bir durumda toprak yoğunluğu 45 cm derinliğe kadar çıkmaktadır. Bu gerçek, ağır tarım makinelerinin etkisinden kaynaklanmaktadır. Toprak yoğunluğunun azalması, özel bir biyoorganik ajan ile muamele edilerek ve çok yıllık otlar yetiştirilerek sağlanabilir.

Project Number

19-34-90001; 17-16-01030

References

  • Babaev, M. P., Gurbanov, E. A., & Ramazanova, F. M. (2015). Main types of soil degradation in the Kura-Aras Lowland of Azerbaijan. Eurasian Soil Science, 48(4), 445–456. doi.org/10.1134/S106422931504002X
  • Bajocco, S., Smiraglia, D., Scaglione, M., Raparelli, E., & Salvati, L. (2018). Exploring the role of land degradation on agricultural land use change dynamics. Science of The Total Environment, 636, 1373–1381. doi.org/10.1016/j.scitotenv.2018.04.412
  • Baude, M., Meyer, B. C., & Schindewolf, M. (2019). Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of The Total Environment, 659, 1526–1536. doi.org/10.1016/j.scitotenv.2018.12.455
  • Bednář, M., & Šarapatka, B. (2018). Relationships between physical-geographical factors and soil degradation on agricultural land. Environmental Research, 164, 660–668. doi.org/10.1016/j.envres.2018.03.042
  • Begum Nasir Ahmad, N. S., Mustafa, F. B., Yusoff, S. Y. M., & Gideon, D. (2020). A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research. doi.org/10.1016/j.iswcr.2020.04.001
  • Ferreira, C. dos R., Silva Neto, E. C. da, Pereira, M. G., Guedes, J. do N., Rosset, J. S., & Anjos, L. H. C. dos. (2020). Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil and Tillage Research, 198, 104533. doi.org/10.1016/j.still.2019.104533
  • Gabbasova, I. M., Suleimanov, R. R., Garipov, T. T., Komissarov, M. A., Sidorova, L. V., Galimzyanova, N. F., Liebelt, P., Abakumov, E. V., Gimaletdinova, G. A., & Prostyakova, Z. G. (2018). The use of local fertilizers supplemented with trichoderma koningii oudem. At no-till vs. Conventional tillage of agrochernozem in southern ural. Agricultural Biology, 53(5), 1004–1012. doi.org/10.15389/agrobiology.2018.5.1004eng
  • Gabbasova, I. M., Suleimanov, R. R., Khabirov, I. K., Komissarov, M. A., Fruehauf, M., Liebelt, P., Garipov, T. T., Sidorova, L. V., & Khaziev, F. Kh. (2016). Temporal changes of eroded soils depending on their agricultural use in the southern Cis-Ural region. Eurasian Soil Science, 49(10), 1204–1210. doi.org/10.1134/S1064229316100070
  • Gabbasova, I. M., Suleimanov, R. R., Khabirov, I. K., Komissarov, M. A., Garipov, T. T., Sidorova, L. V., Asylbaev, I. G., Rafikov, B. V., & Yaubasarov, R. B. (2015). Assessment of the agrochernozem status in trans-Ural steppe under application of No-Till management system. Russian Agricultural Sciences, 41(1), 34–39. doi.org/10.3103/S1068367415010061
  • Gao, W., Whalley, W. R., Tian, Z., Liu, J., & Ren, T. (2016). A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil and Tillage Research, 155, 190–198. doi.org/10.1016/j.still.2015.08.004
  • Govers, G., Van Oost, K., & Wang, Z. (2014). Scratching the Critical Zone: The Global Footprint of Agricultural Soil Erosion. Procedia Earth and Planetary Science, 10, 313–318. doi.org/10.1016/j.proeps.2014.08.023
  • Gurbanov, E. A. (2010). Soil degradation due to erosion under furrow irrigation. Eurasian Soil Science, 43(12), 1387–1393. doi.org/10.1134/S1064229310120094
  • Gürsoy, S., & Türk, Z. (2019). Effects of land rolling on soil properties and plant growth in chickpea production. Soil and Tillage Research, 195, 104425. doi.org/10.1016/j.still.2019.104425
  • Huang, R., Huang, J., Zhang, C., Ma, H., Zhuo, W., Chen, Y., Zhu, D., Wu, Q., & Mansaray, L. R. (2020). Soil temperature estimation at different depths, using remotely-sensed data. Journal of Integrative Agriculture, 19(1), 277–290. doi.org/10.1016/S2095-3119(19)62657-2
  • Kadilnikov I.P. (Ed). (1964). Physiographic zoning of Bashkir ASSR. Bashkir State University Press, Ufa, Russia. (Ru).
  • Khaziev F.Kh. (2012). Soils Ecology of Bashkortostan. Gilem Press, Ufa, Russia. (Ru).
  • Khaziev F.Kh. (Ed). (1997). Soils of Bashkortostan. Vol. 2. Fertility Reproduction: Zonal and Ecological Aspects. Gilem Press, Ufa, Russia. (Ru).
  • Li, Fa-yong, Liang, X., Liu, Z., & Tian, G. (2019). No-till with straw return retains soil total P while reducing loss potential of soil colloidal P in rice-fallow systems. Agriculture, Ecosystems & Environment, 286, 106653. doi.org/10.1016/j.agee.2019.106653
  • Lin, L., He, Y., & Chen, J. (2016). The influence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil. Journal of Integrative Agriculture, 15(5), 1112–1120. doi.org/10.1016/S2095-3119(15)61204-7
  • Luetzenburg, G., Bittner, M. J., Calsamiglia, A., Renschler, C. S., Estrany, J., & Poeppl, R. (2020). Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz – Austria, Can Revull – Spain. Science of The Total Environment, 704, 135389. doi.org/10.1016/j.scitotenv.2019.135389
  • Neugschwandtner, R. W., Száková, J., Pachtrog, V., Tlustoš, P., Černý, J., Kulhánek, M., Kaul, H.-P., Euteneuer, P., Moitzi, G., & Wagentristl, H. (2020). Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment. International Agrophysics, 34(1), 133–140. doi.org/10.31545/intagr/114880
  • Ni, J., Cheng, Y., Wang, Q., Ng, C. W. W., & Garg, A. (2019). Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. Journal of Hydrology, 571, 494–502. doi.org/10.1016/j.jhydrol.2019.02.009
  • Nowak, A., & Schneider, C. (2017). Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland). Science of The Total Environment, 590–591, 620–632. doi.org/10.1016/j.scitotenv.2017.03.006
  • Nunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J., & Ryan, M. (2018). No-till and cropping system diversification improve soil health and crop yield. Geoderma, 328, 30–43. doi.org/10.1016/j.geoderma.2018.04.031
  • Pacheco, F. A. L., Sanches Fernandes, L. F., Valle Junior, R. F., Valera, C. A., & Pissarra, T. C. T. (2018). Land degradation: Multiple environmental consequences and routes to neutrality. Current Opinion in Environmental Science & Health, 5, 79–86. doi.org/10.1016/j.coesh.2018.07.002
  • Pankova E.I. & Novikova A.F. (2000). Soil degradation processes on agricultural lands of Russia. Eurasian Soil Science. 33, 319–330. (Ru).
  • Park, J.-H., Meusburger, K., Jang, I., Kang, H., & Alewell, C. (2014). Erosion-induced changes in soil biogeochemical and microbiological properties in Swiss Alpine grasslands. Soil Biology and Biochemistry, 69, 382–392. doi.org/10.1016/j.soilbio.2013.11.021
  • Paula, A. L. de, Giarola, N. F. B., de Lima, R. P., Wiecheteck, L. H., & da Silva, A. P. (2020). Methodological aspects of the quantification of dispersible clay and their relations with soil properties along a catena under no-till system. International Agrophysics, 34(2), 273–280. doi.org/10.31545/intagr/118438
  • Piazza, G., Pellegrino, E., Moscatelli, M. C., & Ercoli, L. (2020). Long-term conservation tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks and enzymatic activities in bulk soil and occluded microaggregates. Soil and Tillage Research, 196, 104482. doi.org/10.1016/j.still.2019.104482
  • Radford, B. J., Yule, D. F., McGarry, D., & Playford, C. (2007). Amelioration of soil compaction can take 5 years on a Vertisol under no till in the semi-arid subtropics. Soil and Tillage Research, 97(2), 249–255. doi.org/10.1016/j.still.2006.01.005
  • Sarapatka, B., Cap, L., & Bila, P. (2018). The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma, 314, 20–26. doi.org/10.1016/j.geoderma.2017.10.037 Shein E.V. & Karpachevskii L.O. (Eds). (2007). Theories and Methods in Soil Physics. Grif and K Press, Moscow, Russia. (Ru).
  • Sithole, N. J., & Magwaza, L. S. (2019). Long-term changes of soil chemical characteristics and maize yield in no-till conservation agriculture in a semi-arid environment of South Africa. Soil and Tillage Research, 194, 104317. doi.org/10.1016/j.still.2019.104317
  • Skaalsveen, K., Ingram, J., & Urquhart, J. (2020). The role of farmers’ social networks in the implementation of no-till farming practices. Agricultural Systems, 181, 102824. doi.org/10.1016/j.agsy.2020.102824
  • Smetanová, A., Follain, S., David, M., Ciampalini, R., Raclot, D., Crabit, A., & Le Bissonnais, Y. (2019). Landscaping compromises for land degradation neutrality: The case of soil erosion in a Mediterranean agricultural landscape. Journal of Environmental Management, 235, 282–292. doi.org/10.1016/j.jenvman.2019.01.063
  • Travnikova, L. S., Artem’eva, Z. S., & Sorokina, N. P. (2010). Distribution of the particle-size fractions in soddy-podzolic soils subjected to sheet erosion. Eurasian Soil Science, 43(4), 459–467. doi.org/10.1134/S1064229310040137
  • Vanwalleghem, T., Gómez, J. A., Infante Amate, J., González de Molina, M., Vanderlinden, K., Guzmán, G., Laguna, A., & Giráldez, J. V. (2017). Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17, 13–29. doi.org/10.1016/j.ancene.2017.01.002
  • Vávra, J., Duží, B., Lapka, M., Cudlínová, E., & Rikoon, J. S. (2019). Socio-economic context of soil erosion: A comparative local stakeholders’ case study from traditional agricultural region in the Czech Republic. Land Use Policy, 84, 127–137. doi.org/10.1016/j.landusepol.2019.03.005
  • Wilson, G. V., Zhang, T., Wells, R. R., & Liu, B. (2020). Consolidation effects on relationships among soil erosion properties and soil physical quality indicators. Soil and Tillage Research, 198, 104550. doi.org/10.1016/j.still.2019.104550
  • Yin, W., Chai, Q., Guo, Y., Fan, Z., Hu, F., Fan, H., Zhao, C., Yu, A., & Coulter, J. A. (2020). Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Research, 249, 107758. doi.org/10.1016/j.fcr.2020.107758
  • Zambon, I., Colantoni, A., Carlucci, M., Morrow, N., Sateriano, A., & Salvati, L. (2017). Land quality, sustainable development and environmental degradation in agricultural districts: A computational approach based on entropy indexes. Environmental Impact Assessment Review, 64, 37–46. doi.org/10.1016/j.eiar.2017.01.003
There are 40 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Ecology
Journal Section Articles
Authors

Ruslan Suleymanov 0000-0002-7754-0406

Sergey Zaykın This is me 0000-0002-0873-5373

Azamat Suleymanov This is me 0000-0001-7974-4931

Evgeny Abakumov This is me 0000-0002-5248-9018

Jakub Kostecki This is me 0000-0002-4231-1080

Project Number 19-34-90001; 17-16-01030
Publication Date December 31, 2020
Acceptance Date November 23, 2020
Published in Issue Year 2020

Cite

APA Suleymanov, R., Zaykın, S., Suleymanov, A., Abakumov, E., et al. (2020). Changes in Basic Soil Physical Properties of Agrochernozyems Under No-till Conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(Ek sayı (Additional issue), 963-972. https://doi.org/10.29133/yyutbd.754479
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.