Review
BibTex RIS Cite

Abiyotik ve Biyotik Stres Şartlarında Silisyumun Rolü

Year 2017, Volume: 27 Issue: 4, 657 - 664, 26.12.2017
https://doi.org/10.29133/yyutbd.309632

Abstract

Bu çalışmada bitkilerin
olumsuz çevresel faktörler karşısında (abiyotik ve biyotik) geliştirdiği
mekanizmalarda silisyumun rolü incelenmiştir. Silisyum bitkiler tarafından
aktif veya pasif absorbsiyonla Si(OH)4 anyonu şeklinde alınmaktadır.
Abiyotik stres şartlarında kök, yaprak veya kavuzda biriken Si silis asidi
şeklinde polimerize olmak suretiyle transpirasyonu azaltarak su stresini
önlemektedir. Toprak çözeltisinde Si ile Al, Fe, Mn, Cd, Pb vs kompleksleri
oluşturarak olası ağır metal toksitesini azaltır. Hücre duvarının kalınlığını
artırmak suretiyle gövdenin dayanıklılığını artırır. Ayrıca etileni (C2H4)
uyarmak suretiyle yaprakların süperoksit dismutaz aktivitesini (SDA) artırarak
hücrede lipidlerin peroksidasyonuna sebep olan reaktif oksijen türlerini (H2O2,1O2 ve O3) baskılamaktadır. Biyotik
streslerde sitinas, peroksidaz, polipenoksidas aktivasyonunu uyarmakta veya
hızlandırmaktadır. Özellikle fitopatolojik hastalıklarda veya entomolojik
zararlanma durumlarında Si dikotiledon ve monokotiledon bitkilerde flavonoidler
ve anti fungal özelliklere sahip olan düşük molekül ağırlıklı bileşikler
oluşturarak bu zararları azaltabilmektedir. 

References

  • Kaynaklar Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96–103.
  • Ahmad RS, Zaheer H, Ismail S (1992). Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci.85:43-50
  • Aktaş H, Tunalı B (1986). Türkiye’ de ekimi yapılan ve ümit var çeltik çeşitlerinin Pyricularia oryzae Bri.et Cav., Drechslera oryzae Subram. and Jan ve Fusarium moniliforme Sheld’ ye karşı reaksiyonlarının saptanması. Bitki Koruma Bülteni, 26 (1-2): 41-58.
  • Alexieva V, Ivanov S, Sergiev I, Karanov E (2005). Interaction Between Stress Bulg. J. Plant Physiol, Special Issue, 1-17.
  • Amarasiri SL, Wickramasinghe K (1977). Use of rice straw as a fertilizer matarial. Trop. Agric 33:39-49.
  • Barker AV, Pilbeam DJ (2007). Handbook of Plant Nutrition. CRC Press/Taylor and Francis, USA.,
  • Belanger RR, Bowen PA, Ehret DL, Menzies JG (1995). Soluble silicon: Its role in crop and disease managent of greenhouse crops. Plant Dis. 79:329-336.
  • Brecht MO, Datnoff L E, Kucharek TA, Nagata RT (2004). Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Dis. 88:338–344.
  • Datnoff LE, Rutherford BA (2004). Effects of silicon on leaf spot and melting out in bermudagrass. Golf Course Management, May, 89-92.
  • Datnoff LE, Rutherford BA (2004). Effects of silicon on leaf spot and melting out in bermudagrass. Golf Course Management, May, pp. 89-92.
  • Datnoff LE, Nagata RT (1999). Influence of silicon on gray leaf spot development in St. Augustinegrass. Phytopathology 89: S19.
  • Datnoff L, Brecht M, Kucharek T, Trenholm L, Nagata R, Synder G, Unruh B, Cısar J, (2005). Influence of silicon (Si) on controlling gray leaf spot and more in St. Augustine grass in Florida. TPI Turf News. 3(2):30-32.
  • Datnoff LE (2005). Plant Management Network. Silicon in the life and performance of Turfgrass. Online. Applied Turfgrass Science doi:10.1094/ATS2005-0914-01-RV.
  • Datnoff LE, Korndorfer G, Synder G (2001). Silicon in agriculture. Elwiser Science Publishing, p.17-39, New York.
  • Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64:3275–3281
  • Dobermann A, Fairhurst TH (2000). Rice:Nutrient Disorders & Nutrient Management. International Rice Research Institute. First edition, ISBN 981-04-2742-5, 95-98pp.
  • Edreva A (2005). Generation and Scavenging of Reactive Oxygen Species in Chloroplasts: A Submolecular Approach, Agriculture, Ecosystem and Environment, 106:119-133.
  • Epstein E (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50:641–664.
  • Fawe A, Menzies JG, Chérif M, Bélanger RR (2001). Silicon and disease resistance in dicotyledons. In Datnoff, L.E., Snyder, G.H. & Korndörfer (Eds) Silicon in agriculture. Elsevier, Amsterdam
  • Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD (1967). Soil and plant silicon and silicate response by sugar cane. Soil Sci. Soc. Am. 31:775–779
  • Fraysse F, Pokrovsky OS, Schott J (2006) Surface properties, solubility and dissolution kinetics of bamboo Phytoliths. Geochim Cosmochim Acta 70:1939–1951
  • Gascho GJ, Korndörfer GH (1998). Availability of silicon from several sources determined by chemical and biological methods. In: Soil Science Society of America Annual Meeting. Baltimore, MD, pp. 18–22 308.
  • Gussack E, Petrovic M, Rossi F (1998). Silicon: The universal contaminant. Turfgrass Times 9:9-11.
  • Hamayun M, Sohn EY, KhanSH, Shinwari ZK, Khan AL, Lee IJ (2010). Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak. J. Bot., 42(3): 1713-1722
  • Heckman JR, Provance-Bowley M (2011). Silicon in Soil Fertility and Crop Production; Ten years of Research. Northeast Branch Crops, Soils and Agronomy Meeting Abstracts. njaes.rutgers.edu/pubs/soilprofile/sp-v20.pdf. (Available at 2012)
  • Hodson MJ, Sangster AG (1988). Silica deposition in the influence bracts of wheat (Triticum aestivum). 1 Scanning electron microscopy and light microscopy. Can. J. Botany. 66:829-837.
  • Horst WJ, Marschner H (1978): Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil. 50:287-303
  • Horuz A, Korkmaz A (2012). Terme ve Bafra yöresinde çeltik yetiştirilen asit, tuzlu ve sodyumlu toprakların silisyum durumu ile ihtiyaçlarının belirlenmesi ve bu topraklarda elverişli silisyum miktarının belirlenmesinde kullanılacak yöntemlerin seçimi. OMÜ PYO.ZRT. 1901.11.008 BAP projesi sonuç raporu. Samsun
  • Hull RJ (2004). Scientists start to recognize silicon’s benefical effects. Turtgrass Trends 8:69-73.
  • Inanaga S, Higuchi Y, Chishalci, N (2002). Effect of silicon application on reproductive growth of rice plant. Soil Sci Plant Nutr. 48(3):341-345.
  • IRRI 1980. Organic matter and rice. International rice research institute. ISBN 971-104-104-9.
  • Kaya C, Tuna L, Higgs D (2006). Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under Water-Stress Condition. Journal of Plant Nutrition. 29:1469-1480.
  • Kaya C, Tuna L, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008). Silicon Improves Salinity Tolerance in Wheat Plants. Environmental and Experimental Botany. 62:10-16.
  • Khalid RA, Silva JA, Fox RL (1978). Residual effects of calcium silicate in tropical soils. I. fate of applied silicon during five years cropping. Soil Sci. Soc. Am. J. 42:89.
  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam. pp 57–84
  • Kovda VA (1985) Biogeochemistry of soil cover. Nauka Publication, Moscow, pp 159–179
  • Leibig L (1840). Organic Chemistry in Its Application to Agriculture and Physiology. From the manuscript of the author by Lyon Playfair. London: Taylor & Walton
  • Liang Y (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224
  • Liang Y, Wong JW, Wei L (2005). Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58(4):475-83
  • Liang YC, Ding RX (2002). Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China (Series C), 45: 298-308
  • Lux A, Luxová M, Abe J, Morita S, Inanaga S. (2003). Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant and Soil. 255(1):85–91
  • Ma JF, Takahashi E (2002). Soil, Fertilizer, and Plant Silicon Research in Japan, Elsevier Science, Amsterdam
  • Ma JF (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, Soil Science and Plant Nutrition, 50(1):11-18
  • Ma JF, Miyake Y, Takahashi E (2001). Silicon as a beneficial element for crop plants. In: Datnoff, L., Korndorfer, G., Snyder, G. (Eds.), Silicon in Agriculture. Elsevier Science Publishing, New York, pp. 17–39
  • Ma JF, Takahashi E (2002). Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier Science, Amsterdam
  • Marschner H, Oberle H, Cakmar I, Romheld V (1990). Plant Nutrition-Physiology and Application. Ktuwer Academic Dordrecnt (M.L. Van Bensichem, ed.) pp: 241-249.
  • Matichencov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 209–219
  • Matichenkov VV, Calvert DV, Snyder GH (1999). Silicon fertilizers for citrus in Florida. Proc. Fla. State Hort. Soc., 112: 5–8.
  • Matichenkov VV (1990). Amorphous oxide of silicon in soddy podzolic soil and its influence on plants. Autoref. Diss. Cand., Moscow State University, Moscow
  • Matichenkov VV, Bocharnikova EA (2001). The relationship between silicon and soil physical and chemical properties. In: L.E. Datnoff, G.H. Snyder, H. Korndorfer, eds. Silicon in Agriculture. Amsterdam: Elsevier, pp. 209–219.
  • Mauad M, Crusciol CAC, Filho HG, Correa JC (2003). Nitrogen and silicon fertiilization of upland rice. Sci. Agric. (Piracicaba, Braz.) 60:4
  • Meunier JD (2003). Le role des plantes dans le transfert du silicium dé la surface des continents, CR. Geosci., 335(16), 1199–1206
  • Miyake Y (1993). On the environmental condition and nitrogen source to appearance of silicon deficiency of the tomato plant. Sci. Rep. of the faculty of Agriculture Okayama Univ., Japan 81:27–35
  • Nanayakkara UN, Uddin W, Datnoff LE (2005). Effects of silicon on development of gray leaf spot in perennial ryegrass turf. Phytopathology 95:S172.
  • Natoh T, Kairusmee P, Takahashi E (1986). Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295-304.
  • North Carolina State University 1997. Effecet of soluble silica on Brown patch and dolar spot of creeping bentgrass. North Carolina Turfgrass Aug/spt. P. 34-36. Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Belanger RR (2003). Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535-546.
  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Belanger RR (2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: A biochemical mechanism for blast resistance. Phytopathology 94:177-183.
  • Rondeau E (2001). Effect of potassium silicates on disease tolerance of bentgrass. Seminaire de fin d’etudes, Centre de Recherche en Horticulture, Université Laval, Québec, Canada.
  • Saccone L, Conley DJ, Koning E et al (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459
  • Saigusa M, Onozawa K, Watanabe H, Shibuya K (2000). Effects of porous hydrate calcium silicate on the wear resistance, insect resistance, and disease tolerance of turfgrass “Miyako”. Grassland Science 45: 416-420.
  • Sauer D, Saccone L, Conley DJ (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108
  • Savant NK, Synder GH, Datnoff LE (1997). Silicon managent and sustainable rice production. Pages 151-199 in Advances in Agronomy, vol. 58. D.L. Sparks ed. Academic Pres, San Diego, CA.
  • Schmidt RE, Zhang X, Chalmers DR (1999). Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr. 22:1763-1773.
  • Snyder GH, Jones DB, Gascho GJ (1986) Silicon fertilization of rice on Everglades Histosols. Soil Sci Soc Am J 50:1259–1263
  • Snyder HG, Matichenkov VV, Datnoff EL (2006). Handbook of Nutrition. Silicon Chapter 19, Ed:Barker, A.V. and Pilbeam D.J. CRC p.551-568.
  • Takahashi E (1995). Uptake mode and physiological functions of silica. Japan J. Soil Sci. Plant Nutr. 49:357–360
  • Takahashi E, Ma JF, Miyake Y (1990). The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 2:99-122.
  • Tarnai K and Ma JF 2003: Characterization of silicon uptake by rice roots. New Phytol., 158,431-436
  • Trenholm LE, Datnoff LE, Nagata RT (2004). Influence of silicon on drought and shade tolerance of St. Augustinegrass. Hort Technology14:487-490.
  • Turan M, Horuz A. 2012. Bitki Besleme. Bitki Beslemenin Temel İlkeleri. Ed: M. Rüştü Karaman, 123-347. Ankara
  • Uriarte RF, Shew HD, Bowman D C (2004). Effect of soluble silica on brown patch and dollar spot of creeping bentgrass. J. Plant Nutri. 27:325-339.
  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232
  • Winslow MD, Okada K, Correa-Victoria F (1997). Silicon deficiency and the adaptation of rice ecotypes. Plant and Soil. 188:239-248.

The Role of Silicon in Abiotic and Biotic Stress Conditions

Year 2017, Volume: 27 Issue: 4, 657 - 664, 26.12.2017
https://doi.org/10.29133/yyutbd.309632

Abstract

In this study, the role of silicon (Si) in the
mechanisms developed by plants in response to adverse environmental factors
(abiotic and biotic) was investigated. Silicon is taken up in the form of the anion Si(OH)4 with active or passive
absorption by plants. Si accumulating in roots, leaves or husk under abiotic
stress conditions prevents water stress 
by reducing transpiration by means of polymerizing in the form of
silicic acid. Generating Al, Fe, Mn, Cd, Pb etc complexes in the soil solution
with silicon reduces the potential heavy metal toxicity. The silicon increases
the strength and rigidity of the plant stem increasing the thickness of the
cell wall. It also suppresses reactive oxygen species (H2O2,1O2 and O3) which cause peroxidation of
lipids in the cell by increasing the superoxide dismutase activity (SDA) of the
leaves inducing ethylene (C2H4). It stimulates or
accelerates the activation of sitinase, peroxidase, polyphenol oxidase under
biotic stress conditions. Especially in the case of phytopathological diseases
or entomological damages, silicon can reduce these damages forming low
molecular weight compounds having flavonoids and antifungal properties in
dicotyledonous and monocotyledonous plants.

References

  • Kaynaklar Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96–103.
  • Ahmad RS, Zaheer H, Ismail S (1992). Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci.85:43-50
  • Aktaş H, Tunalı B (1986). Türkiye’ de ekimi yapılan ve ümit var çeltik çeşitlerinin Pyricularia oryzae Bri.et Cav., Drechslera oryzae Subram. and Jan ve Fusarium moniliforme Sheld’ ye karşı reaksiyonlarının saptanması. Bitki Koruma Bülteni, 26 (1-2): 41-58.
  • Alexieva V, Ivanov S, Sergiev I, Karanov E (2005). Interaction Between Stress Bulg. J. Plant Physiol, Special Issue, 1-17.
  • Amarasiri SL, Wickramasinghe K (1977). Use of rice straw as a fertilizer matarial. Trop. Agric 33:39-49.
  • Barker AV, Pilbeam DJ (2007). Handbook of Plant Nutrition. CRC Press/Taylor and Francis, USA.,
  • Belanger RR, Bowen PA, Ehret DL, Menzies JG (1995). Soluble silicon: Its role in crop and disease managent of greenhouse crops. Plant Dis. 79:329-336.
  • Brecht MO, Datnoff L E, Kucharek TA, Nagata RT (2004). Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Dis. 88:338–344.
  • Datnoff LE, Rutherford BA (2004). Effects of silicon on leaf spot and melting out in bermudagrass. Golf Course Management, May, 89-92.
  • Datnoff LE, Rutherford BA (2004). Effects of silicon on leaf spot and melting out in bermudagrass. Golf Course Management, May, pp. 89-92.
  • Datnoff LE, Nagata RT (1999). Influence of silicon on gray leaf spot development in St. Augustinegrass. Phytopathology 89: S19.
  • Datnoff L, Brecht M, Kucharek T, Trenholm L, Nagata R, Synder G, Unruh B, Cısar J, (2005). Influence of silicon (Si) on controlling gray leaf spot and more in St. Augustine grass in Florida. TPI Turf News. 3(2):30-32.
  • Datnoff LE (2005). Plant Management Network. Silicon in the life and performance of Turfgrass. Online. Applied Turfgrass Science doi:10.1094/ATS2005-0914-01-RV.
  • Datnoff LE, Korndorfer G, Synder G (2001). Silicon in agriculture. Elwiser Science Publishing, p.17-39, New York.
  • Dietzel M (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64:3275–3281
  • Dobermann A, Fairhurst TH (2000). Rice:Nutrient Disorders & Nutrient Management. International Rice Research Institute. First edition, ISBN 981-04-2742-5, 95-98pp.
  • Edreva A (2005). Generation and Scavenging of Reactive Oxygen Species in Chloroplasts: A Submolecular Approach, Agriculture, Ecosystem and Environment, 106:119-133.
  • Epstein E (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50:641–664.
  • Fawe A, Menzies JG, Chérif M, Bélanger RR (2001). Silicon and disease resistance in dicotyledons. In Datnoff, L.E., Snyder, G.H. & Korndörfer (Eds) Silicon in agriculture. Elsevier, Amsterdam
  • Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD (1967). Soil and plant silicon and silicate response by sugar cane. Soil Sci. Soc. Am. 31:775–779
  • Fraysse F, Pokrovsky OS, Schott J (2006) Surface properties, solubility and dissolution kinetics of bamboo Phytoliths. Geochim Cosmochim Acta 70:1939–1951
  • Gascho GJ, Korndörfer GH (1998). Availability of silicon from several sources determined by chemical and biological methods. In: Soil Science Society of America Annual Meeting. Baltimore, MD, pp. 18–22 308.
  • Gussack E, Petrovic M, Rossi F (1998). Silicon: The universal contaminant. Turfgrass Times 9:9-11.
  • Hamayun M, Sohn EY, KhanSH, Shinwari ZK, Khan AL, Lee IJ (2010). Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak. J. Bot., 42(3): 1713-1722
  • Heckman JR, Provance-Bowley M (2011). Silicon in Soil Fertility and Crop Production; Ten years of Research. Northeast Branch Crops, Soils and Agronomy Meeting Abstracts. njaes.rutgers.edu/pubs/soilprofile/sp-v20.pdf. (Available at 2012)
  • Hodson MJ, Sangster AG (1988). Silica deposition in the influence bracts of wheat (Triticum aestivum). 1 Scanning electron microscopy and light microscopy. Can. J. Botany. 66:829-837.
  • Horst WJ, Marschner H (1978): Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil. 50:287-303
  • Horuz A, Korkmaz A (2012). Terme ve Bafra yöresinde çeltik yetiştirilen asit, tuzlu ve sodyumlu toprakların silisyum durumu ile ihtiyaçlarının belirlenmesi ve bu topraklarda elverişli silisyum miktarının belirlenmesinde kullanılacak yöntemlerin seçimi. OMÜ PYO.ZRT. 1901.11.008 BAP projesi sonuç raporu. Samsun
  • Hull RJ (2004). Scientists start to recognize silicon’s benefical effects. Turtgrass Trends 8:69-73.
  • Inanaga S, Higuchi Y, Chishalci, N (2002). Effect of silicon application on reproductive growth of rice plant. Soil Sci Plant Nutr. 48(3):341-345.
  • IRRI 1980. Organic matter and rice. International rice research institute. ISBN 971-104-104-9.
  • Kaya C, Tuna L, Higgs D (2006). Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under Water-Stress Condition. Journal of Plant Nutrition. 29:1469-1480.
  • Kaya C, Tuna L, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008). Silicon Improves Salinity Tolerance in Wheat Plants. Environmental and Experimental Botany. 62:10-16.
  • Khalid RA, Silva JA, Fox RL (1978). Residual effects of calcium silicate in tropical soils. I. fate of applied silicon during five years cropping. Soil Sci. Soc. Am. J. 42:89.
  • Knight CTG, Kinrade SD (2001) A primer on the aqueous chemistry of silicon. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam. pp 57–84
  • Kovda VA (1985) Biogeochemistry of soil cover. Nauka Publication, Moscow, pp 159–179
  • Leibig L (1840). Organic Chemistry in Its Application to Agriculture and Physiology. From the manuscript of the author by Lyon Playfair. London: Taylor & Walton
  • Liang Y (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224
  • Liang Y, Wong JW, Wei L (2005). Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58(4):475-83
  • Liang YC, Ding RX (2002). Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China (Series C), 45: 298-308
  • Lux A, Luxová M, Abe J, Morita S, Inanaga S. (2003). Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant and Soil. 255(1):85–91
  • Ma JF, Takahashi E (2002). Soil, Fertilizer, and Plant Silicon Research in Japan, Elsevier Science, Amsterdam
  • Ma JF (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses, Soil Science and Plant Nutrition, 50(1):11-18
  • Ma JF, Miyake Y, Takahashi E (2001). Silicon as a beneficial element for crop plants. In: Datnoff, L., Korndorfer, G., Snyder, G. (Eds.), Silicon in Agriculture. Elsevier Science Publishing, New York, pp. 17–39
  • Ma JF, Takahashi E (2002). Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier Science, Amsterdam
  • Marschner H, Oberle H, Cakmar I, Romheld V (1990). Plant Nutrition-Physiology and Application. Ktuwer Academic Dordrecnt (M.L. Van Bensichem, ed.) pp: 241-249.
  • Matichencov VV, Bocharnikova EA (2001) The relationship between silicon and soil physical and chemical properties. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 209–219
  • Matichenkov VV, Calvert DV, Snyder GH (1999). Silicon fertilizers for citrus in Florida. Proc. Fla. State Hort. Soc., 112: 5–8.
  • Matichenkov VV (1990). Amorphous oxide of silicon in soddy podzolic soil and its influence on plants. Autoref. Diss. Cand., Moscow State University, Moscow
  • Matichenkov VV, Bocharnikova EA (2001). The relationship between silicon and soil physical and chemical properties. In: L.E. Datnoff, G.H. Snyder, H. Korndorfer, eds. Silicon in Agriculture. Amsterdam: Elsevier, pp. 209–219.
  • Mauad M, Crusciol CAC, Filho HG, Correa JC (2003). Nitrogen and silicon fertiilization of upland rice. Sci. Agric. (Piracicaba, Braz.) 60:4
  • Meunier JD (2003). Le role des plantes dans le transfert du silicium dé la surface des continents, CR. Geosci., 335(16), 1199–1206
  • Miyake Y (1993). On the environmental condition and nitrogen source to appearance of silicon deficiency of the tomato plant. Sci. Rep. of the faculty of Agriculture Okayama Univ., Japan 81:27–35
  • Nanayakkara UN, Uddin W, Datnoff LE (2005). Effects of silicon on development of gray leaf spot in perennial ryegrass turf. Phytopathology 95:S172.
  • Natoh T, Kairusmee P, Takahashi E (1986). Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295-304.
  • North Carolina State University 1997. Effecet of soluble silica on Brown patch and dolar spot of creeping bentgrass. North Carolina Turfgrass Aug/spt. P. 34-36. Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Belanger RR (2003). Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535-546.
  • Rodrigues FA, McNally DJ, Datnoff LE, Jones JB, Labbe C, Benhamou N, Menzies JG, Belanger RR (2004). Silicon enhances the accumulation of diterpenoid phytoalexins in rice: A biochemical mechanism for blast resistance. Phytopathology 94:177-183.
  • Rondeau E (2001). Effect of potassium silicates on disease tolerance of bentgrass. Seminaire de fin d’etudes, Centre de Recherche en Horticulture, Université Laval, Québec, Canada.
  • Saccone L, Conley DJ, Koning E et al (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459
  • Saigusa M, Onozawa K, Watanabe H, Shibuya K (2000). Effects of porous hydrate calcium silicate on the wear resistance, insect resistance, and disease tolerance of turfgrass “Miyako”. Grassland Science 45: 416-420.
  • Sauer D, Saccone L, Conley DJ (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108
  • Savant NK, Synder GH, Datnoff LE (1997). Silicon managent and sustainable rice production. Pages 151-199 in Advances in Agronomy, vol. 58. D.L. Sparks ed. Academic Pres, San Diego, CA.
  • Schmidt RE, Zhang X, Chalmers DR (1999). Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr. 22:1763-1773.
  • Snyder GH, Jones DB, Gascho GJ (1986) Silicon fertilization of rice on Everglades Histosols. Soil Sci Soc Am J 50:1259–1263
  • Snyder HG, Matichenkov VV, Datnoff EL (2006). Handbook of Nutrition. Silicon Chapter 19, Ed:Barker, A.V. and Pilbeam D.J. CRC p.551-568.
  • Takahashi E (1995). Uptake mode and physiological functions of silica. Japan J. Soil Sci. Plant Nutr. 49:357–360
  • Takahashi E, Ma JF, Miyake Y (1990). The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 2:99-122.
  • Tarnai K and Ma JF 2003: Characterization of silicon uptake by rice roots. New Phytol., 158,431-436
  • Trenholm LE, Datnoff LE, Nagata RT (2004). Influence of silicon on drought and shade tolerance of St. Augustinegrass. Hort Technology14:487-490.
  • Turan M, Horuz A. 2012. Bitki Besleme. Bitki Beslemenin Temel İlkeleri. Ed: M. Rüştü Karaman, 123-347. Ankara
  • Uriarte RF, Shew HD, Bowman D C (2004). Effect of soluble silica on brown patch and dollar spot of creeping bentgrass. J. Plant Nutri. 27:325-339.
  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232
  • Winslow MD, Okada K, Correa-Victoria F (1997). Silicon deficiency and the adaptation of rice ecotypes. Plant and Soil. 188:239-248.
There are 73 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Ayhan Horuz

Güney Akınoğlu

Ahmet Akorkmaz

Publication Date December 26, 2017
Acceptance Date October 25, 2017
Published in Issue Year 2017 Volume: 27 Issue: 4

Cite

APA Horuz, A., Akınoğlu, G., & Akorkmaz, A. (2017). The Role of Silicon in Abiotic and Biotic Stress Conditions. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(4), 657-664. https://doi.org/10.29133/yyutbd.309632
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.