Review
BibTex RIS Cite

The Use of DNA Barcoding in Entomology

Year 2018, Volume: 28 Issue: 1, 126 - 134, 30.03.2018
https://doi.org/10.29133/yyutbd.350146

Abstract

DNA barcoding is a
taxonomic method that uses a short and standard genomic DNA fragment to
discriminate species. An approximately 600-700 base pair (bp) region of the
mitochondrial cytochrome c oxidase
subunit I
(COI) gene referred as
‘DNA barcode’ is used in insect barcoding studies. This short standart DNA
sequence is not only a tool for simplifying species identification but also is
used for discovery of new species. Furthermore DNA barcoding enables the
detection of cryptic species via delimiting species boundaries. Here we
reviewed the historical and conceptual perspective of DNA barcoding term, the
gene regions used as DNA barcodes and COI
gene which is ideal species-identification
marker in insects. Furthermore we
discussed the advantages and limitations of DNA barcoding and presented DNA
barcoding studies in entomology.

References

  • 1. Ahrens D, Monaghan MT, Vogler AP (2007). DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution. 44: 436-449.
  • 2. Alberts B, Johnson A, Lewis J, Raff R, Roberts K, Walter P (2002). The genetic systems of mitochondria and plastids. Molecular Biology of the Cell. 4th Edn. New York: Garland Science.
  • 3. Amaral AR, Sequeira M, Coelho MM (2007). A first approach to the usefulness of cytochrome c oxidase I barcodes in the identification of closely related delphinid cetacean species. Mar. Freshwater Res. 58: 505-510.
  • 4. Armstrong K, Ball S (2005). DNA barcodes for biosecurity: Invasive species identification. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360: 1813-1823.
  • 5. Asahida T, Yamashita Y, Kabayashi T (1997). Identification of consumed stone flounder Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Hann) using mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology. 217, 153-163.
  • 6. Ball SL, Armstrong KF (2006). DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal of Forest Research. 36: 337-350.
  • 7. Beutel RG, Pohl H (2006). Endopterygote systematics– where do we stand and what is the goal (Hexapoda, Arthropoda)? Systematic Entomology. 31: 202-219.
  • 8. Blaxter M (2003). Counting angels with DNA. Nature. 421: 22-124.
  • 9. Blaxter ML (2004). The promise of a DNA taxonomy. Philos Trans R Soc Lond B Biol Sci. 359: 669-679.
  • 10. Busse HJ, Denner EBM, Lubitz W (1996). Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. Journal of Biotechnology. 47: 3-38.
  • 11. Cywinska A, Hunter FF, Hebert P.D.N (2006). Identifying Canadian mosquito species through DNA barcodes. Medical and Veterinary Entomology. 20: 413-424.
  • 12. Çakmak I, Janssen A, Sabelis MW (2006). Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp. and Appl. Acarol. 38: 33-46.
  • 13. Dasmahapatra KK, Mallet J (2006). Taxonomy: DNA barcodes: recent successes and future prospects. Heredity (Edinb). 97: 254-255.
  • 14. Duman M, Guz N, Sertkaya E (2015). DNA barcoding of sunn pest adult parasitoids using cytochrome c oxidase subunit I (COI). Biochem. Syst. Ecol. 59 70-77.
  • 15. Dunshea G (2009). DNA-based diet analysis for any predator. PLoS One 4:e5252.
  • 16. Farrell LE, Roman J, Sunquist ME (2000). Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol. 9: 1583-90.
  • 17. Franck P, Maalouly-Matar M, Olivares J (2017). Molecular Tools for the Detection and the Identification of Hymenoptera Parasitoids in Tortricid Fruit Pests. Int. J. Mol. Sci. 18, 2031.
  • 18. Foley DH, Wilkerson RC, Cooper RD, Volovsek ME, Bryan JH (2007). A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Molecular Phylogenetics and Evolution. 43: 283-297.
  • 19. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294-299.
  • 20. Fournier V, Hagler J, Daane K, de Leon J, Groves R (2008). Identifying the predator complex of Homalodisca vitripennis (Hemiptera: Cicadellidae): A comparative study of the efficacy of an ELISA and PCR gut content assay. Oecologia 157:629-40.
  • 21. Funk DJ, Omland KE (2003). Species-level paraphyly and polyphyly: Frequency, causes, consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Syst. 34: 397-423.
  • 22. Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007). Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of arthropods. J. Appl. Entomol. 131: 225-240.
  • 23. Gariepy TD, Haye T, Zhang J (2014). A molecular diagnostic tool for the preliminary assessment of host–parasitoid associations in biological control programmes for a new invasive pest. Mol Ecol. 23: 3912-3924.
  • 24. Gattolliat JL, Monaghan MT (2010). 'DNA‐based association of adults and larvae in Baetidae (Ephemeroptera) with the description of a new genus Adnoptilum in Madagascar'. Journal of the North American Benthological Society. 29 1042-1057.
  • 25. Godfray HCJ (1994). Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey.
  • 26. Gomez A, Wright PJ, Lunt DH, Cancino JM, Carvalho GR, Hughes RN (2007). Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc Biol Sci Ser B. 274: 199-207.
  • 27. Grimaldi DA, Engel MS (2005). Evolution of the Insects. Cambridge University Press, Cambridge.
  • 28. Guz N, Kocak E, Kilincer N (2013). Molecular phylogeny of Trissolcus species (Hymenoptera: Scelionidae). Biochemical Systematics and Ecology 48, 85-91.
  • 29. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America. 103: 968-971.
  • 30. Hayashi M, Sota T (2010) Identification of elmid larvae (Coleoptera: Elmidae) from Sanin District of Honshu, Japan, based on mitochondrial DNA sequences. Entomological Science. 13 417-424.
  • 31. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society. B. Biological Sciences. 270: 313-321.
  • 32. Hebert PDN, Ratnasingham S, deWaard JR (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B, 270: 96-99.
  • 33. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA. 101: 14812-14817.
  • 34. Hogg ID, Hebert PDN (2004). Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology. 82: 749-754.
  • 35. Jung SW, Min HK, Kim Y, Choi HA, Lee SY, Baey J, Paek WK (2016). A DNA barcode library of the beetle refer- ence collection (Insecta: Coleoptera) in the National Science Museum, Korea. J. Asia Pac. Biodivers. 9: 234-244.
  • 36. Jurado-Rivera JA, Vogler AP, Reid CAM, Petitpierre E, Gómez Zurita J (2009). DNA barcoding insect–hostplant associations. Proceedings of the Royal Society B: Biological Sciences. 276: 639-648.
  • 37. Kathirithamby J, Hayward A, Mcmahon DP, Ferreira RS, Andreazze R, Almeida Andrade HTD, Fresneau D (2010). 'Conspecifics of a heterotrophic heteronomous species of Strepsiptera (Insecta) are matched by molecular characterization. Systematic Entomology. 35 234-242 .
  • 38. Kehlmaier C, Assmann T (2010). Molecular analysis meets morphology-based systematics-a synthetic approach for Chalarinae (Insecta: Diptera: Pipunculidae). Systematic Entomology. 35, 181-195.
  • 39. King RA, Vaughan IP, Bell JR, Bohan DA, Symondson WOC (2010). Prey choice by carabid beetles feeding on an earthworm community analysed using species and lineagespecific PCR primers. Mol Ecol. 19: 1721-32.
  • 40. Kohn MH, Wayne RK (1997). Facts from feces revisited. Trends in Ecology & Evolution. 12, 223-227.
  • 41. Kumar NP, Rajavel AR, Natarajan R, Jambulingam, P (2007). DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology. 44: 1-7.
  • 42. Magnacca KN, Brown MJF (2010). Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus bees (Hymenoptera: Colletidae). BMC Evolutionary Biology. 10, 174.
  • 43. Malgorn Y, Coquoz R (1999). DNA typing for identification of some species of Calliphoridae. An interest in forensic entomology. Forensic Science International. 102: 111-119.
  • 44. Mastrangelo T, Paulo DF, Bergamo LW, Morais EGF, Silva M, Bezerra-Silva G, Azeredo-Espin AM (2014). Detection and genetic diversity of a Heliothine invader (Lepidoptera: Noctuidae) from north and northeast of Brazil. J. Econ. Entomol. 107(3): 970-980.
  • 45. Matheson CD, Muller GC, Junnila A, Vernon K, Hausmann A, Miller MA, Greenblatt C, Schlein Y (2007). A PCR method for detection of plant meals from the guts of insects. Organisms Diversity & Evolution. 7, 294-303.
  • 46. Meyer CP, Paulay G (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3, e422.
  • 47. Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005). 'Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae)'. Systematic Entomology. 30 499-509.
  • 48. Monaghan MT, Balke M, Gregory TR, Vogler AP (2005). DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society. B. Biological Sciences. 360: 1925-1933.
  • 49. Monaghan MT, Balke M, Pons J, Vogler AP (2006). Beyond barcodes: complex DNA taxonomy of a South Pacific Island radiation. Proceedings of the Royal Society. B. Biological Sciences. 273: 887-893.
  • 50. Moulton MJ, Song H, Whiting MF (2010). Assessing the effects of primer specificity on eliminating Numt coamplification in DNA barcoding: A case study from Orthoptera (Anthropoda: Insecta). Mol Eco Res. 10: 615-27.
  • 51. Murría C, Zamora‐Muñoz C, Bonada N, Ribera C, Prat N (2010). 'Genetic and morphological approaches to the problematic presence of three Hydropsyche species of the pellucidula group (Trichoptera: Hydropsychidae) in the westernmost Mediterranean Basin'. Aquatic Insects. 32: 85-98.
  • 52. Nagoshi RN, Brambila J, Meagher RL (2011). Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J. Insect Sci. 11 (154).
  • 53. Nelson LA, Wallman JF, Dowton M (2007). Using COI barcodes to identify forensically and medically important blowflies. Medical and Veterinary Entomology. 21: 44-52.
  • 54. Page RD (2016). DNA barcoding and taxonomy: dark taxa and dark texts. Phil Trans R Soc B. 371: 20150334.
  • 55. Shatters Jr RG, Powell CA, Boykin LM, Sheng HL, McKenzie CL (2009). Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisa tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. Journal of Economic Entomology. 102: 750-758.
  • 56. Nakahara S, Zacca T, Huertas B, Neild A, Hall J, Lamas G, Holian L, Espeland M, Willmott KR (2017). Remarkable sexual dimorphism, rarity and cryptic species: a revision of the ‘aegrota species group’ of the Neotropical butterfly genus Caeruleuptychia Forster, 1964 with the description of three new species (Lepidoptera, Nymphalidae, Satyrinae). Insect Systematics & Evolution. 27 July 2017.
  • 57. Smit J, Reijnen B, Stokvis F (2013). Half of the European fruit fly species barcoded (Diptera, Tephritidae); a feasibility test for molecular identification. ZooKeys. 365: 279-305.
  • 58. Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007). DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera: Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences USA. 104: 4967-4972.
  • 59. Smith HA, Nagle CA, MacVean CA, McKenzie CL (2016). Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) to imidacloprid, thiamethoxam, dinotefuran and flupyradifurone in south Florida. Insects. 7: 57.
  • 60. Thorman B (2015). Biodiversity of leaf beetles (Coleoptera: Chrysomelidae) in a tropical montane rainforest ecosystem assessed with DNA barcoding. PhD thesis. University of Bonn. 250 pages.
  • 61. Pauls SU, Blahnik RJ, Zhou X, Wardwell CT, Holzenthal RW (2010). DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). Journal of the North American Benthological Society. 29: 1058-1074 .
  • 62. Pfenninger M, Nowak C, Kley C, Steinke D, Streit B (2007). Utility of DNA taxonomy and barcoding for the inference of larval community structure inmorphologically cryptic Chironomus (Diptera) species. Molecular Ecology. 16: 1957-1968.
  • 63. Pons J (2006). DNA-based identification of preys from nondestructive, total DNAextractions of predators using arthropod universal primers. Molecular Ecology Notes. 6: 623-626.
  • 64. Sanger F, S Nicklen, Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463-5467.
  • 65. Scheffer SJ, Lewis ML, Joshi RC (2006). DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Annals of the Entomological Society of America. 99: 204-210.
  • 66. Scheffer SJ, Wiegmann BM (2000). Molecular phylogenetics of the holly leafminers (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization. Molecular Phylogenetics and Evolution. 17: 244-255.
  • 67. Schindel DE, Miller SE (2005). DNA barcoding a useful tool for taxonomists. Nature. 435: 17.
  • 68. Sheppard SK, Harwood JD (2005). Advances in molecular ecology: tracking trophic links through predator-prey foodwebs. Functional Ecology. 19: 751-762.
  • 69. Smith MA, Woodley NE, Janzen DH, Hallwachs W Hebert PDN (2006). DNA barcodes reveal cryptic hostspecificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences USA. 103: 3657-3662.
  • 70. Smith MA, Fisher BL, Hebert PDN (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society. B. Biological Sciences. 360: 1825-1834.
  • 71. Sohrabi F, Annie E, Parviz S, Moosa S, Mohammad SM (2013). Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa. Biol Control. 58: 65-72.
  • 72. Sperling FA, Anderson GS, Hickey DA (1994). A DNA-based approach to the identification of insect species used for postmortem interval estimation. Journal of Forensic Sciences. 39: 418-427.
  • 73. Sutou M, Kato T, Ito M (2007). Description of the final larval stage and the pupa of Ctenosciara japonica (Diptera: Sciaridae) and their DNA barcodes. Studia Dipterologica. 14: 17-22.
  • 74. Thomas A, Trotman J, Wheatley A, Aebi A, Zindel R, Brown PMJ (2013). Predation of native coccinellids by the invasive alien Harmonia axyridis (Coleoptera: Coccinellidae): detection in Britain by PCR based gut analysis. Insect Conserv Divers. 6: 20-27.
  • 75. Thomsen PF, Elias S, Gilbert MTP, Haile J, Munch K, Kuzmina S, Froese DG, Sher A, Holdaway RN, Willerslev E (2009). Non-destructive sampling of ancient insect DNA. PLoS ONE. 4: e5048.
  • 76. Tyagi K, Kumar V, Singha D, Chakraborty R (2015). Morphological and DNA barcoding evidence for invasive pest thrips, Thrips parvispinus (Thripidae: Thysanoptera), newly recorded from India. J. Insect Sci. 15 (105).
  • 77. Van Houdt JKJ, Breman FC, Virgilio M, de Meyer M (2010). Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources. 10, 459-465.
  • 78. Van Toor, RF, Foster SP, Anstead JA, Mitchinson S, Fenton B, Kasprowicz L (2008). Insecticide resistance and genetic composition of Myzus persicae (Hemiptera: Aphididae) on field potatoes in New Zealand. Crop Prot. 27 (2): 236-247.
  • 79. Vincent SJ, Vian M Carlotti MP (2000). Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. Journal of Forensic Sciences. 45: 820-823.
  • 80. Virgilio M, Backeljau T, Nevado B, De Meyer M (2010). Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 11: 1-10.
  • 81. Wallman JF, Donnellan SC (2001). The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Science International. 120: 60-67.
  • 82. Waugh J (2007). DNA barcoding in animal species: progress, potential and pitfalls. Bioessays. 29: 188-197.
  • 83. Weber DC, Lundgren JG (2009). Detection of predation using qPCR: Effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. J Insect Sci. 9: 1-12.
  • 84. Wei SJ, Mirab-Balou M, Shi BC, Gong YJ, Liu J, Kang ZJ, Xue-Xin C, Hong L (2010). External morphology and molecular identification of the newly found invasive pest Echinothrips americanus Morgan (Thysanoptera: Thripidae) in China. Acta Entomol. Sin. 53 (6): 715-715.
  • 85. Wells JD, Sperling FA (2001). DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Science International. 120: 110-115.
  • 86. Wells JD, Pape T, Sperling FA (2001). DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). Journal of Forensic Sciences 46: 1098-1102.
  • 87. Wilson EO (2003). The encyclopedia of life. Trends in Ecology and Evolution. 18: 77-80.
  • 88. Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999). Can the detection of prey DNA amongst the gut contents of invertebrate predators provide a new technique for quantifying predation in the field? Mol. Ecol. 8: 2081-2088.
  • 89. Zheng Y, Wu R, Dorn S, Chen M (2017). Diversity of tortricid moths in apple orchards: Evidence for a cryptic species of Grapholita (Lepidoptera: Tortricidae) from China. Bulletin of Entomological Research. 107 (2), 268-280.

Entomolojide DNA Barkodlama Tekniğinin Kullanımı

Year 2018, Volume: 28 Issue: 1, 126 - 134, 30.03.2018
https://doi.org/10.29133/yyutbd.350146

Abstract

DNA barkodlama, herhangi
bir organizmaya ait DNA’nın PCR teknikleri ile çoğaltılacak büyüklükteki kısa
ve standart bir fragmanının dizilenmesi ile tanılanmasını sağlayan taksonomik
bir yöntem olarak ifade edilebilir. Bu amaçla böceklerle yapılan çalışmalarda
‘DNA barkodu’ olarak bilinen mitokondriyal sitokrom
c oksidaz alt ünite I
(COI)
geninin yaklaşık 600-700 baz çiftine (bç) ait kısmı kullanılmaktadır. Bu kısa
standart DNA sekansı türlerin tanılanmasını kolaylaştırmasının yanı sıra yeni
türlerin keşfi için de oldukça iyi bir araçtır. Ayrıca DNA barkodlama türlerin
sınırlarını belirleyerek kriptik türlerin ayrımına katkı sağlar. Bu derlemede
DNA barkodlama teriminin tarihsel ve kavramsal olarak ortaya çıkışı, DNA barkodu
olarak kullanılan gen bölgeleri ve böcekler için ideal tür tanımlama markörü
olan COI gen bölgesi hakkında bilgi
verilmiştir. Son olarak DNA barkodlamanın avantajları ve kısıtlamaları
irdelenerek entomolojide DNA barkodlama çalışmalarından örnekler sunulmuştur. 

References

  • 1. Ahrens D, Monaghan MT, Vogler AP (2007). DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution. 44: 436-449.
  • 2. Alberts B, Johnson A, Lewis J, Raff R, Roberts K, Walter P (2002). The genetic systems of mitochondria and plastids. Molecular Biology of the Cell. 4th Edn. New York: Garland Science.
  • 3. Amaral AR, Sequeira M, Coelho MM (2007). A first approach to the usefulness of cytochrome c oxidase I barcodes in the identification of closely related delphinid cetacean species. Mar. Freshwater Res. 58: 505-510.
  • 4. Armstrong K, Ball S (2005). DNA barcodes for biosecurity: Invasive species identification. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360: 1813-1823.
  • 5. Asahida T, Yamashita Y, Kabayashi T (1997). Identification of consumed stone flounder Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Hann) using mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology. 217, 153-163.
  • 6. Ball SL, Armstrong KF (2006). DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal of Forest Research. 36: 337-350.
  • 7. Beutel RG, Pohl H (2006). Endopterygote systematics– where do we stand and what is the goal (Hexapoda, Arthropoda)? Systematic Entomology. 31: 202-219.
  • 8. Blaxter M (2003). Counting angels with DNA. Nature. 421: 22-124.
  • 9. Blaxter ML (2004). The promise of a DNA taxonomy. Philos Trans R Soc Lond B Biol Sci. 359: 669-679.
  • 10. Busse HJ, Denner EBM, Lubitz W (1996). Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. Journal of Biotechnology. 47: 3-38.
  • 11. Cywinska A, Hunter FF, Hebert P.D.N (2006). Identifying Canadian mosquito species through DNA barcodes. Medical and Veterinary Entomology. 20: 413-424.
  • 12. Çakmak I, Janssen A, Sabelis MW (2006). Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp. and Appl. Acarol. 38: 33-46.
  • 13. Dasmahapatra KK, Mallet J (2006). Taxonomy: DNA barcodes: recent successes and future prospects. Heredity (Edinb). 97: 254-255.
  • 14. Duman M, Guz N, Sertkaya E (2015). DNA barcoding of sunn pest adult parasitoids using cytochrome c oxidase subunit I (COI). Biochem. Syst. Ecol. 59 70-77.
  • 15. Dunshea G (2009). DNA-based diet analysis for any predator. PLoS One 4:e5252.
  • 16. Farrell LE, Roman J, Sunquist ME (2000). Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol. 9: 1583-90.
  • 17. Franck P, Maalouly-Matar M, Olivares J (2017). Molecular Tools for the Detection and the Identification of Hymenoptera Parasitoids in Tortricid Fruit Pests. Int. J. Mol. Sci. 18, 2031.
  • 18. Foley DH, Wilkerson RC, Cooper RD, Volovsek ME, Bryan JH (2007). A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Molecular Phylogenetics and Evolution. 43: 283-297.
  • 19. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294-299.
  • 20. Fournier V, Hagler J, Daane K, de Leon J, Groves R (2008). Identifying the predator complex of Homalodisca vitripennis (Hemiptera: Cicadellidae): A comparative study of the efficacy of an ELISA and PCR gut content assay. Oecologia 157:629-40.
  • 21. Funk DJ, Omland KE (2003). Species-level paraphyly and polyphyly: Frequency, causes, consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Syst. 34: 397-423.
  • 22. Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007). Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of arthropods. J. Appl. Entomol. 131: 225-240.
  • 23. Gariepy TD, Haye T, Zhang J (2014). A molecular diagnostic tool for the preliminary assessment of host–parasitoid associations in biological control programmes for a new invasive pest. Mol Ecol. 23: 3912-3924.
  • 24. Gattolliat JL, Monaghan MT (2010). 'DNA‐based association of adults and larvae in Baetidae (Ephemeroptera) with the description of a new genus Adnoptilum in Madagascar'. Journal of the North American Benthological Society. 29 1042-1057.
  • 25. Godfray HCJ (1994). Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, New Jersey.
  • 26. Gomez A, Wright PJ, Lunt DH, Cancino JM, Carvalho GR, Hughes RN (2007). Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc Biol Sci Ser B. 274: 199-207.
  • 27. Grimaldi DA, Engel MS (2005). Evolution of the Insects. Cambridge University Press, Cambridge.
  • 28. Guz N, Kocak E, Kilincer N (2013). Molecular phylogeny of Trissolcus species (Hymenoptera: Scelionidae). Biochemical Systematics and Ecology 48, 85-91.
  • 29. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America. 103: 968-971.
  • 30. Hayashi M, Sota T (2010) Identification of elmid larvae (Coleoptera: Elmidae) from Sanin District of Honshu, Japan, based on mitochondrial DNA sequences. Entomological Science. 13 417-424.
  • 31. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society. B. Biological Sciences. 270: 313-321.
  • 32. Hebert PDN, Ratnasingham S, deWaard JR (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B, 270: 96-99.
  • 33. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA. 101: 14812-14817.
  • 34. Hogg ID, Hebert PDN (2004). Biological identification of springtails (Hexapoda: Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology. 82: 749-754.
  • 35. Jung SW, Min HK, Kim Y, Choi HA, Lee SY, Baey J, Paek WK (2016). A DNA barcode library of the beetle refer- ence collection (Insecta: Coleoptera) in the National Science Museum, Korea. J. Asia Pac. Biodivers. 9: 234-244.
  • 36. Jurado-Rivera JA, Vogler AP, Reid CAM, Petitpierre E, Gómez Zurita J (2009). DNA barcoding insect–hostplant associations. Proceedings of the Royal Society B: Biological Sciences. 276: 639-648.
  • 37. Kathirithamby J, Hayward A, Mcmahon DP, Ferreira RS, Andreazze R, Almeida Andrade HTD, Fresneau D (2010). 'Conspecifics of a heterotrophic heteronomous species of Strepsiptera (Insecta) are matched by molecular characterization. Systematic Entomology. 35 234-242 .
  • 38. Kehlmaier C, Assmann T (2010). Molecular analysis meets morphology-based systematics-a synthetic approach for Chalarinae (Insecta: Diptera: Pipunculidae). Systematic Entomology. 35, 181-195.
  • 39. King RA, Vaughan IP, Bell JR, Bohan DA, Symondson WOC (2010). Prey choice by carabid beetles feeding on an earthworm community analysed using species and lineagespecific PCR primers. Mol Ecol. 19: 1721-32.
  • 40. Kohn MH, Wayne RK (1997). Facts from feces revisited. Trends in Ecology & Evolution. 12, 223-227.
  • 41. Kumar NP, Rajavel AR, Natarajan R, Jambulingam, P (2007). DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology. 44: 1-7.
  • 42. Magnacca KN, Brown MJF (2010). Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus bees (Hymenoptera: Colletidae). BMC Evolutionary Biology. 10, 174.
  • 43. Malgorn Y, Coquoz R (1999). DNA typing for identification of some species of Calliphoridae. An interest in forensic entomology. Forensic Science International. 102: 111-119.
  • 44. Mastrangelo T, Paulo DF, Bergamo LW, Morais EGF, Silva M, Bezerra-Silva G, Azeredo-Espin AM (2014). Detection and genetic diversity of a Heliothine invader (Lepidoptera: Noctuidae) from north and northeast of Brazil. J. Econ. Entomol. 107(3): 970-980.
  • 45. Matheson CD, Muller GC, Junnila A, Vernon K, Hausmann A, Miller MA, Greenblatt C, Schlein Y (2007). A PCR method for detection of plant meals from the guts of insects. Organisms Diversity & Evolution. 7, 294-303.
  • 46. Meyer CP, Paulay G (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3, e422.
  • 47. Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005). 'Association of insect life stages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae)'. Systematic Entomology. 30 499-509.
  • 48. Monaghan MT, Balke M, Gregory TR, Vogler AP (2005). DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philosophical Transactions of the Royal Society. B. Biological Sciences. 360: 1925-1933.
  • 49. Monaghan MT, Balke M, Pons J, Vogler AP (2006). Beyond barcodes: complex DNA taxonomy of a South Pacific Island radiation. Proceedings of the Royal Society. B. Biological Sciences. 273: 887-893.
  • 50. Moulton MJ, Song H, Whiting MF (2010). Assessing the effects of primer specificity on eliminating Numt coamplification in DNA barcoding: A case study from Orthoptera (Anthropoda: Insecta). Mol Eco Res. 10: 615-27.
  • 51. Murría C, Zamora‐Muñoz C, Bonada N, Ribera C, Prat N (2010). 'Genetic and morphological approaches to the problematic presence of three Hydropsyche species of the pellucidula group (Trichoptera: Hydropsychidae) in the westernmost Mediterranean Basin'. Aquatic Insects. 32: 85-98.
  • 52. Nagoshi RN, Brambila J, Meagher RL (2011). Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J. Insect Sci. 11 (154).
  • 53. Nelson LA, Wallman JF, Dowton M (2007). Using COI barcodes to identify forensically and medically important blowflies. Medical and Veterinary Entomology. 21: 44-52.
  • 54. Page RD (2016). DNA barcoding and taxonomy: dark taxa and dark texts. Phil Trans R Soc B. 371: 20150334.
  • 55. Shatters Jr RG, Powell CA, Boykin LM, Sheng HL, McKenzie CL (2009). Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisa tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. Journal of Economic Entomology. 102: 750-758.
  • 56. Nakahara S, Zacca T, Huertas B, Neild A, Hall J, Lamas G, Holian L, Espeland M, Willmott KR (2017). Remarkable sexual dimorphism, rarity and cryptic species: a revision of the ‘aegrota species group’ of the Neotropical butterfly genus Caeruleuptychia Forster, 1964 with the description of three new species (Lepidoptera, Nymphalidae, Satyrinae). Insect Systematics & Evolution. 27 July 2017.
  • 57. Smit J, Reijnen B, Stokvis F (2013). Half of the European fruit fly species barcoded (Diptera, Tephritidae); a feasibility test for molecular identification. ZooKeys. 365: 279-305.
  • 58. Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007). DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera: Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences USA. 104: 4967-4972.
  • 59. Smith HA, Nagle CA, MacVean CA, McKenzie CL (2016). Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) to imidacloprid, thiamethoxam, dinotefuran and flupyradifurone in south Florida. Insects. 7: 57.
  • 60. Thorman B (2015). Biodiversity of leaf beetles (Coleoptera: Chrysomelidae) in a tropical montane rainforest ecosystem assessed with DNA barcoding. PhD thesis. University of Bonn. 250 pages.
  • 61. Pauls SU, Blahnik RJ, Zhou X, Wardwell CT, Holzenthal RW (2010). DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). Journal of the North American Benthological Society. 29: 1058-1074 .
  • 62. Pfenninger M, Nowak C, Kley C, Steinke D, Streit B (2007). Utility of DNA taxonomy and barcoding for the inference of larval community structure inmorphologically cryptic Chironomus (Diptera) species. Molecular Ecology. 16: 1957-1968.
  • 63. Pons J (2006). DNA-based identification of preys from nondestructive, total DNAextractions of predators using arthropod universal primers. Molecular Ecology Notes. 6: 623-626.
  • 64. Sanger F, S Nicklen, Coulson AR (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74: 5463-5467.
  • 65. Scheffer SJ, Lewis ML, Joshi RC (2006). DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Annals of the Entomological Society of America. 99: 204-210.
  • 66. Scheffer SJ, Wiegmann BM (2000). Molecular phylogenetics of the holly leafminers (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization. Molecular Phylogenetics and Evolution. 17: 244-255.
  • 67. Schindel DE, Miller SE (2005). DNA barcoding a useful tool for taxonomists. Nature. 435: 17.
  • 68. Sheppard SK, Harwood JD (2005). Advances in molecular ecology: tracking trophic links through predator-prey foodwebs. Functional Ecology. 19: 751-762.
  • 69. Smith MA, Woodley NE, Janzen DH, Hallwachs W Hebert PDN (2006). DNA barcodes reveal cryptic hostspecificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences USA. 103: 3657-3662.
  • 70. Smith MA, Fisher BL, Hebert PDN (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society. B. Biological Sciences. 360: 1825-1834.
  • 71. Sohrabi F, Annie E, Parviz S, Moosa S, Mohammad SM (2013). Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa. Biol Control. 58: 65-72.
  • 72. Sperling FA, Anderson GS, Hickey DA (1994). A DNA-based approach to the identification of insect species used for postmortem interval estimation. Journal of Forensic Sciences. 39: 418-427.
  • 73. Sutou M, Kato T, Ito M (2007). Description of the final larval stage and the pupa of Ctenosciara japonica (Diptera: Sciaridae) and their DNA barcodes. Studia Dipterologica. 14: 17-22.
  • 74. Thomas A, Trotman J, Wheatley A, Aebi A, Zindel R, Brown PMJ (2013). Predation of native coccinellids by the invasive alien Harmonia axyridis (Coleoptera: Coccinellidae): detection in Britain by PCR based gut analysis. Insect Conserv Divers. 6: 20-27.
  • 75. Thomsen PF, Elias S, Gilbert MTP, Haile J, Munch K, Kuzmina S, Froese DG, Sher A, Holdaway RN, Willerslev E (2009). Non-destructive sampling of ancient insect DNA. PLoS ONE. 4: e5048.
  • 76. Tyagi K, Kumar V, Singha D, Chakraborty R (2015). Morphological and DNA barcoding evidence for invasive pest thrips, Thrips parvispinus (Thripidae: Thysanoptera), newly recorded from India. J. Insect Sci. 15 (105).
  • 77. Van Houdt JKJ, Breman FC, Virgilio M, de Meyer M (2010). Recovering full DNA barcodes from natural history collections of Tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources. 10, 459-465.
  • 78. Van Toor, RF, Foster SP, Anstead JA, Mitchinson S, Fenton B, Kasprowicz L (2008). Insecticide resistance and genetic composition of Myzus persicae (Hemiptera: Aphididae) on field potatoes in New Zealand. Crop Prot. 27 (2): 236-247.
  • 79. Vincent SJ, Vian M Carlotti MP (2000). Partial sequencing of the cytochrome oxydase b subunit gene I: a tool for the identification of European species of blow flies for postmortem interval estimation. Journal of Forensic Sciences. 45: 820-823.
  • 80. Virgilio M, Backeljau T, Nevado B, De Meyer M (2010). Comparative performances of DNA barcoding across insect orders. BMC Bioinformatics 11: 1-10.
  • 81. Wallman JF, Donnellan SC (2001). The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Science International. 120: 60-67.
  • 82. Waugh J (2007). DNA barcoding in animal species: progress, potential and pitfalls. Bioessays. 29: 188-197.
  • 83. Weber DC, Lundgren JG (2009). Detection of predation using qPCR: Effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. J Insect Sci. 9: 1-12.
  • 84. Wei SJ, Mirab-Balou M, Shi BC, Gong YJ, Liu J, Kang ZJ, Xue-Xin C, Hong L (2010). External morphology and molecular identification of the newly found invasive pest Echinothrips americanus Morgan (Thysanoptera: Thripidae) in China. Acta Entomol. Sin. 53 (6): 715-715.
  • 85. Wells JD, Sperling FA (2001). DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Science International. 120: 110-115.
  • 86. Wells JD, Pape T, Sperling FA (2001). DNA-based identification and molecular systematics of forensically important Sarcophagidae (Diptera). Journal of Forensic Sciences 46: 1098-1102.
  • 87. Wilson EO (2003). The encyclopedia of life. Trends in Ecology and Evolution. 18: 77-80.
  • 88. Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999). Can the detection of prey DNA amongst the gut contents of invertebrate predators provide a new technique for quantifying predation in the field? Mol. Ecol. 8: 2081-2088.
  • 89. Zheng Y, Wu R, Dorn S, Chen M (2017). Diversity of tortricid moths in apple orchards: Evidence for a cryptic species of Grapholita (Lepidoptera: Tortricidae) from China. Bulletin of Entomological Research. 107 (2), 268-280.
There are 89 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gökhan Yatkın

Nurper Güz

Publication Date March 30, 2018
Acceptance Date March 25, 2018
Published in Issue Year 2018 Volume: 28 Issue: 1

Cite

APA Yatkın, G., & Güz, N. (2018). Entomolojide DNA Barkodlama Tekniğinin Kullanımı. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 126-134. https://doi.org/10.29133/yyutbd.350146
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.