Research Article
BibTex RIS Cite

A Rapid Method for In Vitro Plant Regeneration of Chia Salvia hispanica L.

Year 2025, Volume: 35 Issue: 1, 1 - 8

Abstract

Chia Salvia hispanica L. is an annual herbaceous plant. The seeds were shown to have significant macronutrient and micronutrient components. Most of these common macronutrients are proteins, lipids with an appropriate fatty acid composition, ash, carbs, and dietary fiber. This study aimed to find a simple and fast protocol for the regeneration of this plant. The hypocotyls, stem, cotyledons, and young leaves explants of seedlings were grown on Murashige and Skoog (MS) medium fortified with various concentrations of (NAA) and 6-benzyl adenine (BA). Moreover, 2, 4-diclorophenoxyacetic acid (2, 4-D) and kinetin (Kin) were used. Callus was successfully induced from all explants. The most interesting result was the regeneration of shoots from young leaves in one-step during the callus formation. The appropriate medium for shooting was MS enriched with 0.5mg L-1 NAA and 1.0 mg L-1 BA as the percentage of shoot regeneration was (112.5 %). The regenerated shoots were rooted successfully in five days following transferring to agar solidified MS medium. These results revealed the effectiveness of the protocol used in the current study, which is considered the first that was able to produce the important medicinal plant S. hispanica in one-step during callus induction in a short period

Ethical Statement

The research does not contain experiments on humans and animals.

Supporting Institution

University of Mosul, College of Education for Pure Sciences

Thanks

Thanks to University of Mosul/College of Education for Pure Sciences, for supporting this research.

References

  • Adil, M., Ren, X., Kang, D. I., Thi, L. T., & Jeong, B. R. (2018).Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Molecular Biology Reports, 45, 1919-1927.‏ https://doi.org/10.1007/s11033-018-4340-3
  • AL-Dabagh, F. M., & Salih, I. (2020). Chia seed as a source of in vitro establishment of Salvia hispanica L. Plants. Iraqi Journal Agricultural Science, 51(3), 976-981. https://doi.org/10.36103/ijas.v51i3.1053
  • Ashokhan, S. R., Othman, R., Abd Rahim, M. H., Karsani, S. A., & Yaacob, J. S. (2020). Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants, 9(3), 352. https://doi.org/10.3390/plants9030352
  • Brandán, J. P., Curti, R. N., & Acreche, M. M. (2019). Phenological growth stages in chia (Salvia hispanica L.) according to the BBCH scale. Scientia Horticulturae, 255, 292-297.‏ https://doi.org/10.1016/j.scienta.2019.05.043
  • Bueno, M., Sapio, O. D., Barolo, M., Villalonga, M. E., Busilacchi, H., & Severin, C. (2010). In vitro response of different Salvia hispanica L. (Lamiaceae) explants. Molecular and Medicinal Chemistry, 21, 125-126.
  • Chuanjuna, X. U., Zhiweib, R. U., Lingb, L. I., Biyua, Z., Junmeia, H., Wen, H., & Ou, H. (2015). The effects of polyphenol oxidase and cycloheximide on the early stage of browning in phalaenopsis explants. Horticultural Plant Journal, 1(3), 172–180. https://doi.org/10.16420/j.issn.2095-9885.2015-0030
  • Drużyńska, B., Wołosiak, R., Grzebalska, M., Majewska, E., Ciecierska, M., & Worobiej, E. (2021). Comparison of the content of selected bioactive components and antiradical properties in yoghurts enriched with chia seeds (Salvia hispanica L.) and chia seeds soaked in apple juice. Antioxidants (Basel), 10(12), 1989. https://doi.org/10.3390/antiox10121989
  • Ferris, E. (2023). The benefits and applications of plant tissue culture: A revolutionary method of plant propagation. Journal of Plant Biotechnology and Microbiology, 6(1), 133.
  • Gaspar,T., Kevers, C., Penel, C., Greppin, H., Reid, D.M., & Thorpe, T. A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular & Developmental Biology - Plant, 32, 272–289. https://doi.org/10.1007/BF02822700
  • Gerdakaneh, M., Badakhshan, H., Mohamadi, M., & Arji, I. (2020). Effect of different media and growth regulators on micropropagation of GF677. Plant Productions, 43(2), 241-254.
  • https://plantproduction.scu.ac.ir/article_14975_en.html
  • Grancieri, M., Martino, H. S. D., & Gonzalez de Mejia, E. (2019). Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A Review. Comprehensive Reviews in Food Science and Food Safety, 18, 480-99. https://doi.org/10.1111/1541-4337.12423
  • Hill, K., & Schaller, G. E. (2013). Enhancing plant regeneration in tissue culture: A molecular approach through manipulation of cytokinin sensitivity. Plant Signaling & Behavior, 8(10), 212-224. https://doi.org/10.4161/psb.25709
  • Iannucci, A., & Amato, M. (2021). Root morphology and shoot growth in seedlings of chia (Salvia hispanica L.). Genetic Resources and Crop Evolution, 68, 3205–3217. https://doi.org/10.1007/s10722-021-01181-w
  • Irshad, M., He, B., Liu, S., Mitra, S., Debnath, B., Li, M., & Qiu, D. (2017). In vitro regeneration of Abelmoschus esculentus L. Cv. Wufu: Influence of anti-browning additives on phenolic secretion and callus formation frequency in explants. Horticulture, Environment, and Biotechnology, 58, 503-513.‏ https://doi.org/10.1007/s13580-017-0301-3
  • Koçak, M., Sirke, S. T., Kuzğun, C., & Yildiz, M. (2023). Callus production in geranium (Pelargonium quercetorum Agnew) growing naturally in Türkiye. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 503-512. https://doi.org/10.29133/yyutbd.1307775
  • Lardon, R., & Geelen, D. (2020). Natural variation in plant pluripotency and regeneration. Plants, 9(10), 1261.‏ https://doi.org/10.3390/plants9101261
  • Lee, S. H., Baek, S. M., Jeong, I., Heo, W., Hwang, K., Han, B. K., & Kim, Y. J. (2022).Anti-browning and oxidative enzyme activity of rice bran extract treatment on freshly cut ‘Fuji’ apple. Agronomy, 12, 1-12. https://doi.org/10.3390/agronomy12010086
  • Marangelli, F., Pavese, V., Vaia, G., Lupo, M., Bashir, M. A., Cristofori, V., & Silvestri, C. (2022). In Vitro polyploid induction of highbush blueberry through De Novo shoot organogenesis. Plants, 11(18), 2349.‏ https://doi.org/10.3390/plants11182349
  • Minutolo, M., Chiaiese, P., Di Matteo, A., Errico, A., & Corrado, G. (2020). Accumulation of ascorbic acid in tomato cell culture: Influence of the genotype, source explant and time of in vitro cultivation. Antioxidants, 9(3), 222.‏ https://doi.org/10.3390/antiox9030222
  • Motyka, S., Koc, H., Ekiert, H., Blicharska, E., Czarnek, K., & Szopa, A. (2022). The current state of knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules, 27(4), 1207. https://doi.org/10.3390/molecules27041207
  • Motyka, S, Skała, E. Ekiert, H., & Szopa, A. (2023).Health-promoting approaches of the use of chia seeds. Journal of Functional Foods, 103, 105480. https://doi.org/10.1016/j.jff.2023.105480
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiologia Plantarum, 15, 73-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Nyingi, J. W., & Mburu, M. (2021). Chia (Salvia hispanica L.) seeds phytochemicals, bioactive compounds, and applications: A Review. European Journal of Agriculture and Food Science, 3(6), 1-12. https://doi.org/10.24018/ejfood.2021.3.6.381
  • Patricia, M. L., María, L., Jürgen, D., Celia, B., & María, A. (2013). In vitro establishment of Salvia hispanica L. plants and callus. Biotecnología Vegetal, 13(4), 203-207.
  • Pe, P. P., Naing, W. A., Soe M. T, Kang, H., Park, K. I., & Kim, C. K. (2020). Establishment of meristem culture for virus-free and genetically stable production of the endangered plant Hosta capitata. Scientia Horticulturae, 272, 109591. https://doi.org/10.1016/j.scienta.2020.109591
  • Rabail, R., Khan, M. R., Mehwish, H. M., Rajoka, M. S., Lorenzo, J. M., Kieliszek, M., Khalid A. R., Shabbir, M. A., & Aadil, R. M. (2021). An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Frontiers Bioscience Landmark, 26(9), 643–654. https://doi.org/10.52586/4973
  • Sale, S., Subramaniam, S., & Mad’Atari, M. F. (2023). Trends in the tissue culture techniques and the synthesis of bioactive compounds in Eurycoma longifolia Jack—current status and future perspectives. Plants, 13(1), 107.‏ https://doi.org/10.3390/plants13010107
  • Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Saeed, T., Yadav, V., ... & Upadhyay, A. (2017). Plant Tissue Culture: Applications in Plant Improvement and Conservation. In M. Abdin, U. Kiran & A. Kamaluddin (Eds.), Plant Biotechnology: Principles and Applications (pp. 37-72). Springer, Singapore. https://doi.org/10.1007/978-981-10-2961-5_2
  • Shin, J., Bae, S., & Seo, P. J. (2020). De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany, 71(1), 63–72. https://doi.org/10.1093/jxb/erz395
  • Soleimani, S. H., Bernard F., Amini, M., & Khavari-Nezhad, R. A. ( 2020). Cadmium accumulation and alkaloid production of Narcissus tazetta plants grown under in vitro condition with cadmium stress. Plant Physiology Reports, 25, 51–57. https://doi.org/10.1007/s40502-019-00476-6
  • Su, Y. H., Tang, L. P., Zhao, X. Y., & Zhang, X. S. (2021) Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology, 63, 228–243. https://doi.org/10.1111/jipb.12972
  • Su,Y. H., & , Zhang, X. S. ( 2014). The hormonal control of regeneration in plants. Current Topics in Developmental Biology, 108, 35-69. https://doi.org/10.1016/B978-0-12-391498-9.00010-3
  • Sundararajan, S., Sivaraman, B., Rajendran, V., & Ramalingam, S. (2017). Tissue culture and Agrobacterium-mediated genetic transformation studies in four commercially important indica rice cultivars. Journal of Crop Science and Biotechnology, 20, 175-183.
  • https://doi.org/10.1007/s12892-017-0045-0
  • Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., & Hussain, J. (2016) Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. Journal of Food Science and Technology, 53, 1750-1758. https://doi.org/10.1007/s13197-015-1967-0
  • Yadav, A., Kothari, S. L., Kachhwaha, S., & Joshi, A. (2019). In vitro propagation of chia (Salvia hispanica L.) and assessment of genetic fidelity using random amplified polymorphic DNA and intersimple sequence repeat molecular markers. Journal of Applied Biology and Biotechnology, 7(1), 42-47. https://doi.org/10.7324/jabb.2019.70108
Year 2025, Volume: 35 Issue: 1, 1 - 8

Abstract

References

  • Adil, M., Ren, X., Kang, D. I., Thi, L. T., & Jeong, B. R. (2018).Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Molecular Biology Reports, 45, 1919-1927.‏ https://doi.org/10.1007/s11033-018-4340-3
  • AL-Dabagh, F. M., & Salih, I. (2020). Chia seed as a source of in vitro establishment of Salvia hispanica L. Plants. Iraqi Journal Agricultural Science, 51(3), 976-981. https://doi.org/10.36103/ijas.v51i3.1053
  • Ashokhan, S. R., Othman, R., Abd Rahim, M. H., Karsani, S. A., & Yaacob, J. S. (2020). Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants, 9(3), 352. https://doi.org/10.3390/plants9030352
  • Brandán, J. P., Curti, R. N., & Acreche, M. M. (2019). Phenological growth stages in chia (Salvia hispanica L.) according to the BBCH scale. Scientia Horticulturae, 255, 292-297.‏ https://doi.org/10.1016/j.scienta.2019.05.043
  • Bueno, M., Sapio, O. D., Barolo, M., Villalonga, M. E., Busilacchi, H., & Severin, C. (2010). In vitro response of different Salvia hispanica L. (Lamiaceae) explants. Molecular and Medicinal Chemistry, 21, 125-126.
  • Chuanjuna, X. U., Zhiweib, R. U., Lingb, L. I., Biyua, Z., Junmeia, H., Wen, H., & Ou, H. (2015). The effects of polyphenol oxidase and cycloheximide on the early stage of browning in phalaenopsis explants. Horticultural Plant Journal, 1(3), 172–180. https://doi.org/10.16420/j.issn.2095-9885.2015-0030
  • Drużyńska, B., Wołosiak, R., Grzebalska, M., Majewska, E., Ciecierska, M., & Worobiej, E. (2021). Comparison of the content of selected bioactive components and antiradical properties in yoghurts enriched with chia seeds (Salvia hispanica L.) and chia seeds soaked in apple juice. Antioxidants (Basel), 10(12), 1989. https://doi.org/10.3390/antiox10121989
  • Ferris, E. (2023). The benefits and applications of plant tissue culture: A revolutionary method of plant propagation. Journal of Plant Biotechnology and Microbiology, 6(1), 133.
  • Gaspar,T., Kevers, C., Penel, C., Greppin, H., Reid, D.M., & Thorpe, T. A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular & Developmental Biology - Plant, 32, 272–289. https://doi.org/10.1007/BF02822700
  • Gerdakaneh, M., Badakhshan, H., Mohamadi, M., & Arji, I. (2020). Effect of different media and growth regulators on micropropagation of GF677. Plant Productions, 43(2), 241-254.
  • https://plantproduction.scu.ac.ir/article_14975_en.html
  • Grancieri, M., Martino, H. S. D., & Gonzalez de Mejia, E. (2019). Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A Review. Comprehensive Reviews in Food Science and Food Safety, 18, 480-99. https://doi.org/10.1111/1541-4337.12423
  • Hill, K., & Schaller, G. E. (2013). Enhancing plant regeneration in tissue culture: A molecular approach through manipulation of cytokinin sensitivity. Plant Signaling & Behavior, 8(10), 212-224. https://doi.org/10.4161/psb.25709
  • Iannucci, A., & Amato, M. (2021). Root morphology and shoot growth in seedlings of chia (Salvia hispanica L.). Genetic Resources and Crop Evolution, 68, 3205–3217. https://doi.org/10.1007/s10722-021-01181-w
  • Irshad, M., He, B., Liu, S., Mitra, S., Debnath, B., Li, M., & Qiu, D. (2017). In vitro regeneration of Abelmoschus esculentus L. Cv. Wufu: Influence of anti-browning additives on phenolic secretion and callus formation frequency in explants. Horticulture, Environment, and Biotechnology, 58, 503-513.‏ https://doi.org/10.1007/s13580-017-0301-3
  • Koçak, M., Sirke, S. T., Kuzğun, C., & Yildiz, M. (2023). Callus production in geranium (Pelargonium quercetorum Agnew) growing naturally in Türkiye. Yuzuncu Yıl University Journal of Agricultural Sciences, 33(3), 503-512. https://doi.org/10.29133/yyutbd.1307775
  • Lardon, R., & Geelen, D. (2020). Natural variation in plant pluripotency and regeneration. Plants, 9(10), 1261.‏ https://doi.org/10.3390/plants9101261
  • Lee, S. H., Baek, S. M., Jeong, I., Heo, W., Hwang, K., Han, B. K., & Kim, Y. J. (2022).Anti-browning and oxidative enzyme activity of rice bran extract treatment on freshly cut ‘Fuji’ apple. Agronomy, 12, 1-12. https://doi.org/10.3390/agronomy12010086
  • Marangelli, F., Pavese, V., Vaia, G., Lupo, M., Bashir, M. A., Cristofori, V., & Silvestri, C. (2022). In Vitro polyploid induction of highbush blueberry through De Novo shoot organogenesis. Plants, 11(18), 2349.‏ https://doi.org/10.3390/plants11182349
  • Minutolo, M., Chiaiese, P., Di Matteo, A., Errico, A., & Corrado, G. (2020). Accumulation of ascorbic acid in tomato cell culture: Influence of the genotype, source explant and time of in vitro cultivation. Antioxidants, 9(3), 222.‏ https://doi.org/10.3390/antiox9030222
  • Motyka, S., Koc, H., Ekiert, H., Blicharska, E., Czarnek, K., & Szopa, A. (2022). The current state of knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules, 27(4), 1207. https://doi.org/10.3390/molecules27041207
  • Motyka, S, Skała, E. Ekiert, H., & Szopa, A. (2023).Health-promoting approaches of the use of chia seeds. Journal of Functional Foods, 103, 105480. https://doi.org/10.1016/j.jff.2023.105480
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiologia Plantarum, 15, 73-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Nyingi, J. W., & Mburu, M. (2021). Chia (Salvia hispanica L.) seeds phytochemicals, bioactive compounds, and applications: A Review. European Journal of Agriculture and Food Science, 3(6), 1-12. https://doi.org/10.24018/ejfood.2021.3.6.381
  • Patricia, M. L., María, L., Jürgen, D., Celia, B., & María, A. (2013). In vitro establishment of Salvia hispanica L. plants and callus. Biotecnología Vegetal, 13(4), 203-207.
  • Pe, P. P., Naing, W. A., Soe M. T, Kang, H., Park, K. I., & Kim, C. K. (2020). Establishment of meristem culture for virus-free and genetically stable production of the endangered plant Hosta capitata. Scientia Horticulturae, 272, 109591. https://doi.org/10.1016/j.scienta.2020.109591
  • Rabail, R., Khan, M. R., Mehwish, H. M., Rajoka, M. S., Lorenzo, J. M., Kieliszek, M., Khalid A. R., Shabbir, M. A., & Aadil, R. M. (2021). An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Frontiers Bioscience Landmark, 26(9), 643–654. https://doi.org/10.52586/4973
  • Sale, S., Subramaniam, S., & Mad’Atari, M. F. (2023). Trends in the tissue culture techniques and the synthesis of bioactive compounds in Eurycoma longifolia Jack—current status and future perspectives. Plants, 13(1), 107.‏ https://doi.org/10.3390/plants13010107
  • Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Saeed, T., Yadav, V., ... & Upadhyay, A. (2017). Plant Tissue Culture: Applications in Plant Improvement and Conservation. In M. Abdin, U. Kiran & A. Kamaluddin (Eds.), Plant Biotechnology: Principles and Applications (pp. 37-72). Springer, Singapore. https://doi.org/10.1007/978-981-10-2961-5_2
  • Shin, J., Bae, S., & Seo, P. J. (2020). De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany, 71(1), 63–72. https://doi.org/10.1093/jxb/erz395
  • Soleimani, S. H., Bernard F., Amini, M., & Khavari-Nezhad, R. A. ( 2020). Cadmium accumulation and alkaloid production of Narcissus tazetta plants grown under in vitro condition with cadmium stress. Plant Physiology Reports, 25, 51–57. https://doi.org/10.1007/s40502-019-00476-6
  • Su, Y. H., Tang, L. P., Zhao, X. Y., & Zhang, X. S. (2021) Plant cell totipotency: Insights into cellular reprogramming. Journal of Integrative Plant Biology, 63, 228–243. https://doi.org/10.1111/jipb.12972
  • Su,Y. H., & , Zhang, X. S. ( 2014). The hormonal control of regeneration in plants. Current Topics in Developmental Biology, 108, 35-69. https://doi.org/10.1016/B978-0-12-391498-9.00010-3
  • Sundararajan, S., Sivaraman, B., Rajendran, V., & Ramalingam, S. (2017). Tissue culture and Agrobacterium-mediated genetic transformation studies in four commercially important indica rice cultivars. Journal of Crop Science and Biotechnology, 20, 175-183.
  • https://doi.org/10.1007/s12892-017-0045-0
  • Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., & Hussain, J. (2016) Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. Journal of Food Science and Technology, 53, 1750-1758. https://doi.org/10.1007/s13197-015-1967-0
  • Yadav, A., Kothari, S. L., Kachhwaha, S., & Joshi, A. (2019). In vitro propagation of chia (Salvia hispanica L.) and assessment of genetic fidelity using random amplified polymorphic DNA and intersimple sequence repeat molecular markers. Journal of Applied Biology and Biotechnology, 7(1), 42-47. https://doi.org/10.7324/jabb.2019.70108
There are 37 citations in total.

Details

Primary Language English
Subjects Plant Bacteriology in Agriculture
Journal Section Articles
Authors

Shifa M. Salıh 0000-0001-6119-6631

Early Pub Date March 16, 2025
Publication Date
Submission Date February 9, 2024
Acceptance Date November 25, 2024
Published in Issue Year 2025 Volume: 35 Issue: 1

Cite

APA M. Salıh, S. (2025). A Rapid Method for In Vitro Plant Regeneration of Chia Salvia hispanica L. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(1), 1-8. https://doi.org/10.29133/yyutbd.1434550
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.