Review
BibTex RIS Cite

Effects of climate change on viticulture in Turkey

Year 2021, Volume: 58 Issue: 3, 457 - 467, 05.09.2021
https://doi.org/10.20289/zfdergi.882893

Abstract

Greenhouse gases increased rapidly since the industrial revolution, have changed the energy balance of the earth by causing global warming. Thus, the earth’s climate has changed and this situation has become a global problem. The global climate change affects viticultural activities besides the other agricultural operations and production. In this review, as well as the overall impact of climate change in the world and in Turkey, especially the studies of the potential threats on viticulture are evaluated. It is expected that the impacts of climate change will be more intense, especially in the Mediterranean basin, where our country is located. Increases in temperature, decreases in precipitation, changes in distribution of precipitation, and increases in frequency and intensity of extreme weather and climate events are expected to affect viticulture in various ways. Accordingly, it is inevitable that many parameters such as viticultural zones, vine phenology, physiology, morphology, vegetative and generative development, yield and grape quality balance, berry composition, biodiversity, food safety, etc. will be affected in different ways. For this reason, climate change mitigation studies should be increased. Additionally, effective measures should be implemented in terms of viticulture according to local climate change projections and the sustainability of existing viticultural activities should be ensured.

References

  • Altinsoy, H., C. Kurt & M.L. Kurnaz, 2013. Analysis of the effect of climate change on the yield of crops in Turkey using a statistical approach. In Advances in Meteorology, Climatology and Atmospheric Physics, 379-384. Springer, Berlin. DOI: 10.1007/978-3-642-29172-2_53
  • Ashenfelter, O. & K. Storchmann, 2016. Climate change and wine: A review of the economic implications. Journal of Wine Economics, 11(1): 105-138. DOI:10.1017/jwe.2016.5
  • Bahar, E., A. Carbonneau & I. Korkutal, 2017. Vine and berry responses to severe water stress in different stages in cv. Syrah (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty, Special Issue of 2nd International Balkan Agriculture Congres, 62-70.
  • Buesa, I., D. Pérez, J. Castel, D.S. Intrigliolo & J.R. Castel, 2017. Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Australian Journal of Grape and Wine Research 23(2): 251-259. DOI: 10.1111/ajgw.12280
  • Caffarra, A., M. Rinaldi, E. Eccel, V. Rossi & I. Pertot, 2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems & Environment, 148: 89-101. DOI: 10.1016/j.agee.2011.11.017
  • Candar, S., T. Alço, A.S. Yaşasın, İ. Korkutal & E. Bahar, 2019. Türkiye Trakyası bağcılık iklim göstergelerindeki uzun süreli değişimlerin değerlendirilmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 7(2): 259-268.
  • Candar, S., T. Alço, M. Ekiz, İ. Korkutal & E. Bahar, 2020. Milli koleksiyon şaraplık üzüm çeşitlerinde budama şekli ve abiyotik etmenlerin fizyolojik aktiviteler üzerine etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57(2): 173-184. DOI: 10.20289/zfdergi.602806
  • Costa, R., H. Fraga, A. Fonseca, I. García de Cortázar-Atauri, M.C. Val, C. Carlos, S. Reis & J.A. Santos, 2019. Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro wine region: Modelling and climate change projections. Agronomy, 9(4): 210. DOI: 10.3390/agronomy9040210
  • Cuccia, C., B. Bois, Y. Richard, A.K. Parker, I.G. de Cortázar-Atauri, C. Van Leeuwen & T. Castel, 2014. Phenological model performance to warmer conditions: Application to Pinot Noir in Burgundy. OENO One, 48(3), 169-178. DOI: 10.20870/oeno-one.2014.48.3.1572
  • Davarcıoğlu, B. & A. Lelik, 2018. Küresel iklim değişikliği ve uyum çalışmaları: Türkiye açısından değerlendirilmesi. Mesleki Bilimler Dergisi, 7(2): 376-392.
  • Deloire, A., 2012. A few thoughts on grapevine training systems. Wineland Mag, 274, 82-86. DSİ, 2019. Devlet Su İşleri, “Toprak ve Su Kaynakları”. Web sayfası: https://bolge06.dsi.gov.tr/Sayfa/Detay/1013) (Erişim tarihi: Nisan 2021).
  • FAOSTAT, 2019. Food and Agriculture Organization of the United Nations Statistics Division. (Web sayfası: http://www.fao.org/faostat/en/#data/QC) (Erişim tarihi: Nisan 2021).
  • Ferrise, R., G. Trombi, M. Moriondo & M. Bindi, 2016. Climate change and grapevines: A simulation study for the Mediterranean basin. Journal of Wine Economics, 11(1): 88–104. DOI: 10.1017/jwe.2014.30
  • Fraga, H., A.C. Malheiro, J. Moutinho-Pereira & J.A. Santos, 2013. Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. International Journal of Biometeorology, 57(6): 909-925. DOI 10.1007/s00484-012-0617-8
  • Fraga, H., I. de Cortázar Atauri & J.A. Santos, 2018. Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management, 196: 66-74. DOI: 10.1016/j.agwat.2017.10.023
  • Fraga, H., I. García de Cortázar Atauri, A.C. Malheiro & J.A. Santos, 2016. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11): 3774-3788. DOI: 10.1111/gcb.13382
  • Fraga, H., M. Amraoui, A.C. Malheiro, J. Moutinho-Pereira, J. Eiras-Dias, J. Silvestre & J.A. Santos, 2014. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 47(1): 753-771. DOI: 10.5721/EuJRS20144743
  • Gambetta, G.A., 2016. Water stress and grape physiology in the context of global climate change. Journal of Wine Economics, 11(1): 168-180. DOI:10.1017/jwe.2015.16
  • Garrett, K.A., M. Nita, E.D. De Wolf, L. Gomez-Montano & A.H. Sparks, 2016. “Plant pathogens as indicators of climate change, 425-437”. In: Climate Change (2nd Edition). DOI: 10.1016/B978-0-444-63524-2.00021-X
  • Grulke, N.E., 2011. The nexus of host and pathogen phenology: understanding the disease triangle with climate change. The New Phytologist, 189(1): 8-11.
  • Hochberg, U., A. Batushansky, A. Degu, S. Rachmilevitch & A. Fait, 2015. Metabolic and physiological responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L.) to near optimal temperatures of 25 and 35°C. International Journal of Molecular Sciences, 16(10): 24276-24294. DOI: 10.3390/ijms161024276
  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. Stocker et al.), Cambridge University Press, Cambridge and New York, 1535pp.
  • IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. R.K. Pachauri & L.A. Meyer), IPCC, Geneva, Switzerland, 151 pp.
  • IPCC, 2018. Special Report: Global Warming of 1.5 °C. 2018. (Web sayfası: https://www.ipcc.ch/sr15) (Erişim tarihi: Mart 2021).
  • Jones, G.V. & F. Alves, 2012. Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. International Journal of Global Warming, 4(3-4): 383-406. DOI: 10.1504/IJGW.2012.049448
  • Jones, G.V., M.A. White, O.R. Cooper & K. Storchmann, 2005. Climate change and global wine quality. Climatic Change, 73(3): 319-343. DOI: 10.1007/s10584-005-4704-2
  • Jones, G.V., R. Reid & A. Vilks, 2012. “Climate, grapes and wine: Structure and suitability in a variable and changing climate, 109-133”. In: The Geography of Wine: Regions, Terrior and Techniques, (Eds): Springer, Dordrecht.
  • Jones, N.K., 2018. An investigation of trends in viticultural climatic indices in Southern Quebec, a cool climate wine region. Journal of Wine Research, 29(2): 120-129. DOI: 10.1080/09571264.2018.1472074
  • Kadıoğlu, M., Y. Ünal, A. İlhan & C. Yürük, 2017. Türkiye'de iklim değişikliği ve tarımda sürdürülebilirlik, Türkiye Gıda ve İçecek Sanayi Dernekleri Federasyonu. (Web sayfası:https://www.tgdf.org.tr/wp-content/uploads/2017/10/iklim-degisikligi-rapor-elma.compressed.pdf) (Erişim tarihi: Nisan 2021).
  • Keller, M., 2015. The Science of Grapevines. Anatomy and Physiology, 2nd Ed., Elsevier Academic Press, London, UK, 377p.
  • Kizildeniz, T., I. Mekni, H. Santesteban, I. Pascual, F. Morales & J.J. Irigoyen, 2015. Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agricultural Water Management, 159: 155-164. DOI: 10.1016/j.agwat.2015.06.015
  • Korkutal, I., E. Bahar & A. Carbonneau, 2011. Growth and yield responses of cv. Merlot (Vitis vinifera L.) to early water stress. African Journal of Agricultural Research, 6(29): 6281-6288. DOI: 10.5897/AJAR11.1893
  • Korkutal, I., E. Bahar & A. Carbonneau, 2019. Effects of early water stress on grapevine (Vitis vinifera L.) growing in cv. Syrah. Applied Ecology and Environmental Research, 17(1): 463-472. DOI:10.15666/aeer/1701_463472
  • Molitor, D. & J. Junk, 2019. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO one, 53(3): 409-422. DOI: 10.20870/oeno-one.2019.53.3.2329
  • Moriondo, M., G.V. Jones, B. Bois, C. Dibari, R. Ferrise, G. Trombi & M. Bindi, 2013. Projected shifts of wine regions in response to climate change. Climatic change, 119(3): 825-839. DOI 10.1007/s10584-013-0739-y
  • Moschos, T., C. Souliotis, T. Broumas & V. Kapothanassi, 2004. Control of the European grapevine moth Lobesia botrana in Greece by the mating disruption technique: A three-year survey. Phytoparasitica, 32: 83–89.
  • Ozturk, T., Z.P. Ceber, M. Turkes, M.L. Kurnaz, 2015. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14): 4276–4292. DOI: 10.1002/joc.4285
  • Parker, A., R. Hofmann, C. Van Leeuwen, A. McLachlan & M. Trought, 2014. Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Australian Journal of Grape and Wine Research, 20(3): 422–431. DOI: 10.1111/ajgw.12092
  • Parker, A.K., I.G. de Cortázar‐Atauri, C. Van Leeuwen & I. Chuine, 2011. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2): 206-216. DOI: 10.1111/j.1755-0238.2011.00140.x
  • Sadras, V.O. & M.A. Moran, 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18(2): 115-122. DOI: 10.1111/j.1755-0238.2012.00180.x
  • Santesteban, L.G., C. Miranda, J. Urrestarazu, M. Loidi & J.B. Royo, 2017. Severe trimming and enhanced competition of laterals as a tool to delay ripening in Tempranillo vineyards under semiarid conditions. Oeno One, 51(2): 191-203. DOI: 10.20870/oeno-one.2017.51.2.1583
  • Santos, J.A., H. Fraga, A.C. Malheiro, J. Moutinho-Pereira, L.T. Dinis, C. Correia, M. Moriondo, L. Leolini, C. Dibari, S. Costafreda-Aumedes, T. Kartschall, C. Menz, D. Molitor, J. Junk, M. Beyer & H.R. Schultz, 2020. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9): 3092. DOI: 10.3390/app10093092
  • Schultz, H.R. & G.V. Jones, 2010. Climate induced historic and future changes in viticulture. Journal of Wine Research, 21(2-3): 137-145. DOI: 10.1080/09571264.2010.530098
  • Schultz, H.R. & M. Stoll, 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Australian Journal of Grape and Wine Research, 16: 4-24. DOI: 10.1111/j.1755-0238.2009.0074.x
  • Schultz, H.R., 2016. Global climate change, sustainability, and some challenges for grape and wine production. Journal of Wine Economics, 11(1): 181-200. DOI:10.1017/jwe.2015.31
  • Sen, B., S. Topcu, M. Turkes, B. Sen & J.F. Warner, 2012. Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52: 175–191. DOI: 10.3354/cr01074
  • Soltekin, O., A. Güler, A. Candemir, A. Altındişli & A. Unal, 2019. Response of (Vitis vinifera L.) cv. Fantasy Seedless to water deficit treatments: Phenolic compounds and physiological activities. BIO Web of Conferences, 15: 01001. DOI:10.1051/bioconf/20191501001.
  • Soltekin, O., T. Teker & A. Altındişli, 2020. Deficit irrigation strategies in Vitis vinifera L. ‘Crimson Seedless’ table grape: Physiological responses, growth, yield and fruit quality. XXX International Horticultural Congress, International Symposium on Viticulture: Primary Production and Processing 1276: 197-204. DOI: 10.17660/ActaHortic.2020.1276.28
  • Tóth, J.P. & Z. Végvári, 2016. The future of winegrape growing regions in Europe. Australian Journal of Grape and Wine Research, 22(1): 64-72. DOI: 10.1111/ajgw.12168
  • Türkeş, M. & E. Erlat, 2018. Aşırı hava ve iklim olaylarında dünya ve Türkiye’de gözlenen değişiklik ve eğilimlerin bilimsel bir değerlendirmesi. In: İklim Değişikliği ve Yeşil Boyut: Yeşil Ekonomi ve Yeşil Büyüme. (Ed. Meltem Ucal), pp5-38. ISBN 978-605-680-604-7, Istanbul, Türkiye
  • Türkeş, M., 2012. Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi, Çevre Bilimleri Dergisi. 4(2): 1-32
  • Türkeş, M., 2019. İklim değişikliğinin fiziksel bilim temeli-1. İklim sistemi ve iklim değişikliği nedir? İklim değişikliğinin başlıca nedenleri nelerdir? Toplum ve Hekim Dergisi, 34(6): 457-475.
  • Türkeş, M.T., 2020. İklim değişikliğinin tarımsal üretim ve gıda güvenliğine etkileri: Bilimsel bir değerlendirme. Ege Coğrafya Dergisi, 29(1): 125-149.
  • Van Leeuwen, C. & P. Darriet, 2016. The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1): 150-167. DOI:10.1017/jwe.2015.21
  • Van Leeuwen, C., A. Destrac-Irvine, M. Dubernet, E. Duchêne, M. Gowdy, E. Marguerit, P. Pieri, A. Parker, L. de Rességuier & N. Ollat, 2019. An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9): 514. DOI:10.3390/agronomy9090514
  • Webb, L.B., P.H. Whetton & E.W.R. Barlow, 2011. Observed trends in winegrape maturity in Australia. Global Change Biology, 17(8): 2707-2719. DOI: 10.1111/j.1365-2486.2011.02434.x

İklim değişikliğinin Türkiye’de bağcılık üzerine etkileri

Year 2021, Volume: 58 Issue: 3, 457 - 467, 05.09.2021
https://doi.org/10.20289/zfdergi.882893

Abstract

Sanayi devriminden itibaren hızla artan sera gazları, küresel ısınmaya yol açarak yeryüzünün enerji dengesini değiştirmiştir. Bu nedenle dünyada iklim değişkenlik göstermiş ve bu durum küresel bir sorun haline gelmiştir. Geçmişten günümüze kadar geçen sürede dünyanın çeşitli bölgelerinde farklı şekillerde etkisini gösteren küresel iklim değişikliği diğer tarım dallarını olduğu gibi bağcılık faaliyetlerini de etkilemektedir. Bu derlemede, iklim değişikliğinin Dünya’daki ve Türkiye’deki genel etkilerinin yanı sıra özellikle bağcılık üzerindeki olası tehditlerini inceleyen çalışmalar değerlendirilmiştir. Dünya genelinde önemli bir potansiyele sahip olan bağcılık sektörü son yıllarda iklimsel değişimlerin etkisi altındadır. Özellikle ülkemizin de içinde bulunduğu Akdeniz Havzası’nda iklim değişikliğine ait etkilerin daha yoğun olması beklenmektedir. Başta sıcaklık artışı olmak üzere yağış miktarındaki azalmalar, yağış dağılımının değişmesi, aşırı hava ve iklim olaylarının sıklık ve şiddetindeki artışların bağcılığı çeşitli yönleriyle etkilemesi öngörülmektedir. Bağ alanları, asma fenolojisi, fizyolojisi, morfolojisi, vejetatif ve generatif gelişmesi, üzüm verimi ve kalite dengesi, üzüm tane kompozisyonu, biyoçeşitlilik, gıda güvenliği vb birçok parametrenin değişik oranlarda etkilenmesi kaçınılmazdır. Bu nedenle iklim değişikliğinin olumsuz etkilerini azaltıcı çalışmaların arttırılması gerekmektedir. Ayrıca bağcılık açısından yerel iklim değişikliği projeksiyonlarına göre etkili önlemler uygulanmalı ve mevcut bağcılık faaliyetlerinin sürdürülebilirliği sağlanmalıdır.

References

  • Altinsoy, H., C. Kurt & M.L. Kurnaz, 2013. Analysis of the effect of climate change on the yield of crops in Turkey using a statistical approach. In Advances in Meteorology, Climatology and Atmospheric Physics, 379-384. Springer, Berlin. DOI: 10.1007/978-3-642-29172-2_53
  • Ashenfelter, O. & K. Storchmann, 2016. Climate change and wine: A review of the economic implications. Journal of Wine Economics, 11(1): 105-138. DOI:10.1017/jwe.2016.5
  • Bahar, E., A. Carbonneau & I. Korkutal, 2017. Vine and berry responses to severe water stress in different stages in cv. Syrah (Vitis vinifera L.). Journal of Tekirdag Agricultural Faculty, Special Issue of 2nd International Balkan Agriculture Congres, 62-70.
  • Buesa, I., D. Pérez, J. Castel, D.S. Intrigliolo & J.R. Castel, 2017. Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Australian Journal of Grape and Wine Research 23(2): 251-259. DOI: 10.1111/ajgw.12280
  • Caffarra, A., M. Rinaldi, E. Eccel, V. Rossi & I. Pertot, 2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agriculture, Ecosystems & Environment, 148: 89-101. DOI: 10.1016/j.agee.2011.11.017
  • Candar, S., T. Alço, A.S. Yaşasın, İ. Korkutal & E. Bahar, 2019. Türkiye Trakyası bağcılık iklim göstergelerindeki uzun süreli değişimlerin değerlendirilmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 7(2): 259-268.
  • Candar, S., T. Alço, M. Ekiz, İ. Korkutal & E. Bahar, 2020. Milli koleksiyon şaraplık üzüm çeşitlerinde budama şekli ve abiyotik etmenlerin fizyolojik aktiviteler üzerine etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57(2): 173-184. DOI: 10.20289/zfdergi.602806
  • Costa, R., H. Fraga, A. Fonseca, I. García de Cortázar-Atauri, M.C. Val, C. Carlos, S. Reis & J.A. Santos, 2019. Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro wine region: Modelling and climate change projections. Agronomy, 9(4): 210. DOI: 10.3390/agronomy9040210
  • Cuccia, C., B. Bois, Y. Richard, A.K. Parker, I.G. de Cortázar-Atauri, C. Van Leeuwen & T. Castel, 2014. Phenological model performance to warmer conditions: Application to Pinot Noir in Burgundy. OENO One, 48(3), 169-178. DOI: 10.20870/oeno-one.2014.48.3.1572
  • Davarcıoğlu, B. & A. Lelik, 2018. Küresel iklim değişikliği ve uyum çalışmaları: Türkiye açısından değerlendirilmesi. Mesleki Bilimler Dergisi, 7(2): 376-392.
  • Deloire, A., 2012. A few thoughts on grapevine training systems. Wineland Mag, 274, 82-86. DSİ, 2019. Devlet Su İşleri, “Toprak ve Su Kaynakları”. Web sayfası: https://bolge06.dsi.gov.tr/Sayfa/Detay/1013) (Erişim tarihi: Nisan 2021).
  • FAOSTAT, 2019. Food and Agriculture Organization of the United Nations Statistics Division. (Web sayfası: http://www.fao.org/faostat/en/#data/QC) (Erişim tarihi: Nisan 2021).
  • Ferrise, R., G. Trombi, M. Moriondo & M. Bindi, 2016. Climate change and grapevines: A simulation study for the Mediterranean basin. Journal of Wine Economics, 11(1): 88–104. DOI: 10.1017/jwe.2014.30
  • Fraga, H., A.C. Malheiro, J. Moutinho-Pereira & J.A. Santos, 2013. Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. International Journal of Biometeorology, 57(6): 909-925. DOI 10.1007/s00484-012-0617-8
  • Fraga, H., I. de Cortázar Atauri & J.A. Santos, 2018. Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management, 196: 66-74. DOI: 10.1016/j.agwat.2017.10.023
  • Fraga, H., I. García de Cortázar Atauri, A.C. Malheiro & J.A. Santos, 2016. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11): 3774-3788. DOI: 10.1111/gcb.13382
  • Fraga, H., M. Amraoui, A.C. Malheiro, J. Moutinho-Pereira, J. Eiras-Dias, J. Silvestre & J.A. Santos, 2014. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 47(1): 753-771. DOI: 10.5721/EuJRS20144743
  • Gambetta, G.A., 2016. Water stress and grape physiology in the context of global climate change. Journal of Wine Economics, 11(1): 168-180. DOI:10.1017/jwe.2015.16
  • Garrett, K.A., M. Nita, E.D. De Wolf, L. Gomez-Montano & A.H. Sparks, 2016. “Plant pathogens as indicators of climate change, 425-437”. In: Climate Change (2nd Edition). DOI: 10.1016/B978-0-444-63524-2.00021-X
  • Grulke, N.E., 2011. The nexus of host and pathogen phenology: understanding the disease triangle with climate change. The New Phytologist, 189(1): 8-11.
  • Hochberg, U., A. Batushansky, A. Degu, S. Rachmilevitch & A. Fait, 2015. Metabolic and physiological responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L.) to near optimal temperatures of 25 and 35°C. International Journal of Molecular Sciences, 16(10): 24276-24294. DOI: 10.3390/ijms161024276
  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. Stocker et al.), Cambridge University Press, Cambridge and New York, 1535pp.
  • IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds. R.K. Pachauri & L.A. Meyer), IPCC, Geneva, Switzerland, 151 pp.
  • IPCC, 2018. Special Report: Global Warming of 1.5 °C. 2018. (Web sayfası: https://www.ipcc.ch/sr15) (Erişim tarihi: Mart 2021).
  • Jones, G.V. & F. Alves, 2012. Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. International Journal of Global Warming, 4(3-4): 383-406. DOI: 10.1504/IJGW.2012.049448
  • Jones, G.V., M.A. White, O.R. Cooper & K. Storchmann, 2005. Climate change and global wine quality. Climatic Change, 73(3): 319-343. DOI: 10.1007/s10584-005-4704-2
  • Jones, G.V., R. Reid & A. Vilks, 2012. “Climate, grapes and wine: Structure and suitability in a variable and changing climate, 109-133”. In: The Geography of Wine: Regions, Terrior and Techniques, (Eds): Springer, Dordrecht.
  • Jones, N.K., 2018. An investigation of trends in viticultural climatic indices in Southern Quebec, a cool climate wine region. Journal of Wine Research, 29(2): 120-129. DOI: 10.1080/09571264.2018.1472074
  • Kadıoğlu, M., Y. Ünal, A. İlhan & C. Yürük, 2017. Türkiye'de iklim değişikliği ve tarımda sürdürülebilirlik, Türkiye Gıda ve İçecek Sanayi Dernekleri Federasyonu. (Web sayfası:https://www.tgdf.org.tr/wp-content/uploads/2017/10/iklim-degisikligi-rapor-elma.compressed.pdf) (Erişim tarihi: Nisan 2021).
  • Keller, M., 2015. The Science of Grapevines. Anatomy and Physiology, 2nd Ed., Elsevier Academic Press, London, UK, 377p.
  • Kizildeniz, T., I. Mekni, H. Santesteban, I. Pascual, F. Morales & J.J. Irigoyen, 2015. Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agricultural Water Management, 159: 155-164. DOI: 10.1016/j.agwat.2015.06.015
  • Korkutal, I., E. Bahar & A. Carbonneau, 2011. Growth and yield responses of cv. Merlot (Vitis vinifera L.) to early water stress. African Journal of Agricultural Research, 6(29): 6281-6288. DOI: 10.5897/AJAR11.1893
  • Korkutal, I., E. Bahar & A. Carbonneau, 2019. Effects of early water stress on grapevine (Vitis vinifera L.) growing in cv. Syrah. Applied Ecology and Environmental Research, 17(1): 463-472. DOI:10.15666/aeer/1701_463472
  • Molitor, D. & J. Junk, 2019. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO one, 53(3): 409-422. DOI: 10.20870/oeno-one.2019.53.3.2329
  • Moriondo, M., G.V. Jones, B. Bois, C. Dibari, R. Ferrise, G. Trombi & M. Bindi, 2013. Projected shifts of wine regions in response to climate change. Climatic change, 119(3): 825-839. DOI 10.1007/s10584-013-0739-y
  • Moschos, T., C. Souliotis, T. Broumas & V. Kapothanassi, 2004. Control of the European grapevine moth Lobesia botrana in Greece by the mating disruption technique: A three-year survey. Phytoparasitica, 32: 83–89.
  • Ozturk, T., Z.P. Ceber, M. Turkes, M.L. Kurnaz, 2015. Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs. International Journal of Climatology, 35(14): 4276–4292. DOI: 10.1002/joc.4285
  • Parker, A., R. Hofmann, C. Van Leeuwen, A. McLachlan & M. Trought, 2014. Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Australian Journal of Grape and Wine Research, 20(3): 422–431. DOI: 10.1111/ajgw.12092
  • Parker, A.K., I.G. de Cortázar‐Atauri, C. Van Leeuwen & I. Chuine, 2011. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2): 206-216. DOI: 10.1111/j.1755-0238.2011.00140.x
  • Sadras, V.O. & M.A. Moran, 2012. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18(2): 115-122. DOI: 10.1111/j.1755-0238.2012.00180.x
  • Santesteban, L.G., C. Miranda, J. Urrestarazu, M. Loidi & J.B. Royo, 2017. Severe trimming and enhanced competition of laterals as a tool to delay ripening in Tempranillo vineyards under semiarid conditions. Oeno One, 51(2): 191-203. DOI: 10.20870/oeno-one.2017.51.2.1583
  • Santos, J.A., H. Fraga, A.C. Malheiro, J. Moutinho-Pereira, L.T. Dinis, C. Correia, M. Moriondo, L. Leolini, C. Dibari, S. Costafreda-Aumedes, T. Kartschall, C. Menz, D. Molitor, J. Junk, M. Beyer & H.R. Schultz, 2020. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9): 3092. DOI: 10.3390/app10093092
  • Schultz, H.R. & G.V. Jones, 2010. Climate induced historic and future changes in viticulture. Journal of Wine Research, 21(2-3): 137-145. DOI: 10.1080/09571264.2010.530098
  • Schultz, H.R. & M. Stoll, 2010. Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Australian Journal of Grape and Wine Research, 16: 4-24. DOI: 10.1111/j.1755-0238.2009.0074.x
  • Schultz, H.R., 2016. Global climate change, sustainability, and some challenges for grape and wine production. Journal of Wine Economics, 11(1): 181-200. DOI:10.1017/jwe.2015.31
  • Sen, B., S. Topcu, M. Turkes, B. Sen & J.F. Warner, 2012. Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52: 175–191. DOI: 10.3354/cr01074
  • Soltekin, O., A. Güler, A. Candemir, A. Altındişli & A. Unal, 2019. Response of (Vitis vinifera L.) cv. Fantasy Seedless to water deficit treatments: Phenolic compounds and physiological activities. BIO Web of Conferences, 15: 01001. DOI:10.1051/bioconf/20191501001.
  • Soltekin, O., T. Teker & A. Altındişli, 2020. Deficit irrigation strategies in Vitis vinifera L. ‘Crimson Seedless’ table grape: Physiological responses, growth, yield and fruit quality. XXX International Horticultural Congress, International Symposium on Viticulture: Primary Production and Processing 1276: 197-204. DOI: 10.17660/ActaHortic.2020.1276.28
  • Tóth, J.P. & Z. Végvári, 2016. The future of winegrape growing regions in Europe. Australian Journal of Grape and Wine Research, 22(1): 64-72. DOI: 10.1111/ajgw.12168
  • Türkeş, M. & E. Erlat, 2018. Aşırı hava ve iklim olaylarında dünya ve Türkiye’de gözlenen değişiklik ve eğilimlerin bilimsel bir değerlendirmesi. In: İklim Değişikliği ve Yeşil Boyut: Yeşil Ekonomi ve Yeşil Büyüme. (Ed. Meltem Ucal), pp5-38. ISBN 978-605-680-604-7, Istanbul, Türkiye
  • Türkeş, M., 2012. Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi, Çevre Bilimleri Dergisi. 4(2): 1-32
  • Türkeş, M., 2019. İklim değişikliğinin fiziksel bilim temeli-1. İklim sistemi ve iklim değişikliği nedir? İklim değişikliğinin başlıca nedenleri nelerdir? Toplum ve Hekim Dergisi, 34(6): 457-475.
  • Türkeş, M.T., 2020. İklim değişikliğinin tarımsal üretim ve gıda güvenliğine etkileri: Bilimsel bir değerlendirme. Ege Coğrafya Dergisi, 29(1): 125-149.
  • Van Leeuwen, C. & P. Darriet, 2016. The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1): 150-167. DOI:10.1017/jwe.2015.21
  • Van Leeuwen, C., A. Destrac-Irvine, M. Dubernet, E. Duchêne, M. Gowdy, E. Marguerit, P. Pieri, A. Parker, L. de Rességuier & N. Ollat, 2019. An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9): 514. DOI:10.3390/agronomy9090514
  • Webb, L.B., P.H. Whetton & E.W.R. Barlow, 2011. Observed trends in winegrape maturity in Australia. Global Change Biology, 17(8): 2707-2719. DOI: 10.1111/j.1365-2486.2011.02434.x
There are 56 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Oğuzhan Soltekin 0000-0001-7886-6531

Ahmet Altındişli 0000-0003-0183-2645

Burçak İşçi 0000-0002-6542-0271

Publication Date September 5, 2021
Submission Date February 18, 2021
Acceptance Date April 2, 2021
Published in Issue Year 2021 Volume: 58 Issue: 3

Cite

APA Soltekin, O., Altındişli, A., & İşçi, B. (2021). İklim değişikliğinin Türkiye’de bağcılık üzerine etkileri. Journal of Agriculture Faculty of Ege University, 58(3), 457-467. https://doi.org/10.20289/zfdergi.882893

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.