Year 2018, Volume 14, Issue 3, Pages 1020 - 1037 2018-12-25

Bounded-Influence Regression Estimation for Mixture Experiments

Orkun COŞKUNTUNCEL [1]

18 53

Ordinary Least Squares (OLS) estimator is widely used technique for estimating the regression coefficient in mixture experiments. But this estimator is very sensitive to outliers and/or multicollinearity problems. The aim of this paper is to propose estimators for the regression parameters of a mixture model that can combat with the above problems. For this purpose, Generalized M (GM) estimation, which is more resistant to outliers in the y and / or x directions and regression estimators such as ridge and Liu, which is effective against the multicollinearity, were used together. The Mean Square Error (MSE) properties of proposed estimator has been examined and shown to be smaller than biased and GM estimates. Also performance of the combined estimator is illustrated by examples.
Regression, Ridge regression, Liu estimator, Robustness, GM estimator
  • ARSLAN, O., BILLOR, N. (1996). Robust Ridge Regression Estimation Based on the GM-Estimators. Jour. of Math. & Comp. Sci. (Math. Ser.), Vol.9-1, 1-9.
  • ARSLAN, O., BILLOR, N. (2000). Robust Liu Estimator for Regression Based on an M-Estimators. Journal of Applied Statistics, Vol.27-1, 39-47.
  • BELSLEY, D.A., KUH, E., WELSCH, R.E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Colinearity, Wiley, New York.
  • CORNELL, J. A. (1990). Experiments with Mixtures - Designs, Models and the Analysis of Mixture Data. 2nd edition, John Wiley& Sons, Inc., New York, USA.
  • COŞKUNTUNCEL, O. (2005). Robust Estimators for the Regression Parameters of Experiment with Mixtures Models. International Jour. of Pure and App. Math., Vol.24, No.4, 459-469.
  • DU, Z., WIENS, D.P. (2000). Jackknifing, Weighting, Diagnostics and Variance Estimation in Generalized M-Estimation. Statistics and Probability Letters, Vol.46, 287-299.
  • GORMAN, J. W. (1970). Fitting equations to mixture data with restraints on compositions. Journal of Quality Technology, Vol. 2, pp. 186-194.
  • HAMPEL, F.R., RONCHETTI, E.M., ROUSSEEUW, P.J., STAHEL, W.A. (1986). Robust Statistics: The Approach Based on Influential Functions, Wiley, New York.
  • HOERL, A.E., KENNARD, R.W. (1970a). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, Vol. 12-1, 55-67.
  • HOERL, A.E., KENNARD, R.W. (1970b). Ridge Regression: Applications to Nonorthogonal Problems. Technometrics, Vol. 12-1, 69-82.
  • HUBER, P.J. (1964). Robust Estimation of a Location Parameters. The Annals of Mathematical Statistics, Vol 35, 73-101.
  • HUBER, P.J. (2003). Robust Statistics, Wiley, New York.
  • LIU, K. (1993). A new class of biased estimate in linear regression. Communication in Statistics A, Vol. 22, 105-123.
  • KRASKER, W.S., WELSCH, R.E. (1982). Efficent bounded-influence regression estimation. Journal of the American Statistical Association, Vol. 77-379, 595-604.
  • MARONNA, R.A., MARTIN, R.D., YOHAI, V.J. (2006). Robust Statistics: Theory and Methods, Wiley, New York.
  • MARONNA, R.A., YOHAI, V.J. (1981). Asymptotic Behaviour of General M-Estimates for Regression and Scale with Random Carriers. Z. Wahrsch. Verb. Geb., 58, 7-20
  • MARQUARDT, D.W. (1970). Generalized inverses, Ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591-612.
  • MONTGOMERY, D.C., PECK, E.A., VINING, G.G. (2001). Introduction to Linear Regression Analysis. Wiley, New York.
  • MONTGOMERY, D.C., VOTH, S.R. (1994). Multicolinearity and Leverage in Mixture experiments. Journal of Quality Technology, Vol. 26, pp. 96-108.
  • MYERS, R.H., MONTGOMERY, D.C. (2002). Response Surface Methodology. Wiley, New York.
  • ROUSSEEUW, P.J. (1985). A regression diagnostic for multiple outliers and leverage points. Abstract in IMS Bull., 14, p. 399.
  • ROUSSEEUW, P.J., LEROY, A.M. (1987). Robust Regression and Outlier Detection. Wiley, New York.
  • ROUSSEEUW, P.J., ZOMEREN, B.C. (1990). Unmasking Multivariate Outliers and Leverage Points. Journal of American Statistical Association, Vol. 85-411, 633-651.
  • SCHEFFÉ, H. (1958). Experiments with mixtures. Journal of the Royal Statistical Society - B, Vol. 20, pp. 344-360.
  • SCHEFFÉ, H. (1963). The simplex-centroid design for experiments with mixtures. Journal of the Royal Statistical Society - B, Vol. 25, pp. 235-263.
  • SILVAPULLE, M.J. (1991). Robust Ridge Regression Based on M-Estimator. Australian and New Zealand Journal of Statistics, Vol.33, 319-333.
  • SIMPSON, D.G., RUPPERT, D., CARROLL, R.J. (1992). On One-Step GM Estimates and Stability of Inferences in Linear Regression. Journal of American Statistical Association, Vol. 87-418, 439-450.
  • SIMPSON, D.G., CHANG, Y.C.I. (1997). Reweighting Approximate GM Estimators: Asymptotics and Residual-based Graphics. Journal of Statistical Planning and Inference, 57, 273-293.
  • SNEE, R. D. (1975). Experimental designs for quadratic models in constrained mixture spaces. Technometrics, Vol. 17, pp. 149-159.
  • ST. JOHN, R. C. (1984). Experiments with mixtures, ill conditionning, and Ridge regression. Journal of Quality Technology, Vol. 16, pp. 81-96.
  • STAT-EASE (2004). DESIGN-EXPERT Software for Response Surface Methodology and Mixture Experiments. Version 6, 45 days Trial. Stat-Ease, Inc. Minneapolis, MN.
Primary Language en
Subjects Education, Scientific Disciplines
Journal Section Makaleler
Authors

Orcid: 0000-0002-0599-1881
Author: Orkun COŞKUNTUNCEL
Institution: MERSİN ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ
Country: Turkey


Bibtex @research article { mersinefd443584, journal = {Mersin Üniversitesi Eğitim Fakültesi Dergisi}, issn = {}, eissn = {1306-7850}, address = {Mersin University}, year = {2018}, volume = {14}, pages = {1020 - 1037}, doi = {10.17860/mersinefd.443584}, title = {Bounded-Influence Regression Estimation for Mixture Experiments}, key = {cite}, author = {COŞKUNTUNCEL, Orkun} }
APA COŞKUNTUNCEL, O . (2018). Bounded-Influence Regression Estimation for Mixture Experiments. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 14 (3), 1020-1037. DOI: 10.17860/mersinefd.443584
MLA COŞKUNTUNCEL, O . "Bounded-Influence Regression Estimation for Mixture Experiments". Mersin Üniversitesi Eğitim Fakültesi Dergisi 14 (2018): 1020-1037 <http://dergipark.org.tr/mersinefd/issue/41501/443584>
Chicago COŞKUNTUNCEL, O . "Bounded-Influence Regression Estimation for Mixture Experiments". Mersin Üniversitesi Eğitim Fakültesi Dergisi 14 (2018): 1020-1037
RIS TY - JOUR T1 - Bounded-Influence Regression Estimation for Mixture Experiments AU - Orkun COŞKUNTUNCEL Y1 - 2018 PY - 2018 N1 - doi: 10.17860/mersinefd.443584 DO - 10.17860/mersinefd.443584 T2 - Mersin Üniversitesi Eğitim Fakültesi Dergisi JF - Journal JO - JOR SP - 1020 EP - 1037 VL - 14 IS - 3 SN - -1306-7850 M3 - doi: 10.17860/mersinefd.443584 UR - https://doi.org/10.17860/mersinefd.443584 Y2 - 2018 ER -
EndNote %0 Mersin University Journal of the Faculty of Education Bounded-Influence Regression Estimation for Mixture Experiments %A Orkun COŞKUNTUNCEL %T Bounded-Influence Regression Estimation for Mixture Experiments %D 2018 %J Mersin Üniversitesi Eğitim Fakültesi Dergisi %P -1306-7850 %V 14 %N 3 %R doi: 10.17860/mersinefd.443584 %U 10.17860/mersinefd.443584
ISNAD COŞKUNTUNCEL, Orkun . "Bounded-Influence Regression Estimation for Mixture Experiments". Mersin Üniversitesi Eğitim Fakültesi Dergisi 14 / 3 (December 2018): 1020-1037. https://doi.org/10.17860/mersinefd.443584