Derleme
BibTex RIS Kaynak Göster

Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?

Yıl 2020, Cilt: 13 Sayı: 3, 444 - 456, 05.12.2020
https://doi.org/10.26559/mersinsbd.687364

Öz

Şeker, hem enerji içeriği hem de tadı nedeniyle beynimizdeki ödül sistemini tetikleyen lezzetli bir besindir ve yiyecek bağımlılığına neden olan işlenmiş besinlerin ana yüzünü oluşturmaktadır. Şekerin beyindeki, genel etkileri ve özellikle de beynin ödül yolaklarında etkileri yoğun bir araştırma ve tartışma alanı olmuştur. Şeker tüketimi, mezokortikolimbik sistemi madde kullanımıyla benzer şekilde aktive eder. Şeker alımına bağlı olarak beyinde dopamin D1 reseptör bağlanmasında artış ve D2 reseptör bağlantısında azalma olmakta ve dopamin seviyelerinde oluşan bu değişiklik önce yoksunluğa, ardından devam eden şeker alımına yol açabilmektedir. Kanda yüksek şeker seviyeleri periferik olarak salınan iştah hormonlarının düzenlenmesinin yanı sıra, hipotalamik iştah peptitlerini de etkilemektedir. Beyin nörokimyasında şeker alımıyla oluşan bu değişiklikler büyüklük bakımından daha küçük olmasına rağmen madde kullanımı ile meydana gelen değişikliklere benzerdir. Şekerin insan sağlığı üzerinde yarattığı olumsuz sonuçlar göz önünde bulundurulduğunda oluşturabileceği bağımlılığın ciddi sonuçlar yaratacağı açıktır. Bu sebeplere dayanarak, şeker tüketiminin azaltılması adına, hem bireysel hem de toplum sağlığına yönelik, devletin ve endüstrinin birlikte hareket ettiği adımlar atılması önem taşımaktadır.

Kaynakça

  • 1.Dünya Sağlık Örgütü. Fact Sheet: Obesty and overweight. Erişim yeri: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight, Erişim tarihi: 07.07.2019
  • 2. Dimitrijević I, Popović N, Sabljak V, Škodrić-Trifunović V, Dimitrijević N. Food addiction-diagnosis and treatment. Psychiatr Danub 2015;27(1), 101-106.
  • 3. T.C. Sağlık Bakanlığı Yayın No: 931. Sağlık Araştırmaları Genel Müdürlüğü Yayın No: SB-SAG-2014/02. Erişim yeri: https://hsgm.saglik.gov.tr/depo/birimler/saglikli-beslenme-hareketli-hayat-db/Yayinlar/kitaplar/diger-kitaplar/TBSA-Beslenme-Yayini.pdf, Erişim tarihi: 06.02.2020.
  • 4. Dünya Sağlık Örgütü (DSÖ). Guideline: sugars intake for adults and children: World Health Organization; 2015. Erişim yeri: https://apps.who.int/iris/bitstream/handle/10665/149782/9789241549028_eng.pdf;jsessionid=C3DA898D6AEF5BE9D1FC52A3FD98ACFC?sequence=1, Erişim tarihi: 07.07.2019
  • 5. Çiçek B. Eklenmiş Şekerler ve Sağlık. Turkiye Klinikleri J Nutr Diet-Special Topics 2016;2(1):31-34.
  • 6. Freeman CR, Zehra A, Ramirez V, Wiers CE, Volkow ND, Wang GJ. Impact of sugar on the body, brain, and behavior. Front Biosci (Landmark Ed) 2018;23:2255-2566.
  • 7. Lindgren E, Gray K, Miller G, Tyler R, Wiers CE, Volkow ND, Wang GJ. Food addiction: A common neurobiological mechanism with drug abuse. Front Biosci (Landmark Ed) 2018;23:811-836.
  • 8. Klenowski PM, Shariff MR, Belmer A, Fogarty MJ, Mu EW, Bellingham MC, Bartlett SE. Prolonged consumption of sucrose in a binge-like manner, alters the morphology of medium spiny neurons in the nucleus accumbens shell. Front Behav Neurosci 2016;10:54.
  • 9. Benton D. The plausibility of sugar addiction and its role in obesity and eating disorders. Clin Nutr 2010:29(3):288-303.
  • 10. Öyekçin DG, Deveci A. Yeme Bagimliliginin Etyolojisi/Etiology of Food Addiction. Psikiyatride Guncel Yaklasimlar 2012;4(2):138.
  • 11. Moreno C, Tandon R. Should overeating and obesity be classified as an addictive disorder in DSM-5? Curr Pharm Des 2011;17(12):1128-31.
  • 12. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 2017;18(12):741.
  • 13. Carlier N, Marshe VS, Cmorejova J, Davis C, Müller DJ. Genetic similarities between compulsive overeating and addiction phenotypes: A case for “food addiction”? Curr Psychiatry Rep 2015;17(12):96.
  • 14. Meule A. Focus: Addiction: Back by popular demand: A narrative review on the history of food addiction research. Yale J Biol Med 2015;88(3):295.
  • 15. Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PloS one 2015;10(2):e0117959.
  • 16. Woods SC. The control of food intake: behavioral versus molecular perspectives. Cell Metab 2009;9(6):489-498.
  • 17. Hagan S, Niswender KD. Neuroendocrine regulation of food intake. Pediatr Blood Cancer 2012;58(1):149-153.
  • 18. Khan TA, Sievenpiper JL. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr 2016;55(2):25-43.
  • 19. Rippe J, Angelopoulos T. Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients 2016:8(11):E697.
  • 20. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013;346:e7492.
  • 21. Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002;36(2):199-211.
  • 22. Begg DP, Woods SC. The endocrinology of food intake. Nat Rev Endocrinol 2013;9(10):584.
  • 23. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron 2011;69(4):664-79.
  • 24. Alonso-Alonso M, Woods SC, Pelchat M, Grigson PS, Stice E, Farooqi S, Khoo CS, Mattes RD, Beauchamp GK. Food reward system: current perspectives and future research needs. Nutr Rev 2015;73(5):296-307.
  • 25. Westwater ML, Fletcher PC, Ziauddeen H. Sugar addiction: the state of the science. Eur J Nutr 2016;55(2):55-69.
  • 26. Ahmed SH, Guillem K, Vandaele Y. Sugar addiction: pushing the drug-sugar analogy to the limit. Curr Opin Clin Nutr Metab Care 2013;16(4):434-439.
  • 27. de Silva PN. Are sweetened drinks a gateway to alcohol, opiate and stimulant addiction? Summary of evidence and therapeutic strategies. Med Hypotheses. 2020;135:109469.
  • 28. Burger KS. Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: a randomized controlled trial. Am J Clin Nutr. 2017;105(3):555-563.
  • 29. Shearrer GE, Stice E, Burger KS. Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. Am J Clin Nutr. 2018;107(6):859-866.
  • 30. Falbe J, Thompson HR, Patel A, Madsen KA. Potentially addictive properties of sugar-sweetened beverages among adolescents. Appetite. 2019;133:130-137.
  • 31. Sinha R. 2018. Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol 2018;31:5–13.
  • 32. Murray S, Tulloch A, Criscitelli K, Avena NM. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: relevance to low calorie sweeteners. Physiol Behav 2016;164, 504–508.
  • 33. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003;19(4):1709-1715.
  • 34. Petrovich GD, Hobin MP, Reppucci CJ. Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 2012;224:70-80.
  • 35. Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 2013;341(6153):1517-1521.
  • 36. Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, Veleta K, Kantak PA, Aita M, Shilling-Scrivo K, Ramakrishnan C, Deisseroth K, Otte S, Stuber GD. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 2015;160(3):516-527.
  • 37. Bocarsly ME. Pharmacological interventions for obesity: current and future targets. Curr Addict Rep 2018;5(2):202-211.
  • 38. A, Kunii K, Nambu T, Tsujino N, Sakai A, Matsuzaki I, Miwa Y, Goto K, Sakurai T. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res 2000;859(2):404-409.
  • 39. Soto M, Chaumontet C, Even PC, Nadkarni N, Piedcoq J, Darcel N, Tomé D, Fromentin G. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice. Physiol Behav 2015;44–53.
  • 40.Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah-Lagnado SJ, van den Pol AN, de Araujo IE. Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci 2016;19(3):465-70.
  • 41. Ayano G. Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat 2016;2(120):2.
  • 42. Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, Schwartz GJ, Moran TH, Hoebel BG. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001;12(16):3549-3552.
  • 43. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010;13(5):635-41.
  • 44. Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci 2010;30(39):13105-13109.
  • 45. Stice E, Yokum S, Bohon C, Marti N, Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 2010;50(4):1618-1625.
  • 46. Epstein LH, Leddy JJ, Temple JL, Faith MS. Food reinforcement and eating: a multilevel analysis. Psychol Bull 2007;133(5):884.
  • 47. Shariff M, Quik M, Holgate J, Morgan M, Patkar OL, Tam V, Belmer A, Bartlett SE. Neuronal nicotinic acetylcholine receptor modulators reduce sugar intake. PloS One 2016;11(3):e0150270.
  • 48. Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015;8:426.
  • 49. Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife 2013;2:e01462.
  • 50. Michaelides M, Miller ML, DiNieri JA, Gomez JL, Schwartz E, Egervari G, Wang GJ, Mobbs CV, Volkow ND, Hurd Y. Dopamine D2 Receptor Signaling in the Nucleus Accumbens Comprises a Metabolic–Cognitive Brain Interface Regulating Metabolic Components of Glucose Reinforcement. Neuropsychopharmacology 2017;42(12):2365.
  • 51. Halford JC, Boyland EJ, Blundell JE, Kirkham TC, Harrold JA. Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 2010;6:255.
  • 52. Wurtman RJ, Wurtman JJ. Brain serotonin, carbohydrate‐craving, obesity and depression. Obes Res 1995;3(S4):477S-480S.
  • 53. Sohn JW, Elmquist JK, Williams KW. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 2013;36:504–512.
  • 54. Capello, A.E., Markus, C.R., 2014. Differential influence of the 5-HTTLPR genotype, neuroticism and real-life acute stress exposure on appetite and energy intake. Appetite 2014;77:83–93.
  • 55. Böber E. Obezite Fizyopatolojisi. Turkiye Klinikleri J Pediatr Sci 2015;11(3):1-6.
  • 56. Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J, Leng G, Menzies J, Mercer JG, Murphy M, van der Plasse G, Dickson SL. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev 2014;47:295-306.
  • 57. Lerma-Cabrera JM, Carvajal F, Lopez-Legarrea P. Food addiction as a new piece of the obesity framework. Nutr J 2015;15(1):5.
  • 58. Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 2007;30:375–381.
  • 59. Arslan S, Şanlıer N. Fruktoz ve sağlık. Mersin Univ Saglık Bilim Derg 2016;9(3):150-158.
  • 60. Laughlin MR. Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 2014;6:3117–3129.
  • 61. Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Havel PJ. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 2004;89:2963–2972.
  • 62. Kyriazis GA, Soundarapandian MM, Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci 2012;109:E524–E532.
  • 63. Gonzalez JT, Betts JA. Dietary fructose metabolism by splanchnic organs: size matters. Cell Metab 2018;27:483–485.
  • 64. Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, Constable RT, Sherwin RS. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 2013;309(1):63-70.
  • 65. Luo S, Monterosso JR, Sarpelleh K, Page KA. Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci U S A. 2015;112(20), 6509-6514.
  • 66. Jastreboff AM, Sinha R, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, Constable RT, Sherwin RS. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes 2016;65(7):1929-1939.
  • 67. Lindqvist A, Baelemans A, Erlanson-Albertsson C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regul Pept 2008;150(1-3):26-32.
  • 68. Erlanson-Albertsson C, Lindqvist A. Fructose affects enzymes involved in the synthesis and degradation of hypothalamic endocannabinoids. Regul Pept 2010;161(1-3):87-91.
  • 69. DiNicolantonio JJ, O’Keefe JH, Wilson WL. Sugar addiction: is it real? A narrative review. Br J Sports Med 2018;52(14):910-3.
  • 70. Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci 2005;8(5):555.
  • 71. Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PloS One 2007;2(8):e698.
  • 72. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008;32(1):20-39.
  • 73. Bello NT, Guarda AS, Terrillion CE, Redgrave GW, Coughlin JW, Moran TH. Repeated binge access to a palatable food alters feeding behavior, hormone profile, and hindbrain c-Fos responses to a test meal in adult male rats. Am J Physiol Regul Integr Comp Physiol 2009;297(3):R622-31.
  • 74. Smith JE, Co C, Coller MD, Hemby SE, Martin TJ. Self-administered heroin and cocaine combinations in the rat: Additive reinforcing effects—Supra-additive effects on nucleus accumbens extracellular dopamine. Neuropsychopharmacology 2006;31(1):139.
  • 75. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cog Sci 2011;15(1):37-46.

Sugar addiction: Real or imagened?

Yıl 2020, Cilt: 13 Sayı: 3, 444 - 456, 05.12.2020
https://doi.org/10.26559/mersinsbd.687364

Öz

Sugar is a delicious food that triggers the reward system in our brain because of its energy content and its taste. It is the main face of processed foods that cause food addiction. The general effects of sugar in the brain, in particular on reward pathways of the brain, have been an area of intense research and discussion. Sugar consumption activates the mesocorticolimbic system in a manner synonymous with substances of abuse. Increased dopamine D1 receptor binding and decreased D2 receptor binding in the brain due to sugar uptake, and this change in dopamine levels can lead to withdrawal, followed by continued sugar uptake. High levels of sugar in the blood affect the regulation of peripheral secreted appetite hormones, as well as hypothalamic appetite peptides. Although these changes in brain neurochemistry caused by sugar intake are smaller in size, they are similar to those caused by substance use. When the negative effects of sugar on human health are taken into consideration, it is clear that sugar addiction can create serious consequences. Based on these reasons, it is important to take steps in order to reduce sugar consumption, in which both the state and industry act together for both individual and public health.

Kaynakça

  • 1.Dünya Sağlık Örgütü. Fact Sheet: Obesty and overweight. Erişim yeri: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight, Erişim tarihi: 07.07.2019
  • 2. Dimitrijević I, Popović N, Sabljak V, Škodrić-Trifunović V, Dimitrijević N. Food addiction-diagnosis and treatment. Psychiatr Danub 2015;27(1), 101-106.
  • 3. T.C. Sağlık Bakanlığı Yayın No: 931. Sağlık Araştırmaları Genel Müdürlüğü Yayın No: SB-SAG-2014/02. Erişim yeri: https://hsgm.saglik.gov.tr/depo/birimler/saglikli-beslenme-hareketli-hayat-db/Yayinlar/kitaplar/diger-kitaplar/TBSA-Beslenme-Yayini.pdf, Erişim tarihi: 06.02.2020.
  • 4. Dünya Sağlık Örgütü (DSÖ). Guideline: sugars intake for adults and children: World Health Organization; 2015. Erişim yeri: https://apps.who.int/iris/bitstream/handle/10665/149782/9789241549028_eng.pdf;jsessionid=C3DA898D6AEF5BE9D1FC52A3FD98ACFC?sequence=1, Erişim tarihi: 07.07.2019
  • 5. Çiçek B. Eklenmiş Şekerler ve Sağlık. Turkiye Klinikleri J Nutr Diet-Special Topics 2016;2(1):31-34.
  • 6. Freeman CR, Zehra A, Ramirez V, Wiers CE, Volkow ND, Wang GJ. Impact of sugar on the body, brain, and behavior. Front Biosci (Landmark Ed) 2018;23:2255-2566.
  • 7. Lindgren E, Gray K, Miller G, Tyler R, Wiers CE, Volkow ND, Wang GJ. Food addiction: A common neurobiological mechanism with drug abuse. Front Biosci (Landmark Ed) 2018;23:811-836.
  • 8. Klenowski PM, Shariff MR, Belmer A, Fogarty MJ, Mu EW, Bellingham MC, Bartlett SE. Prolonged consumption of sucrose in a binge-like manner, alters the morphology of medium spiny neurons in the nucleus accumbens shell. Front Behav Neurosci 2016;10:54.
  • 9. Benton D. The plausibility of sugar addiction and its role in obesity and eating disorders. Clin Nutr 2010:29(3):288-303.
  • 10. Öyekçin DG, Deveci A. Yeme Bagimliliginin Etyolojisi/Etiology of Food Addiction. Psikiyatride Guncel Yaklasimlar 2012;4(2):138.
  • 11. Moreno C, Tandon R. Should overeating and obesity be classified as an addictive disorder in DSM-5? Curr Pharm Des 2011;17(12):1128-31.
  • 12. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 2017;18(12):741.
  • 13. Carlier N, Marshe VS, Cmorejova J, Davis C, Müller DJ. Genetic similarities between compulsive overeating and addiction phenotypes: A case for “food addiction”? Curr Psychiatry Rep 2015;17(12):96.
  • 14. Meule A. Focus: Addiction: Back by popular demand: A narrative review on the history of food addiction research. Yale J Biol Med 2015;88(3):295.
  • 15. Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PloS one 2015;10(2):e0117959.
  • 16. Woods SC. The control of food intake: behavioral versus molecular perspectives. Cell Metab 2009;9(6):489-498.
  • 17. Hagan S, Niswender KD. Neuroendocrine regulation of food intake. Pediatr Blood Cancer 2012;58(1):149-153.
  • 18. Khan TA, Sievenpiper JL. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr 2016;55(2):25-43.
  • 19. Rippe J, Angelopoulos T. Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients 2016:8(11):E697.
  • 20. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013;346:e7492.
  • 21. Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002;36(2):199-211.
  • 22. Begg DP, Woods SC. The endocrinology of food intake. Nat Rev Endocrinol 2013;9(10):584.
  • 23. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron 2011;69(4):664-79.
  • 24. Alonso-Alonso M, Woods SC, Pelchat M, Grigson PS, Stice E, Farooqi S, Khoo CS, Mattes RD, Beauchamp GK. Food reward system: current perspectives and future research needs. Nutr Rev 2015;73(5):296-307.
  • 25. Westwater ML, Fletcher PC, Ziauddeen H. Sugar addiction: the state of the science. Eur J Nutr 2016;55(2):55-69.
  • 26. Ahmed SH, Guillem K, Vandaele Y. Sugar addiction: pushing the drug-sugar analogy to the limit. Curr Opin Clin Nutr Metab Care 2013;16(4):434-439.
  • 27. de Silva PN. Are sweetened drinks a gateway to alcohol, opiate and stimulant addiction? Summary of evidence and therapeutic strategies. Med Hypotheses. 2020;135:109469.
  • 28. Burger KS. Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: a randomized controlled trial. Am J Clin Nutr. 2017;105(3):555-563.
  • 29. Shearrer GE, Stice E, Burger KS. Adolescents at high risk of obesity show greater striatal response to increased sugar content in milkshakes. Am J Clin Nutr. 2018;107(6):859-866.
  • 30. Falbe J, Thompson HR, Patel A, Madsen KA. Potentially addictive properties of sugar-sweetened beverages among adolescents. Appetite. 2019;133:130-137.
  • 31. Sinha R. 2018. Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol 2018;31:5–13.
  • 32. Murray S, Tulloch A, Criscitelli K, Avena NM. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: relevance to low calorie sweeteners. Physiol Behav 2016;164, 504–508.
  • 33. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 2003;19(4):1709-1715.
  • 34. Petrovich GD, Hobin MP, Reppucci CJ. Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 2012;224:70-80.
  • 35. Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 2013;341(6153):1517-1521.
  • 36. Jennings JH, Ung RL, Resendez SL, Stamatakis AM, Taylor JG, Huang J, Veleta K, Kantak PA, Aita M, Shilling-Scrivo K, Ramakrishnan C, Deisseroth K, Otte S, Stuber GD. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 2015;160(3):516-527.
  • 37. Bocarsly ME. Pharmacological interventions for obesity: current and future targets. Curr Addict Rep 2018;5(2):202-211.
  • 38. A, Kunii K, Nambu T, Tsujino N, Sakai A, Matsuzaki I, Miwa Y, Goto K, Sakurai T. Orexin-induced food intake involves neuropeptide Y pathway. Brain Res 2000;859(2):404-409.
  • 39. Soto M, Chaumontet C, Even PC, Nadkarni N, Piedcoq J, Darcel N, Tomé D, Fromentin G. Intermittent access to liquid sucrose differentially modulates energy intake and related central pathways in control or high-fat fed mice. Physiol Behav 2015;44–53.
  • 40.Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah-Lagnado SJ, van den Pol AN, de Araujo IE. Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci 2016;19(3):465-70.
  • 41. Ayano G. Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat 2016;2(120):2.
  • 42. Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, Schwartz GJ, Moran TH, Hoebel BG. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001;12(16):3549-3552.
  • 43. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010;13(5):635-41.
  • 44. Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci 2010;30(39):13105-13109.
  • 45. Stice E, Yokum S, Bohon C, Marti N, Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 2010;50(4):1618-1625.
  • 46. Epstein LH, Leddy JJ, Temple JL, Faith MS. Food reinforcement and eating: a multilevel analysis. Psychol Bull 2007;133(5):884.
  • 47. Shariff M, Quik M, Holgate J, Morgan M, Patkar OL, Tam V, Belmer A, Bartlett SE. Neuronal nicotinic acetylcholine receptor modulators reduce sugar intake. PloS One 2016;11(3):e0150270.
  • 48. Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015;8:426.
  • 49. Domingos AI, Sordillo A, Dietrich MO, Liu ZW, Tellez LA, Vaynshteyn J, Ferreira JG, Ekstrand MI, Horvath TL, de Araujo IE, Friedman JM. Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar. Elife 2013;2:e01462.
  • 50. Michaelides M, Miller ML, DiNieri JA, Gomez JL, Schwartz E, Egervari G, Wang GJ, Mobbs CV, Volkow ND, Hurd Y. Dopamine D2 Receptor Signaling in the Nucleus Accumbens Comprises a Metabolic–Cognitive Brain Interface Regulating Metabolic Components of Glucose Reinforcement. Neuropsychopharmacology 2017;42(12):2365.
  • 51. Halford JC, Boyland EJ, Blundell JE, Kirkham TC, Harrold JA. Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 2010;6:255.
  • 52. Wurtman RJ, Wurtman JJ. Brain serotonin, carbohydrate‐craving, obesity and depression. Obes Res 1995;3(S4):477S-480S.
  • 53. Sohn JW, Elmquist JK, Williams KW. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 2013;36:504–512.
  • 54. Capello, A.E., Markus, C.R., 2014. Differential influence of the 5-HTTLPR genotype, neuroticism and real-life acute stress exposure on appetite and energy intake. Appetite 2014;77:83–93.
  • 55. Böber E. Obezite Fizyopatolojisi. Turkiye Klinikleri J Pediatr Sci 2015;11(3):1-6.
  • 56. Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J, Leng G, Menzies J, Mercer JG, Murphy M, van der Plasse G, Dickson SL. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev 2014;47:295-306.
  • 57. Lerma-Cabrera JM, Carvajal F, Lopez-Legarrea P. Food addiction as a new piece of the obesity framework. Nutr J 2015;15(1):5.
  • 58. Palmiter RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 2007;30:375–381.
  • 59. Arslan S, Şanlıer N. Fruktoz ve sağlık. Mersin Univ Saglık Bilim Derg 2016;9(3):150-158.
  • 60. Laughlin MR. Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 2014;6:3117–3129.
  • 61. Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, Havel PJ. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 2004;89:2963–2972.
  • 62. Kyriazis GA, Soundarapandian MM, Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci 2012;109:E524–E532.
  • 63. Gonzalez JT, Betts JA. Dietary fructose metabolism by splanchnic organs: size matters. Cell Metab 2018;27:483–485.
  • 64. Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, Constable RT, Sherwin RS. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 2013;309(1):63-70.
  • 65. Luo S, Monterosso JR, Sarpelleh K, Page KA. Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci U S A. 2015;112(20), 6509-6514.
  • 66. Jastreboff AM, Sinha R, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, Constable RT, Sherwin RS. Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes 2016;65(7):1929-1939.
  • 67. Lindqvist A, Baelemans A, Erlanson-Albertsson C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regul Pept 2008;150(1-3):26-32.
  • 68. Erlanson-Albertsson C, Lindqvist A. Fructose affects enzymes involved in the synthesis and degradation of hypothalamic endocannabinoids. Regul Pept 2010;161(1-3):87-91.
  • 69. DiNicolantonio JJ, O’Keefe JH, Wilson WL. Sugar addiction: is it real? A narrative review. Br J Sports Med 2018;52(14):910-3.
  • 70. Volkow ND, Wise RA. How can drug addiction help us understand obesity? Nat Neurosci 2005;8(5):555.
  • 71. Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PloS One 2007;2(8):e698.
  • 72. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008;32(1):20-39.
  • 73. Bello NT, Guarda AS, Terrillion CE, Redgrave GW, Coughlin JW, Moran TH. Repeated binge access to a palatable food alters feeding behavior, hormone profile, and hindbrain c-Fos responses to a test meal in adult male rats. Am J Physiol Regul Integr Comp Physiol 2009;297(3):R622-31.
  • 74. Smith JE, Co C, Coller MD, Hemby SE, Martin TJ. Self-administered heroin and cocaine combinations in the rat: Additive reinforcing effects—Supra-additive effects on nucleus accumbens extracellular dopamine. Neuropsychopharmacology 2006;31(1):139.
  • 75. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cog Sci 2011;15(1):37-46.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Sabriye Arslan 0000-0002-9068-4009

İdil İmamoğlu Bu kişi benim 0000-0002-9386-3125

Hilal Yıldıran 0000-0001-7956-5087

Yayımlanma Tarihi 5 Aralık 2020
Gönderilme Tarihi 11 Şubat 2020
Kabul Tarihi 10 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 13 Sayı: 3

Kaynak Göster

APA Arslan, S., İmamoğlu, İ., & Yıldıran, H. (2020). Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?. Mersin Üniversitesi Sağlık Bilimleri Dergisi, 13(3), 444-456. https://doi.org/10.26559/mersinsbd.687364
AMA Arslan S, İmamoğlu İ, Yıldıran H. Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?. Mersin Univ Saglık Bilim Derg. Aralık 2020;13(3):444-456. doi:10.26559/mersinsbd.687364
Chicago Arslan, Sabriye, İdil İmamoğlu, ve Hilal Yıldıran. “Şeker Bağımlılığı: Gerçek Mi Hayal ürünü mü?”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 13, sy. 3 (Aralık 2020): 444-56. https://doi.org/10.26559/mersinsbd.687364.
EndNote Arslan S, İmamoğlu İ, Yıldıran H (01 Aralık 2020) Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?. Mersin Üniversitesi Sağlık Bilimleri Dergisi 13 3 444–456.
IEEE S. Arslan, İ. İmamoğlu, ve H. Yıldıran, “Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?”, Mersin Univ Saglık Bilim Derg, c. 13, sy. 3, ss. 444–456, 2020, doi: 10.26559/mersinsbd.687364.
ISNAD Arslan, Sabriye vd. “Şeker Bağımlılığı: Gerçek Mi Hayal ürünü mü?”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 13/3 (Aralık 2020), 444-456. https://doi.org/10.26559/mersinsbd.687364.
JAMA Arslan S, İmamoğlu İ, Yıldıran H. Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?. Mersin Univ Saglık Bilim Derg. 2020;13:444–456.
MLA Arslan, Sabriye vd. “Şeker Bağımlılığı: Gerçek Mi Hayal ürünü mü?”. Mersin Üniversitesi Sağlık Bilimleri Dergisi, c. 13, sy. 3, 2020, ss. 444-56, doi:10.26559/mersinsbd.687364.
Vancouver Arslan S, İmamoğlu İ, Yıldıran H. Şeker Bağımlılığı: Gerçek mi hayal ürünü mü?. Mersin Univ Saglık Bilim Derg. 2020;13(3):444-56.

MEÜ Sağlık Bilimleri Dergisi Doç.Dr. Gönül Aslan'ın Editörlüğünde Mersin Üniversitesi Sağlık Bilimleri Enstitüsüne bağlı olarak 2008 yılında yayımlanmaya başlanmıştır. Prof.Dr. Gönül Aslan Mart 2015 tarihinde Başeditörlük görevine Prof.Dr. Caferi Tayyar Şaşmaz'a devretmiştir. 01 Ocak 2023 tarihinde Prof.Dr. C. Tayyar Şaşmaz Başeditörlük görevini Prof.Dr. Özlem İzci Ay'a devretmiştir. 

Yılda üç sayı olarak (Nisan - Ağustos - Aralık) yayımlanan dergi multisektöryal hakemli bir bilimsel dergidir. Dergide araştırma makaleleri yanında derleme, olgu sunumu ve editöre mektup tipinde bilimsel yazılar yayımlanmaktadır. Yayın hayatına başladığı günden beri eposta yoluyla yayın alan ve hem online hem de basılı olarak yayımlanan dergimiz, Mayıs 2014 sayısından itibaren sadece online olarak yayımlanmaya başlamıştır. TÜBİTAK-ULAKBİM Dergi Park ile Nisan 2015 tarihinde yapılan Katılım Sözleşmesi sonrasında online yayın kabul ve değerlendirme sürecine geçmiştir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 16 Kasım 2011'dan beri Türkiye Atıf Dizini tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 2016 birinci sayıdan itibaren ULAKBİM Tıp Veri Tabanı tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 02 Ekim 2019'dan beri DOAJ tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 23 Mart 2021'den beri EBSCO tarafından indekslenmektedir.


Dergimiz açık erişim politikasını benimsemiş olup, dergimizde makale başvuru, değerlendirme ve yayınlanma aşamasında ücret talep edilmemektedir. Dergimizde yayımlanan makalelerin tamamına ücretsiz olarak Arşivden erişilebilmektedir.

154561545815459   

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı  ile lisanslanmıştır.