Araştırma Makalesi
BibTex RIS Kaynak Göster

Combating Money Laundering using Artificial Intelligence

Yıl 2025, Cilt: 5 Sayı: 2, 66 - 80, 23.12.2025
https://doi.org/10.54569/aair.1829876

Öz

This research provides a comprehensive outline of money laundering, its cycle, and the challenges of detecting it, in Nigeria and globally. It argues that traditional, rule-based models for identifying financial crimes are inefficient as a result of their high false-positive rates and static nature. The research proposes a solution leveraging modern machine learning and deep learning, specifically an unsupervised approach using a clustering model. This methodology aims to identify suspicious transactions during the “placement” stage of money laundering by detecting anomalies and evolving patterns. Developing and assessing a generative deep learning model for fraud detection, assessing the likelihood of financial crimes, and contrasting the suggested methodology with conventional methods are the goals of this research. The paper’s objectives are to create and evaluate a generative deep learning model for fraud detection, analyse the risks of financial crimes, and compare the proposed method against traditional approaches

Etik Beyan

This research study did not require ethical approval.

Destekleyen Kurum

None

Proje Numarası

N/A

Teşekkür

We want to extend our sincere appreciation to all co-authors who contributed to the successful completion of this research.

Kaynakça

  • Central Bank of Nigeria. (2013). Anti-Money Laundering and Combating the Financing of Terrorism in Banks and Other Financial Institutions in Nigeria Regulations. Lagos: Federal Republic of Nigeria Official Gazette. https://www.cbn.gov.ng/out/2014/fprd/aml%20act%202013.pdf
  • Lessambo, F. I. (2023). Anti-Money Laundering, Counter Financing Terrorism, and Cybersecurity in the banking industry: A Comparative Study within the G-20. Edited by Philip Molyneux, Springer Nature Switzerland AG. https://www.scribd.com/document/640072311
  • Gerlings, J. & Constantiou, I. (2023). Machine Learning in Transaction Monitoring: The Prospect of xAI. In Proceedings of the 56th Hawaii International Conference on System Sciences, Copenhagen. https://doi.org/10.48550/arXiv.2210.07648
  • Sjögren, S. (2023). Anomaly detection with machine learning methods at Forsmark. https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-503356
  • Jensen, R. I., Ferwerda, J., Jørgensen, K. S., Jensen, E. R., Borg, M., Krogh, M. P., Jensen, J. B., & Iosifidis, A. (2023). A Synthetic Data Set to Benchmark Anti-money Laundering Methods. Scientific Data, 10(1), 1-10. https://doi.org/10.1038/s41597-023-02569-2
  • Nigerian Financial Intelligence Unit (NFIU). (2019). Annual Report. https://www.nfiu.gov.ng/AnnualReport
  • EFCC, 2022 Narrative of Conviction. (2023). https://www.efcc.gov.ng/efcc/images/pdfs/3785_Convictions_recorded_in_2022.pdf
  • EFCC, 2021 Conviction List. (2022). https://www.efcc.gov.ng/efcc/images/2220_Convictions_recorded_in_2021.pdf
  • EFCC, 2020 Convictions. (2021). https://www.efcc.gov.ng/efcc/images/2020_Convictions__Final_Compilations.pdf
  • Nigeria Sanctions Committee. (2024). Designation of Individuals and Entity by The Nigeria Sanctions Committee. https://nigsac.gov.ng/downloads/Designations%20and%20Narrative%20Summary%20for%2018th%20March%202024.pdf
  • Brownlee, J. (2020). D⁠a⁠t⁠a⁠ ⁠P⁠r⁠e⁠p⁠a⁠r⁠a⁠t⁠i⁠on⁠ ⁠f⁠o⁠r⁠ ⁠⁠M⁠a⁠c⁠h⁠i⁠n⁠e Learning: Data Cleaning, Feature Selection, and Data Transforms in Python (Version 1.1). Machine Learning Mastery. http://103.203.175.90:81/fdScript/RootOfEBooks/E%20Book%20collection%20-%202024%20-%20B/CSE%20%20IT%20AIDS%20ML/Data%20Preparation%20for%20Machine%20Learning.pdf
  • Emam, K. E., Mosquera, L., & Hoptroff, R. (2020). Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data. O’Reilly Media, Inc.. https://www.oreilly.com/library/view/practical-synthetic-data/9781492072737/
  • Gursakal, N., Celik, S., & Birisci, E. (2022). Synthetic Data for Deep Learning: Generate Synthetic Data for Decision Making and Applications with Python and R. Apress. http://dx.doi.org/10.1007/978-1-4842-8587-9
  • Federal Financial Institutions Examination Council (FFIEC). (2021). Politically Exposed Persons. https://www.ffiec.gov/press/PDF/Politically-Exposed-Persons.pdf
  • Verdhan, V. (2023). Mastering Unlabeled Data (Version 6 ed.). Manning Publications Co.. https://dokumen.pub/mastering-unlabeled-data-meap-v06.html
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning: MIT Press. http://dx.doi.org/10.1007/s10710-017-9314-z
  • Adari, S. K. & Alla, S. (2024). Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and PyTorch (Second Edition). Apress. https://doi.org/10.1007/979-8-8688-0008-5
  • Saporta, G. & Maraney, S. (2022). Practical Fraud Prevention: Fraud and AML Analytics for Fintech and eCommerce, using SQL and Python. O’Reilly Media, Inc.. https://www.oreilly.com/library/view/practical-fraud-prevention/9781492093312/
  • Xing, E. P. 10701 Machine Learning: Clustering. Lecture slides, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. https://www.cs.cmu.edu/~epxing/Class/10701/slides/clustering.pdf
  • Nigerian Financial Intelligence Unit (NFIU). (2024). Advisory & Guidance. https://www.nfiu.gov.ng/AdvisoryAndGuidance
  • Jullum, M., Loland, A., Huseby, R. B., Anonsen, G., & Lorentzen, J. (2020). Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1), 173-186. http://dx.doi.org/10.1108/JMLC-07-2019-0055
  • Special Control Unit Against Money Laundering (SCUML). (2024). Guidelines and Circulars. https://scuml.org/?page_id=109
  • International Finance Corporation (IFC). (2019). Anti-Money Laundering (AML) & Countering Financing of Terrorism (CFT): Risk Management in Emerging Market Banks - Good Practice Note. Washington, D.C.: (IFC). https://www.ifc.org/content/dam/ifc/doc/mgrt/45464-ifc-aml-report.pdf

Yapay Zeka Kullanarak Kara Para Aklamayla Mücadele

Yıl 2025, Cilt: 5 Sayı: 2, 66 - 80, 23.12.2025
https://doi.org/10.54569/aair.1829876

Öz

Bu araştırma, kara para aklamanın, döngüsünün ve Nijerya'da ve küresel olarak tespit edilmesindeki zorlukların kapsamlı bir taslağını sunmaktadır. Finansal suçları tespit etmek için kullanılan geleneksel, kural tabanlı modellerin, yüksek yanlış pozitif oranları ve statik yapıları nedeniyle etkisiz olduğunu savunmaktadır. Araştırma, özellikle kümeleme modeli kullanan gözetimsiz bir yaklaşım olmak üzere, modern makine öğrenimi ve derin öğrenmeden yararlanan bir çözüm önermektedir. Bu metodoloji, anormallikleri ve gelişen kalıpları tespit ederek kara para aklamanın "yerleştirme" aşamasında şüpheli işlemleri tespit etmeyi amaçlamaktadır. Dolandırıcılık tespiti için üretken bir derin öğrenme modeli geliştirmek ve değerlendirmek, finansal suçların olasılığını değerlendirmek ve önerilen metodolojiyi geleneksel yöntemlerle karşılaştırmak bu araştırmanın hedefleridir. Makalenin hedefleri, dolandırıcılık tespiti için üretken bir derin öğrenme modeli oluşturmak ve değerlendirmek, finansal suçların risklerini analiz etmek ve önerilen yöntemi geleneksel yaklaşımlarla karşılaştırmaktır.

Proje Numarası

N/A

Kaynakça

  • Central Bank of Nigeria. (2013). Anti-Money Laundering and Combating the Financing of Terrorism in Banks and Other Financial Institutions in Nigeria Regulations. Lagos: Federal Republic of Nigeria Official Gazette. https://www.cbn.gov.ng/out/2014/fprd/aml%20act%202013.pdf
  • Lessambo, F. I. (2023). Anti-Money Laundering, Counter Financing Terrorism, and Cybersecurity in the banking industry: A Comparative Study within the G-20. Edited by Philip Molyneux, Springer Nature Switzerland AG. https://www.scribd.com/document/640072311
  • Gerlings, J. & Constantiou, I. (2023). Machine Learning in Transaction Monitoring: The Prospect of xAI. In Proceedings of the 56th Hawaii International Conference on System Sciences, Copenhagen. https://doi.org/10.48550/arXiv.2210.07648
  • Sjögren, S. (2023). Anomaly detection with machine learning methods at Forsmark. https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-503356
  • Jensen, R. I., Ferwerda, J., Jørgensen, K. S., Jensen, E. R., Borg, M., Krogh, M. P., Jensen, J. B., & Iosifidis, A. (2023). A Synthetic Data Set to Benchmark Anti-money Laundering Methods. Scientific Data, 10(1), 1-10. https://doi.org/10.1038/s41597-023-02569-2
  • Nigerian Financial Intelligence Unit (NFIU). (2019). Annual Report. https://www.nfiu.gov.ng/AnnualReport
  • EFCC, 2022 Narrative of Conviction. (2023). https://www.efcc.gov.ng/efcc/images/pdfs/3785_Convictions_recorded_in_2022.pdf
  • EFCC, 2021 Conviction List. (2022). https://www.efcc.gov.ng/efcc/images/2220_Convictions_recorded_in_2021.pdf
  • EFCC, 2020 Convictions. (2021). https://www.efcc.gov.ng/efcc/images/2020_Convictions__Final_Compilations.pdf
  • Nigeria Sanctions Committee. (2024). Designation of Individuals and Entity by The Nigeria Sanctions Committee. https://nigsac.gov.ng/downloads/Designations%20and%20Narrative%20Summary%20for%2018th%20March%202024.pdf
  • Brownlee, J. (2020). D⁠a⁠t⁠a⁠ ⁠P⁠r⁠e⁠p⁠a⁠r⁠a⁠t⁠i⁠on⁠ ⁠f⁠o⁠r⁠ ⁠⁠M⁠a⁠c⁠h⁠i⁠n⁠e Learning: Data Cleaning, Feature Selection, and Data Transforms in Python (Version 1.1). Machine Learning Mastery. http://103.203.175.90:81/fdScript/RootOfEBooks/E%20Book%20collection%20-%202024%20-%20B/CSE%20%20IT%20AIDS%20ML/Data%20Preparation%20for%20Machine%20Learning.pdf
  • Emam, K. E., Mosquera, L., & Hoptroff, R. (2020). Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data. O’Reilly Media, Inc.. https://www.oreilly.com/library/view/practical-synthetic-data/9781492072737/
  • Gursakal, N., Celik, S., & Birisci, E. (2022). Synthetic Data for Deep Learning: Generate Synthetic Data for Decision Making and Applications with Python and R. Apress. http://dx.doi.org/10.1007/978-1-4842-8587-9
  • Federal Financial Institutions Examination Council (FFIEC). (2021). Politically Exposed Persons. https://www.ffiec.gov/press/PDF/Politically-Exposed-Persons.pdf
  • Verdhan, V. (2023). Mastering Unlabeled Data (Version 6 ed.). Manning Publications Co.. https://dokumen.pub/mastering-unlabeled-data-meap-v06.html
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning: MIT Press. http://dx.doi.org/10.1007/s10710-017-9314-z
  • Adari, S. K. & Alla, S. (2024). Beginning Anomaly Detection Using Python-Based Deep Learning: Implement Anomaly Detection Applications with Keras and PyTorch (Second Edition). Apress. https://doi.org/10.1007/979-8-8688-0008-5
  • Saporta, G. & Maraney, S. (2022). Practical Fraud Prevention: Fraud and AML Analytics for Fintech and eCommerce, using SQL and Python. O’Reilly Media, Inc.. https://www.oreilly.com/library/view/practical-fraud-prevention/9781492093312/
  • Xing, E. P. 10701 Machine Learning: Clustering. Lecture slides, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. https://www.cs.cmu.edu/~epxing/Class/10701/slides/clustering.pdf
  • Nigerian Financial Intelligence Unit (NFIU). (2024). Advisory & Guidance. https://www.nfiu.gov.ng/AdvisoryAndGuidance
  • Jullum, M., Loland, A., Huseby, R. B., Anonsen, G., & Lorentzen, J. (2020). Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 23(1), 173-186. http://dx.doi.org/10.1108/JMLC-07-2019-0055
  • Special Control Unit Against Money Laundering (SCUML). (2024). Guidelines and Circulars. https://scuml.org/?page_id=109
  • International Finance Corporation (IFC). (2019). Anti-Money Laundering (AML) & Countering Financing of Terrorism (CFT): Risk Management in Emerging Market Banks - Good Practice Note. Washington, D.C.: (IFC). https://www.ifc.org/content/dam/ifc/doc/mgrt/45464-ifc-aml-report.pdf
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Modelleme ve Simülasyon, Planlama ve Karar Verme, Yapay Zeka (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ufuoma Ogude 0009-0002-0324-1419

Blessing Oloko 0009-0005-6343-6033

Ayomitope Isijola 0009-0005-3580-7888

Michael Asefon 0009-0006-1671-8182

Chizoma Chikere 0009-0004-2421-7092

Azizat Adekoya 0009-0001-5025-0142

Samuel Okorie 0009-0000-3268-4986

Proje Numarası N/A
Gönderilme Tarihi 26 Kasım 2025
Kabul Tarihi 20 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE U. Ogude, B. Oloko, A. Isijola, M. Asefon, C. Chikere, A. Adekoya, ve S. Okorie, “Combating Money Laundering using Artificial Intelligence”, Adv. Artif. Intell. Res., c. 5, sy. 2, ss. 66–80, 2025, doi: 10.54569/aair.1829876.

Advances in Artificial Intelligence Research is an open access journal which means that the content is freely available without charge to the user or his/her institution. All papers are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which allows users to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator.

Graphic design @ Özden Işıktaş