This study approaches the least-squares method for simple linear regression model. The least-squares line does not comply with the data when there are outliers that have deceptive effects on the results in the dataset. The study aims to develop a method for obtaining a line that complies more with the data when there are outliers in the dataset.
Miller I, Miller M. Mathematical Statistics, Prenttice-Hall, Inc, 1999 (Çev. Ümit Şenesen John E. Freund’dan Matematiksel İstatistik, Literatür Yayıncılık. 2007).
Arslan İ. Python ile Veri Bilimi, Pusula Yayıncılık, Türkiye, 2020.
Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. John Wiley & Sons, 1987.
Attaway S. Matlab A Practical Introduction to Programming and Problem Solving. 5th ed. Cambridge, USA, Butterwoth-Heinmann, 2019.
Kubat C. Matlab Yapay Zeka ve Mühendislik Uygulamaları. 5. Baskı, İstanbul, Türkiye, Abaküs Kitap Yayın, 2021.
Güneş A, Yıldız K. Matlab Matematik ve Grafik Programlama Dili. İstanbul, Türkiye, Türkmen Kitabevi, 1997.
Verardi V, Croux C. “Robust regression in Stata”. The Stata Journal, 9(3), 439-453, 2009.
Andersen R. Modern methods for robust regression (No. 152). Sage, 2008.
Miller I, Miller M. Mathematical Statistics, Prenttice-Hall, Inc, 1999 (Çev. Ümit Şenesen John E. Freund’dan Matematiksel İstatistik, Literatür Yayıncılık. 2007).
Arslan İ. Python ile Veri Bilimi, Pusula Yayıncılık, Türkiye, 2020.
Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. John Wiley & Sons, 1987.
Attaway S. Matlab A Practical Introduction to Programming and Problem Solving. 5th ed. Cambridge, USA, Butterwoth-Heinmann, 2019.
Kubat C. Matlab Yapay Zeka ve Mühendislik Uygulamaları. 5. Baskı, İstanbul, Türkiye, Abaküs Kitap Yayın, 2021.
Güneş A, Yıldız K. Matlab Matematik ve Grafik Programlama Dili. İstanbul, Türkiye, Türkmen Kitabevi, 1997.
Verardi V, Croux C. “Robust regression in Stata”. The Stata Journal, 9(3), 439-453, 2009.
Andersen R. Modern methods for robust regression (No. 152). Sage, 2008.
H. H. Tali ve C. Çelti, “An Approach Towards the Least-Squares Method for Simple Linear Regression”, Adv. Artif. Intell. Res., c. 2, sy. 2, ss. 38–44, 2022, doi: 10.54569/aair.1032607.
Advances in Artificial Intelligence Research is an open access journal which means that the content is freely available without charge to the user or his/her institution. All papers are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which allows users to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator.