Diğer
BibTex RIS Kaynak Göster

Liposomes: composition, preparation techniques, and diverse applications in food science

Yıl 2024, Cilt: 19 Sayı: 70, 105 - 128, 30.12.2024

Öz

In this review, the fundamental characteristics of liposomal constituents required for the development and application of liposomes, as well as the techniques employed for liposome preparation, are explained, along with examples of their use in foods. Liposomes are composed of two-layered membranes formed spontaneously by molecules called phospholipids in an aqueous environment. Molecules of phospholipids have a structure that includes polar (water-associated) head groups and nonpolar hydrocarbon tails. Liposomes can carry both hydrophilic (water-soluble) and hydrophobic (water-repellent) compounds because they have both aqueous and lipid phases. Liposomes can be categorized into various groups based on their sizes and the number of layers. Two main types are referred to as multilamellar vesicles (MLVs) and unilamellar vesicles (ULVs). Various methods are used for the preparing of liposomes, detergent removal technique, including the thin-film method, extrusion method, injection method, heating method, supercritical fluid method, microfluidization, and ultrasonication. The application of liposomal coating is extensively utilized in cosmetics and pharmaceuticals for delivering bioactive substances, medications, and vaccines. Over the last twenty years, food liposomes have become a focal point in food science research, with the anticipation of discovering broad applications in the food industry. Liposomes are used in the food industry for the transport and controlled release of bioactive compounds. Liposomes are particularly intriguing due to their resemblance to cell membranes in terms of composition and structure, which makes them valuable for improving the bioavailability of encapsulated functional compounds. It is important to diversify the materials and methods used in liposome preparation and to develop high-stability, low-cost liposomes to expand their potential application areas.

Kaynakça

  • Abdur Rauf, M. (2023). Liposomal encapsulation in food science and technology. In Liposomal Encapsulation in Food Science and Technology (pp. 189-222).
  • Ajeeshkumar, K. K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C. N., & Benjakul, S. (2021). Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1280–1306.
  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102.
  • Akhavan, S., Assadpour, E., Katouzian, I., & Jafari, S. M. (2018). Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology, 74, 132–146.
  • Aksoy, F. S., Tekin-Cakmak, Z. H., Karasu, S., & Aksoy, A. S. (2021). Oxidative stability of the salad dressing enriched by microencapsulated phenolic extracts from cold-pressed grape and pomegranate seed oil byproducts evaluated using OXITEST. Food Science and Technology, 42, e57220.
  • Al-Amin, M., Bellato, F., Mastrotto, F., Garofalo, M., Malfanti, A., Salmaso, S., & Caliceti, P. (2020). Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges. International Journal of Molecular Sciences, 21(5), 1611.
  • Alavi, M., Karimi, N., & Safaei, M. (2017). Application of various types of liposomes in drug delivery systems. Advanced Pharmaceutical Bulletin, 7(1), 3.
  • Alizadeh, E., Akbarzadeh, A., Eslaminejad, M. B., Barzegar, A., Hashemzadeh, S., Nejati-Koshki, K., & Zarghami, N. (2015). Up regulation of liver-enriched transcription factors HNF4a and HNF 6 and liver-specific micro RNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chemical Biology & Drug Design, 85(3), 268–279.
  • Amin, S. G., Shah, D. A., & Dave, R. H. (2017). Formulation and evaluation of liposomes of fenofibrate prepared by thin film hydration technique. International Journal of Pharmaceutical Sciences and Research, 9(9), 3621–3637.
  • Amiri, H., Shabanpour, B., Pourashouri, P., & Kashiri, M. (2023). Encapsulation of marine bioactive compounds using liposome technique: Evaluation of physicochemical properties and oxidative stability during storage. Food Structure, 35, 100308.
  • Boonlao, N., Ruktanonchai, U. R., & Anal, A. K. (2022). Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids and Surfaces B: Biointerfaces, 209, 112211.
  • Briuglia, M. L., Rotella, C., McFarlane, A., & Lamprou, D. A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Delivery and Translational Research, 5(3), 231–242. doi: 10.1007/
  • s13346-015-0212-1 Cheaburu-Yilmaz, C. N., Karasulu, H. Y., & Yilmaz, O. (2019). Nanoscaled dispersed systems used in drug-delivery applications. In C. Vasile (Ed.), Polymeric nanomaterials in nanotherapeutics (pp. 437–468).
  • Cho, N.-J., Hwang, L. Y., Solandt, J. J., & Frank, C. W. (2013). Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials, 6(8), 3294–3308.
  • Chun, J. Y., Choi, M. J., Min, S. G., & Weiss, J. (2013). Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids, 30(1), 249-257.
  • Costa, R., & Santos, L. (2017). Delivery systems for cosmetics: From manufacturing to the skin of natural antioxidants. Powder Technology, 322, 402–416.
  • Cui, H., Li, W., & Lin, L. (2017a). Antibacterial activity of liposome containing curry plant essential oil against Bacillus cereus in rice. Journal of Food Safety, 37(2), e12302.
  • Cui, H., Yuan, L., Li, W., & Lin, L. (2017b). Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef. Food Packaging and Shelf Life, 11, 49–57.
  • Cui, H., Zhang, C., Li, C., & Lin, L. (2020). Inhibition of Escherichia coli O157 biofilm on vegetable surface by solid liposomes of clove oil. LWT - Food Science and Technology, 117, 108656.
  • Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 381–391.
  • Dasharath, P., & Niteshkumar, P. (2020). Fabrication and characterization of sterically stabilized liposomes of topotecan. Future Journal of Pharmaceutical Sciences, 6(1), 1–18.
  • Davidson, E. M., Haroutounian, S., Kagan, L., Naveh, M., Aharon, A., & Ginosar, Y. (2016). A novel proliposomal ropivacaine oil: Pharmacokinetic– pharmacodynamic studies after subcutaneous administration in pigs. Anesthesia & Analgesia, 122(5), 1663–1672.
  • Deshpande, S., Caspi, Y., Meijering, A. E., & Dekker, C. (2016). Octanolassisted liposome assembly on chip. Nature Communications, 7, 1–9. Devrim, B., Kara, A., Vural, İ., & Bozkır, A. (2016). Lysozyme-loaded lipid-polymer hybrid nanoparticles: Preparation, characterization and colloidal stability evaluation. Drug Development and Industrial Pharmacy, 42(11), 1865–1876.
  • Dimov, N., Kastner, E., Hussain, M., Perrie, Y., & Szita, N. (2017). Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Scientific Reports, 7(1), 1–13.
  • El-Said, M. M., El-Messery, T. M., & El-Din, H. M. (2018). The encapsulation of powdered doum extract in liposomes and its application in yoghurt. Acta Scientiarum Polonorum Technologia Alimentaria, 17, 235–245.
  • Esposto, B. S., Pinho, S. G. B., Thomazini, M., Ramos, A. P., Tapia- Blácido, D. R., & Martelli-Tosi, M. (2022). TPP-chitosomes as potential encapsulation system to protect carotenoid-rich extract obtained from carrot by-product: A comparison with liposomes and chitosomes. Food Chemistry, 397, 133857.
  • Fang, J.-Y., Lee, W.-R., Shen, S.-C., & Huang, Y.-L. (2006). Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. Journal of Dermatological Science, 42(2), 101–109.
  • Hassan, H., St-Gelais, D., Gomaa, A., & Fliss, I. (2021). Impact of nisin and nisin-producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and bacterial ecosystem of cheese matrices. Foods, 10(4), 898.
  • He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36- 48.
  • Hoogevest, P. V., & Wendel, A. (2014). The use of natural and synthetic phospholipids as pharmaceutical excipients. European Journal of Lipid Science and Technology, 116(9), 1088–1107.
  • Ji, Y., Wang, Z., Ju, X., Deng, F., Yang, F., & He, R. (2023). Co-encapsulation of rutinoside and β-carotene in liposomes modified by rhamnolipid: Antioxidant activity, antibacterial activity, storage stability, and in vitro gastrointestinal digestion. Journal of Food Science, 88(5), 2064-2077.
  • Khorasani, S., Danaei, M., & Mozafari, M. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science & Technology, 79, 106–115.
  • Kulkarni, V. S. (2005). Liposomes in personal care products. In Delivery system handbook for personal care and cosmetic products (pp. 285–302).
  • Kumar, R. (2019). Lipid-based nanoparticles for drug-delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Nanocarriers for drug delivery (pp. 249–284).
  • Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology, 1, 147–168.
  • Laridi, R., Kheadr, E. E., Benech, R. O., Vuillemard, J. C., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: Optimization, stability and release during milk fermentation. International Dairy Journal, 13, 325–336.
  • Law, B. A., & King, J. S. (1985). Use of liposomes for proteinase addition to Cheddar cheese. Journal of Dairy Research, 52(1), 183–188.
  • Laye, C., McClements, D. J., & Weiss, J. (2008). Formation of biopolymercoated liposomes by electrostatic deposition of chitosan. Journal of Food Science, 73(5), N7–N15.
  • Lee, D.-U., Park, H.-W., & Lee, S.-C. (2021). Comparing the stability of retinol in liposomes with cholesterol, β-sitosterol, and stigmasterol. Food Science and Biotechnology, 30(3), 389-394.
  • Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior, and absorption mechanism. Trends in Food Science & Technology.
  • Liu, W., Ye, A., Liu, W., Liu, C., Han, J., & Singh, H. (2015). Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry, 175, 16–24.
  • Lopes, N. A., Barreto Pinilla, C. M., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1-9.
  • Maherani, B., Arab-Tehrany, E., Mozafari, M. R., Gaiani, C., & Linder, M. (2011). Liposomes: A review of manufacturing techniques and targeting strategies. Current Nanoscience, 7(3), 436–452.
  • Maione-Silva, L., de Castro, E. G., Nascimento, T. L., Cintra, E. R., Moreira, L. C., Cintra, B. A. S., & Lima, E. M. (2019). Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention, and enhances collagen synthesis by fibroblasts. Scientific Reports, 9(1), 522.
  • Maja, L., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 165, 104984.
  • Marsanasco, M., & Alonso, S. d. V. (2022). Stability of bioactive compounds in liposomes after pasteurisation and storage of functional chocolate milk. International Journal of Food Science & Technology, 57(1), 361–369.
  • McClements, D. J. (2015). Nanoparticle- and microparticle-based delivery systems. Boca Raton, FL: CRC Press. Taylor & Francis Group.
  • Meure, L. A., Foster, N. R., & Dehghani, F. (2008). Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech, 9(3), 798.
  • Mozafari, M. R. (2005). Liposomes: An overview of manufacturing techniques. Cellular and Molecular Biology Letters, 10(4), 711.
  • Nazari, M., Ghanbarzadeh, B., Samadi Kafil, H., Zeinali, M., & Hamishehkar, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications, 30, 100176.
  • Nkanga, C. I., Bapolisi, A. M., Okafor, N. I., & Krause, R. W. M. (2019). General perception of liposomes: Formation, manufacturing and applications. In Liposomes: Advances and perspectives (pp. 31–52).
  • Ollivon, M., Lesieur, S., Grabielle-Madelmont, C., & Paternostre, M. (2000). Vesicle reconstitution from lipid–detergent mixed micelles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1508(1–2), 34–50.
  • Ong, S. G. M., Chitneni, M., Lee, K. S., Ming, L. C., & Yuen, K. H. (2016). Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics, 8(4), 36.
  • Pan, D., Hao, L., Li, J., Yi, J., Kang, Q., Liu, X., & Lu, J. (2020). An innovative method to enhance protease tolerance of nisin in endogenous proteases. Journal of Dairy Science, 103(4), 3038-3044.
  • Panahi, Y., Farshbaf, M., Mohammadhosseini, M., Mirahadi, M., Khalilov, R., Saghfi, S., & Akbarzadeh, A. (2017). Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 788–799.
  • Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical Reviews, 115(19), 10938–10966.
  • Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungi in wheat bread. International Journal of Food Microbiology, 293, 72–78.
  • Riccardi, D., Baldino, L., & Reverchon, E. (2024). Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. Journal of Translational Medicine, 22(1), 339.
  • Rostamabadi, H., Falsafi, S. R., & Jafari, S. M. (2019). Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 298, 38-67.
  • Santo, I. E., Campardelli, R., Albuquerque, E. C., de Melo, S. V., Della Porta, G., & Reverchon, E. (2014). Liposomes preparation using a supercritical fluid assisted continuous process. Chemical Engineering Journal, 249, 153–159.
  • Savaghebi, D., Barzegar, M., & Mozafari, M. R. (2020). Manufacturing of nanoliposomal extract from Sargassum boveanum algae and investigating its release behavior and antioxidant activity. Food Science & Nutrition, 8(1), 299–310.
  • Schubert, R. (2003). Liposome preparation by detergent removal. Methods in Enzymology, 367, 46–70.
  • Shao, X.-R., Wei, X.-Q., Zhang, S., Fu, N., Lin, Y.-F., Cai, X.-X., & Peng, Q. (2017). Effects of micro-environmental pH of liposome on chemical stability of loaded drug. Nanoscale Research Letters, 12(1), 1–8.
  • Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 154(2), 123–140.
  • Sharma, V. K., & Agrawal, M. K. (2021). A historical perspective of liposomes—a bio nanomaterial. Materials Today: Proceedings, 45, 2963– 2966.
  • Song, F., Chen, J., Zhang, Z., & Tian, S. (2023). Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chemistry, 404(Pt A), 134547.
  • Storm, G., & Woodle, M. (1998). Long circulating liposome therapeutics: From concept to clinical reality. In M. Woodle & G. Storm (Eds.), Long circulating liposomes: Old drugs, new therapeutics (pp. 3–16). Springer.
  • Subramani, T., & Ganapathyswamy, H. (2020). An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceuticals. Journal of Food Science and Technology, 57(1), 1–11.
  • Tabatabaei Mirakabad, F. S., Akbarzadeh, A., Milani, M., Zarghami, N., Taheri-Anganeh, M., Zeighamian, V., Badrzadeh, F., & Rahmati-Yamchi, M. (2016). A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 423–430.
  • Taylor, T. M., Davidson, B. D., Bruce, Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605.
  • Trucillo, P., Campardelli, R., & Reverchon, E. (2019). A versatile supercritical assisted process for the one-shot production of liposomes. The Journal of Supercritical Fluids, 146, 136–143.
  • Tsai, W.-C., & Rizvi, S. S. (2016). Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends in Food Science & Technology, 55, 61–71.
  • Velez, M. A., Perotti, M. C., Zanel, P., Hynes, E. R., & Gennaro, A. M. (2017). Soy PC liposomes as CLA carriers for food applications: Preparation and physicochemical characterization. Journal of Food Engineering, 212, 174–180.
  • Wagner, A., Platzgummer, M., Kreismayr, G., Quendler, H., Stiegler, G., Ferko, B., Vecera, G., Vorauer-Uhl, V., & Katinger, H. (2006). GMP production of liposomes: A new industrial approach. Journal of Liposome Research, 16(3), 311–319.
  • Wagner, A., & Vorauer-Uhl, K. (2011). Liposome technology for industrial purposes. Journal of Drug Delivery, 2011, Article 591325.
  • Weissig, V. (2017). Liposomes came first: The early history of liposomology. In G. G. M. D’Souza (Ed.), Methods in molecular biology (Vol. 1522).
  • Wrenn, S. P., Dicker, S. M., Small, E. F., Dan, N. R., Mleczko, M., Schmitz, G., & Lewin, P. A. (2012). Bursting bubbles and bilayers. Theranostics, 2(12), 1140.
  • Yu, T., Ji, P., & Zhao, W. (2015). Preparation of baicalein liposomelyophilized powder and its pharmacokinetics study. Zhong Yao Cai - Journal of Chinese Medicinal Materials, 38(11), 2404–2407.

Lipozomlar: Bileşimi, Hazırlama Teknikleri ve Gıda Biliminde Çeşitli Uygulamaları

Yıl 2024, Cilt: 19 Sayı: 70, 105 - 128, 30.12.2024

Öz

Metni Türkçeye şu şekilde çevirebilirim:

Bu derlemede, lipozomların geliştirilmesi ve uygulanması için gerekli olan lipozomal bileşenlerin temel özellikleri ile lipozomların hazırlanmasında kullanılan teknikler, gıdalardaki kullanım örnekleriyle birlikte açıklanmaktadır. Lipozomlar, sulu bir ortamda fosfolipid adı verilen moleküller tarafından kendiliğinden oluşan iki katmanlı zarlarla oluşur. Fosfolipid molekülleri, polar (su ile ilişkili) baş gruplarını ve apolar hidrokarbon kuyruklarını içeren bir yapıya sahiptir. Lipozomlar, hem sulu hem de lipid fazlarına sahip oldukları için hem hidrofilik (suya çözünür) hem de hidrofobik (suya dirençli) bileşikleri taşıyabilirler. Lipozomlar, boyutlarına ve katman sayısına göre çeşitli gruplara ayrılabilir. İki ana tip çok katmanlı veziküller (MLV'ler) ve tek katmanlı veziküller (ULV'ler) olarak adlandırılır. Lipozom hazırlamak için ince film yöntemi, ekstrüzyon yöntemi, enjeksiyon yöntemi, ısıtma yöntemi, süperkritik akışkan yöntemi, mikroakışkanlaştırma ve ultrasonikasyon gibi çeşitli yöntemler kullanılır. Lipozomal kaplamaların uygulanması, biyoaktif maddelerin, ilaçların ve aşıların iletilmesi için kozmetik ve ilaçlarda yaygın olarak kullanılmaktadır. Son yirmi yılda, gıda lipozomları gıda bilimi araştırmalarında odak noktası haline gelmiş ve gıda endüstrisinde geniş uygulama alanlarının keşfedilmesi beklenmektedir. Lipozomlar, biyoaktif bileşiklerin taşınması ve kontrollü salımı için gıda endüstrisinde kullanılmaktadır. Lipozomlar, bileşim ve yapı bakımından hücre zarlarına benzediğinden, enkapsüle edilmiş fonksiyonel bileşiklerin biyoyararlanımını artırmada değerli kılmaktadır. Lipozom hazırlamada kullanılan malzemeleri ve yöntemleri çeşitlendirmek, yüksek stabiliteye sahip, düşük maliyetli lipozomlar geliştirmek ve potansiyel uygulama alanlarını genişletmek önemlidir.

Kaynakça

  • Abdur Rauf, M. (2023). Liposomal encapsulation in food science and technology. In Liposomal Encapsulation in Food Science and Technology (pp. 189-222).
  • Ajeeshkumar, K. K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C. N., & Benjakul, S. (2021). Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1280–1306.
  • Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102.
  • Akhavan, S., Assadpour, E., Katouzian, I., & Jafari, S. M. (2018). Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology, 74, 132–146.
  • Aksoy, F. S., Tekin-Cakmak, Z. H., Karasu, S., & Aksoy, A. S. (2021). Oxidative stability of the salad dressing enriched by microencapsulated phenolic extracts from cold-pressed grape and pomegranate seed oil byproducts evaluated using OXITEST. Food Science and Technology, 42, e57220.
  • Al-Amin, M., Bellato, F., Mastrotto, F., Garofalo, M., Malfanti, A., Salmaso, S., & Caliceti, P. (2020). Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges. International Journal of Molecular Sciences, 21(5), 1611.
  • Alavi, M., Karimi, N., & Safaei, M. (2017). Application of various types of liposomes in drug delivery systems. Advanced Pharmaceutical Bulletin, 7(1), 3.
  • Alizadeh, E., Akbarzadeh, A., Eslaminejad, M. B., Barzegar, A., Hashemzadeh, S., Nejati-Koshki, K., & Zarghami, N. (2015). Up regulation of liver-enriched transcription factors HNF4a and HNF 6 and liver-specific micro RNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chemical Biology & Drug Design, 85(3), 268–279.
  • Amin, S. G., Shah, D. A., & Dave, R. H. (2017). Formulation and evaluation of liposomes of fenofibrate prepared by thin film hydration technique. International Journal of Pharmaceutical Sciences and Research, 9(9), 3621–3637.
  • Amiri, H., Shabanpour, B., Pourashouri, P., & Kashiri, M. (2023). Encapsulation of marine bioactive compounds using liposome technique: Evaluation of physicochemical properties and oxidative stability during storage. Food Structure, 35, 100308.
  • Boonlao, N., Ruktanonchai, U. R., & Anal, A. K. (2022). Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids and Surfaces B: Biointerfaces, 209, 112211.
  • Briuglia, M. L., Rotella, C., McFarlane, A., & Lamprou, D. A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Delivery and Translational Research, 5(3), 231–242. doi: 10.1007/
  • s13346-015-0212-1 Cheaburu-Yilmaz, C. N., Karasulu, H. Y., & Yilmaz, O. (2019). Nanoscaled dispersed systems used in drug-delivery applications. In C. Vasile (Ed.), Polymeric nanomaterials in nanotherapeutics (pp. 437–468).
  • Cho, N.-J., Hwang, L. Y., Solandt, J. J., & Frank, C. W. (2013). Comparison of extruded and sonicated vesicles for planar bilayer self-assembly. Materials, 6(8), 3294–3308.
  • Chun, J. Y., Choi, M. J., Min, S. G., & Weiss, J. (2013). Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocolloids, 30(1), 249-257.
  • Costa, R., & Santos, L. (2017). Delivery systems for cosmetics: From manufacturing to the skin of natural antioxidants. Powder Technology, 322, 402–416.
  • Cui, H., Li, W., & Lin, L. (2017a). Antibacterial activity of liposome containing curry plant essential oil against Bacillus cereus in rice. Journal of Food Safety, 37(2), e12302.
  • Cui, H., Yuan, L., Li, W., & Lin, L. (2017b). Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef. Food Packaging and Shelf Life, 11, 49–57.
  • Cui, H., Zhang, C., Li, C., & Lin, L. (2020). Inhibition of Escherichia coli O157 biofilm on vegetable surface by solid liposomes of clove oil. LWT - Food Science and Technology, 117, 108656.
  • Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 381–391.
  • Dasharath, P., & Niteshkumar, P. (2020). Fabrication and characterization of sterically stabilized liposomes of topotecan. Future Journal of Pharmaceutical Sciences, 6(1), 1–18.
  • Davidson, E. M., Haroutounian, S., Kagan, L., Naveh, M., Aharon, A., & Ginosar, Y. (2016). A novel proliposomal ropivacaine oil: Pharmacokinetic– pharmacodynamic studies after subcutaneous administration in pigs. Anesthesia & Analgesia, 122(5), 1663–1672.
  • Deshpande, S., Caspi, Y., Meijering, A. E., & Dekker, C. (2016). Octanolassisted liposome assembly on chip. Nature Communications, 7, 1–9. Devrim, B., Kara, A., Vural, İ., & Bozkır, A. (2016). Lysozyme-loaded lipid-polymer hybrid nanoparticles: Preparation, characterization and colloidal stability evaluation. Drug Development and Industrial Pharmacy, 42(11), 1865–1876.
  • Dimov, N., Kastner, E., Hussain, M., Perrie, Y., & Szita, N. (2017). Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Scientific Reports, 7(1), 1–13.
  • El-Said, M. M., El-Messery, T. M., & El-Din, H. M. (2018). The encapsulation of powdered doum extract in liposomes and its application in yoghurt. Acta Scientiarum Polonorum Technologia Alimentaria, 17, 235–245.
  • Esposto, B. S., Pinho, S. G. B., Thomazini, M., Ramos, A. P., Tapia- Blácido, D. R., & Martelli-Tosi, M. (2022). TPP-chitosomes as potential encapsulation system to protect carotenoid-rich extract obtained from carrot by-product: A comparison with liposomes and chitosomes. Food Chemistry, 397, 133857.
  • Fang, J.-Y., Lee, W.-R., Shen, S.-C., & Huang, Y.-L. (2006). Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. Journal of Dermatological Science, 42(2), 101–109.
  • Hassan, H., St-Gelais, D., Gomaa, A., & Fliss, I. (2021). Impact of nisin and nisin-producing Lactococcus lactis ssp. lactis on Clostridium tyrobutyricum and bacterial ecosystem of cheese matrices. Foods, 10(4), 898.
  • He, H., Lu, Y., Qi, J., Zhu, Q., Chen, Z., & Wu, W. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B, 9(1), 36- 48.
  • Hoogevest, P. V., & Wendel, A. (2014). The use of natural and synthetic phospholipids as pharmaceutical excipients. European Journal of Lipid Science and Technology, 116(9), 1088–1107.
  • Ji, Y., Wang, Z., Ju, X., Deng, F., Yang, F., & He, R. (2023). Co-encapsulation of rutinoside and β-carotene in liposomes modified by rhamnolipid: Antioxidant activity, antibacterial activity, storage stability, and in vitro gastrointestinal digestion. Journal of Food Science, 88(5), 2064-2077.
  • Khorasani, S., Danaei, M., & Mozafari, M. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science & Technology, 79, 106–115.
  • Kulkarni, V. S. (2005). Liposomes in personal care products. In Delivery system handbook for personal care and cosmetic products (pp. 285–302).
  • Kumar, R. (2019). Lipid-based nanoparticles for drug-delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Nanocarriers for drug delivery (pp. 249–284).
  • Laouini, A., Jaafar-Maalej, C., Limayem-Blouza, I., Sfar, S., Charcosset, C., & Fessi, H. (2012). Preparation, characterization and applications of liposomes: State of the art. Journal of Colloid Science and Biotechnology, 1, 147–168.
  • Laridi, R., Kheadr, E. E., Benech, R. O., Vuillemard, J. C., Lacroix, C., & Fliss, I. (2003). Liposome encapsulated nisin Z: Optimization, stability and release during milk fermentation. International Dairy Journal, 13, 325–336.
  • Law, B. A., & King, J. S. (1985). Use of liposomes for proteinase addition to Cheddar cheese. Journal of Dairy Research, 52(1), 183–188.
  • Laye, C., McClements, D. J., & Weiss, J. (2008). Formation of biopolymercoated liposomes by electrostatic deposition of chitosan. Journal of Food Science, 73(5), N7–N15.
  • Lee, D.-U., Park, H.-W., & Lee, S.-C. (2021). Comparing the stability of retinol in liposomes with cholesterol, β-sitosterol, and stigmasterol. Food Science and Biotechnology, 30(3), 389-394.
  • Liu, W., Hou, Y., Jin, Y., Wang, Y., Xu, X., & Han, J. (2020). Research progress on liposomes: Application in food, digestion behavior, and absorption mechanism. Trends in Food Science & Technology.
  • Liu, W., Ye, A., Liu, W., Liu, C., Han, J., & Singh, H. (2015). Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry, 175, 16–24.
  • Lopes, N. A., Barreto Pinilla, C. M., & Brandelli, A. (2019). Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1-9.
  • Maherani, B., Arab-Tehrany, E., Mozafari, M. R., Gaiani, C., & Linder, M. (2011). Liposomes: A review of manufacturing techniques and targeting strategies. Current Nanoscience, 7(3), 436–452.
  • Maione-Silva, L., de Castro, E. G., Nascimento, T. L., Cintra, E. R., Moreira, L. C., Cintra, B. A. S., & Lima, E. M. (2019). Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention, and enhances collagen synthesis by fibroblasts. Scientific Reports, 9(1), 522.
  • Maja, L., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 165, 104984.
  • Marsanasco, M., & Alonso, S. d. V. (2022). Stability of bioactive compounds in liposomes after pasteurisation and storage of functional chocolate milk. International Journal of Food Science & Technology, 57(1), 361–369.
  • McClements, D. J. (2015). Nanoparticle- and microparticle-based delivery systems. Boca Raton, FL: CRC Press. Taylor & Francis Group.
  • Meure, L. A., Foster, N. R., & Dehghani, F. (2008). Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech, 9(3), 798.
  • Mozafari, M. R. (2005). Liposomes: An overview of manufacturing techniques. Cellular and Molecular Biology Letters, 10(4), 711.
  • Nazari, M., Ghanbarzadeh, B., Samadi Kafil, H., Zeinali, M., & Hamishehkar, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications, 30, 100176.
  • Nkanga, C. I., Bapolisi, A. M., Okafor, N. I., & Krause, R. W. M. (2019). General perception of liposomes: Formation, manufacturing and applications. In Liposomes: Advances and perspectives (pp. 31–52).
  • Ollivon, M., Lesieur, S., Grabielle-Madelmont, C., & Paternostre, M. (2000). Vesicle reconstitution from lipid–detergent mixed micelles. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1508(1–2), 34–50.
  • Ong, S. G. M., Chitneni, M., Lee, K. S., Ming, L. C., & Yuen, K. H. (2016). Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics, 8(4), 36.
  • Pan, D., Hao, L., Li, J., Yi, J., Kang, Q., Liu, X., & Lu, J. (2020). An innovative method to enhance protease tolerance of nisin in endogenous proteases. Journal of Dairy Science, 103(4), 3038-3044.
  • Panahi, Y., Farshbaf, M., Mohammadhosseini, M., Mirahadi, M., Khalilov, R., Saghfi, S., & Akbarzadeh, A. (2017). Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 788–799.
  • Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New developments in liposomal drug delivery. Chemical Reviews, 115(19), 10938–10966.
  • Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungi in wheat bread. International Journal of Food Microbiology, 293, 72–78.
  • Riccardi, D., Baldino, L., & Reverchon, E. (2024). Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. Journal of Translational Medicine, 22(1), 339.
  • Rostamabadi, H., Falsafi, S. R., & Jafari, S. M. (2019). Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 298, 38-67.
  • Santo, I. E., Campardelli, R., Albuquerque, E. C., de Melo, S. V., Della Porta, G., & Reverchon, E. (2014). Liposomes preparation using a supercritical fluid assisted continuous process. Chemical Engineering Journal, 249, 153–159.
  • Savaghebi, D., Barzegar, M., & Mozafari, M. R. (2020). Manufacturing of nanoliposomal extract from Sargassum boveanum algae and investigating its release behavior and antioxidant activity. Food Science & Nutrition, 8(1), 299–310.
  • Schubert, R. (2003). Liposome preparation by detergent removal. Methods in Enzymology, 367, 46–70.
  • Shao, X.-R., Wei, X.-Q., Zhang, S., Fu, N., Lin, Y.-F., Cai, X.-X., & Peng, Q. (2017). Effects of micro-environmental pH of liposome on chemical stability of loaded drug. Nanoscale Research Letters, 12(1), 1–8.
  • Sharma, A., & Sharma, U. S. (1997). Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics, 154(2), 123–140.
  • Sharma, V. K., & Agrawal, M. K. (2021). A historical perspective of liposomes—a bio nanomaterial. Materials Today: Proceedings, 45, 2963– 2966.
  • Song, F., Chen, J., Zhang, Z., & Tian, S. (2023). Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chemistry, 404(Pt A), 134547.
  • Storm, G., & Woodle, M. (1998). Long circulating liposome therapeutics: From concept to clinical reality. In M. Woodle & G. Storm (Eds.), Long circulating liposomes: Old drugs, new therapeutics (pp. 3–16). Springer.
  • Subramani, T., & Ganapathyswamy, H. (2020). An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceuticals. Journal of Food Science and Technology, 57(1), 1–11.
  • Tabatabaei Mirakabad, F. S., Akbarzadeh, A., Milani, M., Zarghami, N., Taheri-Anganeh, M., Zeighamian, V., Badrzadeh, F., & Rahmati-Yamchi, M. (2016). A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 423–430.
  • Taylor, T. M., Davidson, B. D., Bruce, Weiss, J. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605.
  • Trucillo, P., Campardelli, R., & Reverchon, E. (2019). A versatile supercritical assisted process for the one-shot production of liposomes. The Journal of Supercritical Fluids, 146, 136–143.
  • Tsai, W.-C., & Rizvi, S. S. (2016). Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes. Trends in Food Science & Technology, 55, 61–71.
  • Velez, M. A., Perotti, M. C., Zanel, P., Hynes, E. R., & Gennaro, A. M. (2017). Soy PC liposomes as CLA carriers for food applications: Preparation and physicochemical characterization. Journal of Food Engineering, 212, 174–180.
  • Wagner, A., Platzgummer, M., Kreismayr, G., Quendler, H., Stiegler, G., Ferko, B., Vecera, G., Vorauer-Uhl, V., & Katinger, H. (2006). GMP production of liposomes: A new industrial approach. Journal of Liposome Research, 16(3), 311–319.
  • Wagner, A., & Vorauer-Uhl, K. (2011). Liposome technology for industrial purposes. Journal of Drug Delivery, 2011, Article 591325.
  • Weissig, V. (2017). Liposomes came first: The early history of liposomology. In G. G. M. D’Souza (Ed.), Methods in molecular biology (Vol. 1522).
  • Wrenn, S. P., Dicker, S. M., Small, E. F., Dan, N. R., Mleczko, M., Schmitz, G., & Lewin, P. A. (2012). Bursting bubbles and bilayers. Theranostics, 2(12), 1140.
  • Yu, T., Ji, P., & Zhao, W. (2015). Preparation of baicalein liposomelyophilized powder and its pharmacokinetics study. Zhong Yao Cai - Journal of Chinese Medicinal Materials, 38(11), 2404–2407.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nanobiyoteknoloji, Gıda Mühendisliği, Gıda Teknolojileri
Bölüm Derleme
Yazarlar

A. Semra Aksoy 0000-0002-4708-3195

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 28 Ağustos 2024
Kabul Tarihi 11 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 19 Sayı: 70

Kaynak Göster

APA Aksoy, A. S. (2024). Lipozomlar: Bileşimi, Hazırlama Teknikleri ve Gıda Biliminde Çeşitli Uygulamaları. Anadolu Bil Meslek Yüksekokulu Dergisi, 19(70), 105-128.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png