Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Comparison of Autograft and DBM Flex (Grafton) for Spinal Lumbar Fusion in Rabbits

Yıl 2021, , 153 - 157, 09.12.2021
https://doi.org/10.25000/acem.963125

Öz

Aim: The choice of graft materials used for spinal fusion possesses a great importance due to their crucial roles in bone remodelling. Autogenous bone grafts are known as the "gold standard" in spinal fusion surgeries. Studies on synthetic graft materials that can be used instead of autogenous bone grafts have gained importance in recent years. The aim of this study was to compare the efficacy of demineralized bone matrix and autograft in the rabbit spinal lumbar fusion (SLF) model.
Methods: Twenty New Zealand rabbits were randomly divided into two groups and underwent SLF by using either iliac crest autologous bone graft (Autograft, n=10) or DBM Flex (Grafton, n=10). Eight-weeks after surgery, animals were sacrificed and spinal fusion was evaluated by computerized tomography (CT), manual palpation, macroscopic analyses, and histological assessments.
Results: CT results revealed that autograft led to significantly higher fusion scores than DBM Flex (p=0.0004). Mobility was significantly lower in autograft group (p=0.0007). Significantly lower bone formation scores were observed in DBM Flex group compared to autograft group (p<0.0001). Histology of spine in the autograft group was significantly better than DBM Flex group (p=0.0002).
Conclusion: Autograft was superior than DBM flex in SLF and autograft will likely to be the “gold standard” in SLF in the future.

Teşekkür

We would like to thank Prof. Murat Danaci for his kind and valuable helps in the evaluations of bone formation. This study did not receive any funding from any organizations or institutions. Authors declare no conflict of interest.

Kaynakça

  • 1. Iorio JA, Jakoi AM, Singla A. Biomechanics of Degenerative Spinal Disorders. Asian spine journal. 2016, 10 (2): 377-384. doi: 10.4184/asj.2016.10.2.377
  • 2. Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003, 13 (4): 371-379. doi: 10.1016/s1050-6411(03)00044-0
  • 3. Christensen FB. Lumbar spinal fusion. Outcome in relation to surgical methods, choice of implant and postoperative rehabilitation. Acta Orthop Scand Suppl. 2004, 75 (313): 2-43.
  • 4. Mannion AF, Fekete TF, Porchet F, Haschtmann D, Jeszenszky D, Kleinstuck FS. The influence of comorbidity on the risks and benefits of spine surgery for degenerative lumbar disorders. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2014, 23 Suppl 1 (Suppl 1): S66-71. doi: 10.1007/s00586-014-3189-y
  • 5. Cheung JP, Luk KD. Complications of Anterior and Posterior Cervical Spine Surgery. Asian spine journal. 2016, 10 (2): 385-400. doi: 10.4184/asj.2016.10.2.385 6. Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine. 2019, 31 (1): 1-14. doi: 10.3171/2019.4.spine18915
  • 7. Wang YS, Yin L, Bao H, Wang WD. Titanium mesh fusion device in the treatment of thoracolumbar burst fracture. Chin Med J (Engl). 2007, 120 (3): 246-247. doi: 8. Hanafy MN, Hanafy AM, Sheha AF, Gad SS. Evaluation of the short-term outcome of anterior approach surgery of the dorsal and lumbar spine. Menoufia Med J. 2014, 27 (2): 413. doi: 10.4103/1110-2098.141717
  • 9. Buser Z, Brodke DS, Youssef JA, Rometsch E, Park JB, Yoon ST et al. Allograft Versus Demineralized Bone Matrix in Instrumented and Noninstrumented Lumbar Fusion: A Systematic Review. Global spine journal. 2018, 8 (4): 396-412. doi: 10.1177/2192568217735342
  • 10. D'Souza M, Macdonald NA, Gendreau JL, Duddleston PJ, Feng AY, Ho AL. Graft Materials and Biologics for Spinal Interbody Fusion. Biomedicines. 2019, 7 (4): 75. doi: 10.3390/biomedicines7040075
  • 11. Grabowski G, Robertson R. Bone allograft with mesenchymal stem cells: a critical review of the literature. Hard Tissue. 2013, 2 (2): 20.
  • 12. Kurz LT, Garfin SR, Booth RE, Jr. Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine (Phila Pa 1976). 1989, 14 (12): 1324-1331. doi: 10.1097/00007632-198912000-00009
  • 13. Carlisle ER, Fischgrund JS (2009) Bone Graft and Fusion Enhancement. In: Errico TJ, Lonner BS, Moulton AW (eds) Surgical Management of Spinal Deformities. W.B. Saunders, Philadelphia, pp 433-448. doi: 10.1016/B978-141603372-1.50030-5
  • 14. Vaccaro AR, Chiba K, Heller JG, Patel T, Thalgott JS, Truumees E et al. Bone grafting alternatives in spinal surgery. Spine J. 2002, 2 (3): 206-215. doi: 10.1016/s1529-9430(02)00180-8
  • 15. Tilkeridis K, Touzopoulos P, Ververidis A, Christodoulou S, Kazakos K, Drosos GI. Use of demineralized bone matrix in spinal fusion. World journal of orthopedics. 2014, 5 (1): 30-37. doi: 10.5312/wjo.v5.i1.30
  • 16. Salih E, Wang J, Mah J, Fluckiger R. Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem J. 2002, 364 (Pt 2): 465-474. doi: 10.1042/bj20011272
  • 17. Tuli SM, Singh AD. The osteoninductive property of decalcified bone matrix. An experimental study. J Bone Joint Surg Br. 1978, 60 (1): 116-123.
  • 18. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine (Phila Pa 1976). 1998, 23 (2): 159-167.
  • 19. Martin GJ, Jr., Boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine (Phila Pa 1976). 1999, 24 (7): 637-645. doi: 10.1097/00007632-199904010-00005
  • 20. Grauer JN, Bomback DA, Lugo R, Troiano NW, Patel TC, Friedlaender GE. Posterolateral lumbar fusions in athymic rats: characterization of a model. Spine J. 2004, 4 (3): 281-286. doi: 10.1016/j.spinee.2003.10.001
  • 21. Miyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y et al. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine (Phila Pa 1976). 2008, 33 (8): 863-869. doi: 10.1097/BRS.0b013e31816b45c3
  • 22. Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am. 1994, 76 (4): 540-548. doi: 10.2106/00004623-199404000-00008
  • 23. Drosos GI, Kazakos KI, Kouzoumpasis P, Verettas DA. Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury. 2007, 38 Suppl 4: S13-21. doi: 10.1016/s0020-1383(08)70005-6
  • 24. Lee KJ, Roper JG, Wang JC. Demineralized bone matrix and spinal arthrodesis. Spine J. 2005, 5 (6 Suppl): 217s-223s. doi: 10.1016/j.spinee.2005.02.006
  • 25. Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF. Bone graft substitutes for spine fusion: A brief review. World journal of orthopedics. 2015, 6 (6): 449-456. doi: 10.5312/wjo.v6.i6.449
  • 26. Delawi D, Dhert WJ, Castelein RM, Verbout AJ, Oner FC. The incidence of donor site pain after bone graft harvesting from the posterior iliac crest may be overestimated: a study on spine fracture patients. Spine (Phila Pa 1976). 2007, 32 (17): 1865-1868. doi: 10.1097/BRS.0b013e318107674e
  • 27. Cook SD, Dalton JE, Prewett AB, Whitecloud TS, 3rd. In vivo evaluation of demineralized bone matrix as a bone graft substitute for posterior spinal fusion. Spine (Phila Pa 1976). 1995, 20 (8): 877-886. doi: 10.1097/00007632-199504150-00002
  • 28. Helm GA, Sheehan JM, Sheehan JP, Jane JA, Jr., diPierro CG, Simmons NE et al. Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg. 1997, 86 (1): 93-100. doi: 10.3171/jns.1997.86.1.0093
  • 29. Urrutia J, Thumm N, Apablaza D, Pizarro F, Zylberberg A, Quezada F. Autograft versus allograft with or without demineralized bone matrix in posterolateral lumbar fusion in rabbits. Laboratory investigation. J Neurosurg Spine. 2008, 9 (1): 84-89. doi: 10.3171/spi/2008/9/7/084
  • 30. Frenkel SR, Moskovich R, Spivak J, Zhang ZH, Prewett AB. Demineralized bone matrix. Enhancement of spinal fusion. Spine (Phila Pa 1976). 1993, 18 (12): 1634-1639. doi: 10.1097/00007632-199309000-00011
  • 31. Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J. 2001, 1 (2): 131-137. doi: 10.1016/s1529-9430(01)00011-0
  • 32. Cammisa FP, Jr., Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine (Phila Pa 1976). 2004, 29 (6): 660-666. doi: 10.1097/01.brs.0000116588.17129.b9
  • 33. Ungureanu G, Chitu A, Iancu I, Kakucs C, Maior T, Florian IS. Gender Differences in the Self-assessment of Quality of Life and Disability After Spinal Fusion for Chronic Low Back Pain at a Neurosurgical Center in Eastern Europe. Neurospine. 2018, 15 (3): 261-268. doi: 10.14245/ns.1836076.038
  • 34. Navarro SM, Frankel WC, Haeberle HS, Ramkumar PN. Fixed and Variable Relationship Models to Define the Volume-Value Relationship in Spinal Fusion Surgery: A Macroeconomic Analysis Using Evidence-Based Thresholds. Neurospine. 2018, 15 (3): 249-260. doi: 10.14245/ns.1836088.044
  • 35. Mayo BC, Haws BE, Bohl DD, Louie PK, Hijji FY, Narain AS et al. Postoperative Fever Evaluation Following Lumbar Fusion Procedures. Neurospine. 2018, 15 (2): 154-162. doi: 10.14245/ns.1836026.013
  • 36. Fay LY, Chang CC, Chang HK, Tu TH, Tsai TY, Wu CL et al. A Hybrid Dynamic Stabilization and Fusion System in Multilevel Lumbar Spondylosis. Neurospine. 2018, 15 (3): 231-241. doi: 10.14245/ns.1836108.054
  • 37. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine (Phila Pa 1976). 1995, 20 (20): 2211-2216.
  • 38. Keskin D, Gundogdu C, Atac AC. Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Med Princ Pract. 2007, 16 (4): 299-305. doi: 10.1159/000102153
  • 39. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011, 9: 66. doi: 10.1186/1741-7015-9-66
  • 40. Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010, 224 (12): 1329-1343. doi: 10.1243/09544119jeim770

Tavşanlarda Spinal Lomber Füzyon için Otogreft ve DBM Flex'in (Grafton) Deneysel Karşılaştırması

Yıl 2021, , 153 - 157, 09.12.2021
https://doi.org/10.25000/acem.963125

Öz

Öz
Amaç: Spinal füzyon için kullanılan greft materyallerinin seçimi, kemiğin yeniden şekillenmesindeki önemli rolleri nedeniyle büyük önem taşımaktadır. Otojen kemik greftleri spinal füzyon ameliyatlarında ‘‘altın standart’’ olarak bilinmektedir. Otojen kemik grefti yerine kullanılabilecek sentetik greft materyaller ile ilgili çalışmalar son yıllarda önem kazanmıştır. Bu çalışmanın amacı tavşan spinal lomber füzyon (SLF) modelinde, demineralize kemik matriksi ve otogreftin etkinliğini karşılaştırmaktır.
Yöntem: Yirmi Yeni Zelanda tavşanı rastgele iki gruba ayrıldı ve iliak krest otolog kemik grefti (Autogreft, n=10) veya DBM Flex (Grafton, n=10) kullanılarak SLF uygulandı. Ameliyattan sekiz hafta sonra hayvanlar sakrifiye edildi ve spinal füzyon bilgisayarlı tomografi (BT), manuel palpasyon, makroskopik analizler ve histolojik değerlendirmelerle değerlendirildi.
Bulgular: BT sonuçları, otogreftin DBM Flex'ten anlamlı derecede daha yüksek füzyon skorları sağladığını ortaya koydu (p=0,0004). Hareketlilik otogreft grubunda anlamlı olarak daha düşüktü (p=0,0007). DBM Flex grubunda, otogreft grubuna kıyasla anlamlı derecede daha düşük kemik oluşum skorları gözlendi (p<0,0001). Otogreft grubundaki omurga histolojisi, DBM Flex grubuna göre anlamlı olarak daha iyiydi (p=0,0002).
Sonuç: Otogreft, SLF'de DBM flex'ten daha bulunmuştur ve bu sonuçlar da otogreftin gelecekte SLF'de “altın standart” olmasının muhtemel olduğunu göstermektedir.

Kaynakça

  • 1. Iorio JA, Jakoi AM, Singla A. Biomechanics of Degenerative Spinal Disorders. Asian spine journal. 2016, 10 (2): 377-384. doi: 10.4184/asj.2016.10.2.377
  • 2. Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003, 13 (4): 371-379. doi: 10.1016/s1050-6411(03)00044-0
  • 3. Christensen FB. Lumbar spinal fusion. Outcome in relation to surgical methods, choice of implant and postoperative rehabilitation. Acta Orthop Scand Suppl. 2004, 75 (313): 2-43.
  • 4. Mannion AF, Fekete TF, Porchet F, Haschtmann D, Jeszenszky D, Kleinstuck FS. The influence of comorbidity on the risks and benefits of spine surgery for degenerative lumbar disorders. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2014, 23 Suppl 1 (Suppl 1): S66-71. doi: 10.1007/s00586-014-3189-y
  • 5. Cheung JP, Luk KD. Complications of Anterior and Posterior Cervical Spine Surgery. Asian spine journal. 2016, 10 (2): 385-400. doi: 10.4184/asj.2016.10.2.385 6. Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine. 2019, 31 (1): 1-14. doi: 10.3171/2019.4.spine18915
  • 7. Wang YS, Yin L, Bao H, Wang WD. Titanium mesh fusion device in the treatment of thoracolumbar burst fracture. Chin Med J (Engl). 2007, 120 (3): 246-247. doi: 8. Hanafy MN, Hanafy AM, Sheha AF, Gad SS. Evaluation of the short-term outcome of anterior approach surgery of the dorsal and lumbar spine. Menoufia Med J. 2014, 27 (2): 413. doi: 10.4103/1110-2098.141717
  • 9. Buser Z, Brodke DS, Youssef JA, Rometsch E, Park JB, Yoon ST et al. Allograft Versus Demineralized Bone Matrix in Instrumented and Noninstrumented Lumbar Fusion: A Systematic Review. Global spine journal. 2018, 8 (4): 396-412. doi: 10.1177/2192568217735342
  • 10. D'Souza M, Macdonald NA, Gendreau JL, Duddleston PJ, Feng AY, Ho AL. Graft Materials and Biologics for Spinal Interbody Fusion. Biomedicines. 2019, 7 (4): 75. doi: 10.3390/biomedicines7040075
  • 11. Grabowski G, Robertson R. Bone allograft with mesenchymal stem cells: a critical review of the literature. Hard Tissue. 2013, 2 (2): 20.
  • 12. Kurz LT, Garfin SR, Booth RE, Jr. Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine (Phila Pa 1976). 1989, 14 (12): 1324-1331. doi: 10.1097/00007632-198912000-00009
  • 13. Carlisle ER, Fischgrund JS (2009) Bone Graft and Fusion Enhancement. In: Errico TJ, Lonner BS, Moulton AW (eds) Surgical Management of Spinal Deformities. W.B. Saunders, Philadelphia, pp 433-448. doi: 10.1016/B978-141603372-1.50030-5
  • 14. Vaccaro AR, Chiba K, Heller JG, Patel T, Thalgott JS, Truumees E et al. Bone grafting alternatives in spinal surgery. Spine J. 2002, 2 (3): 206-215. doi: 10.1016/s1529-9430(02)00180-8
  • 15. Tilkeridis K, Touzopoulos P, Ververidis A, Christodoulou S, Kazakos K, Drosos GI. Use of demineralized bone matrix in spinal fusion. World journal of orthopedics. 2014, 5 (1): 30-37. doi: 10.5312/wjo.v5.i1.30
  • 16. Salih E, Wang J, Mah J, Fluckiger R. Natural variation in the extent of phosphorylation of bone phosphoproteins as a function of in vivo new bone formation induced by demineralized bone matrix in soft tissue and bony environments. Biochem J. 2002, 364 (Pt 2): 465-474. doi: 10.1042/bj20011272
  • 17. Tuli SM, Singh AD. The osteoninductive property of decalcified bone matrix. An experimental study. J Bone Joint Surg Br. 1978, 60 (1): 116-123.
  • 18. Morone MA, Boden SD. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine (Phila Pa 1976). 1998, 23 (2): 159-167.
  • 19. Martin GJ, Jr., Boden SD, Titus L, Scarborough NL. New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine (Phila Pa 1976). 1999, 24 (7): 637-645. doi: 10.1097/00007632-199904010-00005
  • 20. Grauer JN, Bomback DA, Lugo R, Troiano NW, Patel TC, Friedlaender GE. Posterolateral lumbar fusions in athymic rats: characterization of a model. Spine J. 2004, 4 (3): 281-286. doi: 10.1016/j.spinee.2003.10.001
  • 21. Miyazaki M, Zuk PA, Zou J, Yoon SH, Wei F, Morishita Y et al. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model. Spine (Phila Pa 1976). 2008, 33 (8): 863-869. doi: 10.1097/BRS.0b013e31816b45c3
  • 22. Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am. 1994, 76 (4): 540-548. doi: 10.2106/00004623-199404000-00008
  • 23. Drosos GI, Kazakos KI, Kouzoumpasis P, Verettas DA. Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury. 2007, 38 Suppl 4: S13-21. doi: 10.1016/s0020-1383(08)70005-6
  • 24. Lee KJ, Roper JG, Wang JC. Demineralized bone matrix and spinal arthrodesis. Spine J. 2005, 5 (6 Suppl): 217s-223s. doi: 10.1016/j.spinee.2005.02.006
  • 25. Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF. Bone graft substitutes for spine fusion: A brief review. World journal of orthopedics. 2015, 6 (6): 449-456. doi: 10.5312/wjo.v6.i6.449
  • 26. Delawi D, Dhert WJ, Castelein RM, Verbout AJ, Oner FC. The incidence of donor site pain after bone graft harvesting from the posterior iliac crest may be overestimated: a study on spine fracture patients. Spine (Phila Pa 1976). 2007, 32 (17): 1865-1868. doi: 10.1097/BRS.0b013e318107674e
  • 27. Cook SD, Dalton JE, Prewett AB, Whitecloud TS, 3rd. In vivo evaluation of demineralized bone matrix as a bone graft substitute for posterior spinal fusion. Spine (Phila Pa 1976). 1995, 20 (8): 877-886. doi: 10.1097/00007632-199504150-00002
  • 28. Helm GA, Sheehan JM, Sheehan JP, Jane JA, Jr., diPierro CG, Simmons NE et al. Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg. 1997, 86 (1): 93-100. doi: 10.3171/jns.1997.86.1.0093
  • 29. Urrutia J, Thumm N, Apablaza D, Pizarro F, Zylberberg A, Quezada F. Autograft versus allograft with or without demineralized bone matrix in posterolateral lumbar fusion in rabbits. Laboratory investigation. J Neurosurg Spine. 2008, 9 (1): 84-89. doi: 10.3171/spi/2008/9/7/084
  • 30. Frenkel SR, Moskovich R, Spivak J, Zhang ZH, Prewett AB. Demineralized bone matrix. Enhancement of spinal fusion. Spine (Phila Pa 1976). 1993, 18 (12): 1634-1639. doi: 10.1097/00007632-199309000-00011
  • 31. Thalgott JS, Giuffre JM, Fritts K, Timlin M, Klezl Z. Instrumented posterolateral lumbar fusion using coralline hydroxyapatite with or without demineralized bone matrix, as an adjunct to autologous bone. Spine J. 2001, 1 (2): 131-137. doi: 10.1016/s1529-9430(01)00011-0
  • 32. Cammisa FP, Jr., Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine (Phila Pa 1976). 2004, 29 (6): 660-666. doi: 10.1097/01.brs.0000116588.17129.b9
  • 33. Ungureanu G, Chitu A, Iancu I, Kakucs C, Maior T, Florian IS. Gender Differences in the Self-assessment of Quality of Life and Disability After Spinal Fusion for Chronic Low Back Pain at a Neurosurgical Center in Eastern Europe. Neurospine. 2018, 15 (3): 261-268. doi: 10.14245/ns.1836076.038
  • 34. Navarro SM, Frankel WC, Haeberle HS, Ramkumar PN. Fixed and Variable Relationship Models to Define the Volume-Value Relationship in Spinal Fusion Surgery: A Macroeconomic Analysis Using Evidence-Based Thresholds. Neurospine. 2018, 15 (3): 249-260. doi: 10.14245/ns.1836088.044
  • 35. Mayo BC, Haws BE, Bohl DD, Louie PK, Hijji FY, Narain AS et al. Postoperative Fever Evaluation Following Lumbar Fusion Procedures. Neurospine. 2018, 15 (2): 154-162. doi: 10.14245/ns.1836026.013
  • 36. Fay LY, Chang CC, Chang HK, Tu TH, Tsai TY, Wu CL et al. A Hybrid Dynamic Stabilization and Fusion System in Multilevel Lumbar Spondylosis. Neurospine. 2018, 15 (3): 231-241. doi: 10.14245/ns.1836108.054
  • 37. An HS, Simpson JM, Glover JM, Stephany J. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine (Phila Pa 1976). 1995, 20 (20): 2211-2216.
  • 38. Keskin D, Gundogdu C, Atac AC. Experimental comparison of bovine-derived xenograft, xenograft-autologous bone marrow and autogenous bone graft for the treatment of bony defects in the rabbit ulna. Med Princ Pract. 2007, 16 (4): 299-305. doi: 10.1159/000102153
  • 39. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011, 9: 66. doi: 10.1186/1741-7015-9-66
  • 40. Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H. 2010, 224 (12): 1329-1343. doi: 10.1243/09544119jeim770
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cerrahi
Bölüm Orjinal Makale
Yazarlar

Cem Demirel 0000-0002-6084-4075

Dursun Türköz 0000-0003-3599-0895

Tuncay Yilmaz Bu kişi benim 0000-0002-5055-8913

Yayımlanma Tarihi 9 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

Vancouver Demirel C, Türköz D, Yilmaz T. Experimental Comparison of Autograft and DBM Flex (Grafton) for Spinal Lumbar Fusion in Rabbits. Arch Clin Exp Med. 2021;6(3):153-7.