Araştırma Makalesi
BibTex RIS Kaynak Göster

Kemoterapi yanıtının yeniden düzenlenmesi: venetoklaks, artmış DNA hasarı ve ferroptotik yolaklar aracılığıyla insan akciğer kanseri hücrelerinde etopozide yanıtı artırmaktadır

Yıl 2025, Cilt: 7 Sayı: 6, 925 - 932, 26.10.2025
https://doi.org/10.38053/acmj.1786765

Öz

Amaçlar: Venetoklaks, seçici bir Bcl-2 inhibitörü küçük molekül olup, FDA tarafından akut myeloid lösemi ve kronik lenfositik lösemi tedavisi için onaylanmıştır. Hematolojik malignitelerde umut verici sonuçlar göstermesine rağmen, akciğer kanserindeki terapötik potansiyeli halen belirsizliğini korumaktadır. Bu çalışmada, klasik kemoterapötikler olan etopozid ve sisplatinin venetoklaks ile kombinasyonunun insan akciğer kanseri hücrelerindeki etkisi ve altta yatan mekanizmalar araştırılmıştır.

Yöntemler: Sisplatin ve etopozid tek başına veya venetoklaks (8 µM) ile kombinasyon halinde insan küçük hücreli dışı akciğer kanseri hücrelerine (A549) uygulanmış, hücre canlılığı MTT testi ile belirlenmiştir. Elde edilen sitotoksisite sonuçları L929 normal hücreleri ile karşılaştırılmıştır. Reaktif oksijen türleri (ROS) üretimi, antioksidanlar (N-asetilsistein, mannitol) ve ferroptoz inhibitörleri (deferoksamin, ferrostatin-1) varlığında veya yokluğunda konfokal mikroskopi ile görüntülenmiştir. Ayrıca, serbest demir havuzu ve lizozomal lipid birikimi Hoechst/Calcein-AM/Neutral Red üçlü boyama yöntemiyle saptanmıştır. Lipid peroksidasyonu malondialdehit tayini ile ölçülmüştür. DNA hasarı belirteci H2AX ve ferroptoz belirteci transferrinin mRNA düzeyleri RT-qPCR ile değerlendirilmiştir.

Bulgular: Bulgular, venetoklaksın (8 µM) A549 hücrelerini etopozide duyarlılaştırdığını, ancak sisplatin aktivitesi üzerinde anlamlı bir etkisi olmadığını göstermiştir. İleri analizler, etopozid ve venetoklaks birlikte uygulandığında ROS üretiminin belirgin şekilde arttığını ve bu etkinin ferroptoz inhibitörleri tarafından baskılandığını ortaya koymuştur. Görüntüleme analizleri ayrıca, etopozid–venetoklaks kombinasyonunu takiben serbest demir havuzunun ve lizozomal lipidlerin arttığını göstermiştir. Gen ekspresyon analizleri ise H2AX ve transferrin düzeylerinin kombinasyonun uygulandığı grupta anlamlı biçimde yükseldiğini ortaya koymuştur.

Sonuç: Bu çalışma, venetoklaksın akciğer kanseri hücrelerini ferroptotik yolaklar ve DNA hasarı aracılığıyla etopozide duyarlılaştırdığını ilk kez göstermektedir.

Kaynakça

  • Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10. 3322/caac.21834
  • Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother. 2023;169(November):115891. doi:10.1016/ j.biopha.2023.115891
  • Guo Q, Liu L, Chen Z, et al. Current treatments for non-small cell lung cancer. Front Oncol. 2022;12(August):1-19. doi:10.3389/fonc.2022. 945102
  • Jang JY, Kim D, Im E, Kim ND. Etoposide as a key therapeutic agent in lung cancer: mechanisms, efficacy, and emerging strategies. Int J Mol Sci. 2025;26(2):796. doi:10.3390/ijms26020796
  • Fan Y-W, Liu M-H, Xu T-J, et al. Mechanism of etoposide resistance in small cell lung cancer and the potential therapeutic options. Med Oncol. 2025;42(5):167. doi:10.1007/s12032-025-02718-0
  • Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: role of microRNAs and upstream mediators. Cell Signal. 2021;78(December 2020):109871. doi:10.1016/j.cellsig.2020.109871
  • Perini GF, Ribeiro GN, Pinto Neto JV, Campos LT, Hamerschlak N. BCL-2 as therapeutic target for hematological malignancies. J Hematol Oncol. 2018;11(1):1-15. doi:10.1186/s13045-018-0608-2
  • Kawakatsu R, Tadagaki K, Yamasaki K, Yoshida T. Venetoclax efficacy on acute myeloid leukemia is enhanced by the combination with butyrate. Sci Rep. 2024;14(1):1-12. doi:10.1038/s41598-024-55286-0
  • Du Y, Li C, Zhao Z, Liu Y, Zhang C, Yan J. Efficacy and safety of venetoclax combined with hypomethylating agents for relapse of acute myeloid leukemia and myelodysplastic syndrome post allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. BMC Cancer. 2023;23(1):764. doi:10.1186/s12885-023-11259-6
  • Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annu Rev Cancer Biol. 2019;3(1):35-54. doi:10.1146/annurev-cancerbio-030518-055844
  • Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep. 2018;8(1):1-9. doi:10.1038/s41598-018-19213-4
  • Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9(1):55. doi:10.1038/s41392-024-01769-5
  • Xu C, Chen Y, Yu Q, Song J, Jin Y, Gao X. Compounds targeting ferroptosis in breast cancer: progress and their therapeutic potential. Front Pharmacol. 2023;14(October):1-15. doi:10.3389/fphar.2023.1243286
  • Yu X, Wang Y, Tan J, et al. Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 2024;10(1):35. doi:10.1038/s41420-024-01800-2
  • Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244-1253. doi:10.1080/ 03639045.2017.1310223
  • Davou G, Chuwang N, Essien U, Choji T, Echeonwu B, Lugos M. Cytotoxicity analysis of etoposide and cisplatin on cell lines from human lung cancer and normal human lung. Int Res J Med Med Sci. 2019;7(2):40-47. doi:10.30918/IRJMMS.72.19.022
  • Karademir D, Özgür A. The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells. Med Oncol. 2023;40(8):1-10. doi:10.1007/s12032-023-02107-5
  • Özkaya Gül S, Şimşek B, Yıldız F, Aydemir E. Cytotoxic effect of escitalopram/etoposide combination on etoposide-resistant lung cancer. Pharmaceuticals. 2025;18(4). doi:10.3390/ph18040531
  • Chu JCH, Xiong J, Wong CTT, et al. Detection and elimination of senescent cells with a self-assembled senescence-associated β-galactosidase-activatable nanophotosensitizer. J Med Chem. 2024; 67(1):234-244. doi:10.1021/acs.jmedchem.3c01306
  • Almammadov T, Elmazoglu Z, Atakan G, et al. Locked and loaded: β-galactosidase activated photodynamic therapy agent enables selective ımaging and targeted treatment of glioblastoma multiforme cancer cells. ACS Appl Bio Mater. 2022. doi:10.1021/acsabm.2c00484
  • Monteleone L, Speciale A, Valenti GE, et al. PKCα inhibition as a strategy to sensitize neuroblastoma stem cells to etoposide by stimulating ferroptosis. Antioxidants. 2021;10(5):691. doi:10.3390/antiox10050691
  • Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 2020;15(2):469-484. doi:10.1021/acschembio. 9b00939
  • Abbasi U, Abbina S, Gill A, Bhagat V, Kizhakkedathu JN. A facile colorimetric method for the quantification of labile iron pool and total iron in cells and tissue specimens. Sci Rep. 2021;11(1):1-12. doi:10.1038/s41598-021-85387-z
  • Zhang Q, Yi H, Yao H, et al. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis. J Cancer. 2021;12(13):4075-4085. doi:10.7150/jca.57054
  • Jia Y, Zhang D, Li H, et al. Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism. Biochem Pharmacol. 2021;185(January): 114422. doi:10.1016/j.bcp.2021.114422
  • Lochmann TL, Floros KV, Naseri M, et al. Venetoclax is effective in small-cell lung cancers with high BCL-2 expression. Clin Cancer Res. 2018;24(2):360-369. doi:10.1158/1078-0432.CCR-17-1606
  • Liu X, Zhang Y, Wu X, et al. Targeting ferroptosis pathway to combat therapy resistance and metastasis of cancer. Front Pharmacol. 2022; 13(June):1-27. doi:10.3389/fphar.2022.909821
  • Peng C, Chen Y, Jiang M. Targeting ferroptosis: a promising strategy to overcome drug resistance in breast cancer. Front Oncol. 2024; 14(December):1-9. doi:10.3389/fonc.2024.1499125
  • Setiawan SA, Liu WZ, Weng P, et al. Synergistic disruption of BTK and BCL-2 causes apoptosis while inducing ferroptosis in double-hit lymphoma. Eur J Pharmacol. 2023;943(July 2022):175526. doi:10.1016/j.ejphar.2023.175526
  • Vogler M, Braun Y, Smith VM, et al. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther. 2025;10(1):91. doi:10.1038/s41392-025-02176-0
  • López J, Llop-Hernández À, Verdura S, et al. Mitochondrial priming and response to BH3 mimetics in “one-two punch” senogenic-senolytic strategies. Cell Death Discov. 2025;11(1):91. doi:10.1038/s41420-025-02379-y
  • Yan H, Zou T, Tuo Q, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6(1):49. doi:10.1038/s41392-020-00428-9
  • An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15(8):556. doi:10.1038/s41419-024-06939-5
  • Loftus LV, Rolle LTA, Wang B, Pienta KJ, Amend SR. Dysregulation of labile iron predisposes chemotherapy resistant cancer cells to ferroptosis. Int J Mol Sci. 2025;26(9):4193. doi:10.3390/ijms26094193
  • Shao M, Jiang Q, Shen C, Liu Z, Qiu L. Sinapine induced ferroptosis in non-small cell lung cancer cells by upregulating transferrin/transferrin receptor and downregulating SLC7A11. Gene. 2022;827(November 2021):146460. doi:10.1016/j.gene.2022.146460
  • Ding X, Cui L, Mi Y, et al. Ferroptosis in cancer: revealing the multifaceted functions of mitochondria. Cell Mol Life Sci. 2025;82(1):277. doi:10.1007/s00018-025-05812-8
  • Chen P-H, Tseng WH-S, Chi J-T. The intersection of DNA damage response and ferroptosis—a rationale for combination therapeutics. Biology (Basel). 2020;9(8):187. doi:10.3390/biology9080187
  • Shin H-J, Kwon H-K, Lee J-H, Anwar MA, Choi S. Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Sci Rep. 2016;6(1):34064. doi:10.1038/srep34064
  • Jiang Y, Zhang L, Lin Y, et al. Iron metabolism dysregulation and ferroptosis: emerging drivers in pulmonary fibrosis pathogenesis and therapy. Mol Cells. 2025;48(10):100264. doi:10.1016/j.mocell.2025.100264
  • Pawłowska M, Nuszkiewicz J, Jarek DJ, Woźniak A. Ferroptosis and metabolic dysregulation: emerging chemical targets in cancer and infection. Molecules. 2025;30(14):3020. doi:10.3390/molecules30143020
  • Collins PL, Purman C, Porter SI, et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun. 2020;11(1):3158. doi:10.1038/s41467-020-16926-x
  • Morales M, Xue X. Targeting iron metabolism in cancer therapy. Theranostics. 2021;11(17):8412-8429. doi:10.7150/thno.59092
  • Yusoh NA, Ahmad H, Vallis KA, Gill MR. Advances in platinum-based cancer therapy: overcoming platinum resistance through rational combinatorial strategies. Med Oncol. 2025;42(7):262. doi:10.1007/s12032-025-02812-3

Rewiring chemotherapy response: venetoclax sensitizes human lung cancer cells to etoposide via enhanced DNA damage and ferroptotic pathways

Yıl 2025, Cilt: 7 Sayı: 6, 925 - 932, 26.10.2025
https://doi.org/10.38053/acmj.1786765

Öz

Aims: Venetoclax is a selective Bcl-2 inhibitor small molecule, approved by FDA for acute myeloid and chronic lymphocytic leukemia. Despite the promising results in hematological malignancies, its therapeutic potential in lung cancer remains unclear. In the present study, the effect of conventional chemotherapeutics, etoposide and cisplatin, in combination with venetoclax was investigated along with the underlying mechanisms in lung cancer cells.
Methods: Human non-small cell lung cancer cells (A549) were administered with cisplatin and etoposide either as single agents or in combination with venetoclax (8 µM), and the cell viability was determined with MTT assay. The acquired cytotoxicity was compared with L929 normal cells. ROS generation was visualized by confocal microscopy in the presence or absence of antioxidants (N-acetylcysteine, mannitol) and ferroptosis inhibitors (deferoxamine, ferrostatin-1). Furthermore, labile iron pool and lysosomal lipid were detected with Hoechst/Calcein-AM/Neutral red triple staining. Lipid peroxidation was determined with malondialdehyde assay. The mRNA expressions of DNA damage marker H2AX and ferroptotic marker transferrin were evaluated with RT-qPCR.
Results: Results indicated that venetoclax (8 µM) sensitizes A549 cells to etoposide (p<0.001) while having no significant impact on cisplatin activity (p>0.05). Further analyses demonstrated that co-treatment of etoposide and venetoclax significantly increased ROS generation, which was inhibited by ferroptosis inhibitors (p<0.001). Additionally, imaging analyses revealed that both labile iron pool and lysosomal lipid increase following etoposide-venetoclax co-treatment. Gene expression analyses indicated that H2AX and transferrin were both significantly upregulated in co-treated groups (p<0.05).
Conclusion: This study demonstrated for the first time that venetoclax sensitizes lung cancer cells to etoposide via ferroptotic pathways and DNA damage.

Kaynakça

  • Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10. 3322/caac.21834
  • Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother. 2023;169(November):115891. doi:10.1016/ j.biopha.2023.115891
  • Guo Q, Liu L, Chen Z, et al. Current treatments for non-small cell lung cancer. Front Oncol. 2022;12(August):1-19. doi:10.3389/fonc.2022. 945102
  • Jang JY, Kim D, Im E, Kim ND. Etoposide as a key therapeutic agent in lung cancer: mechanisms, efficacy, and emerging strategies. Int J Mol Sci. 2025;26(2):796. doi:10.3390/ijms26020796
  • Fan Y-W, Liu M-H, Xu T-J, et al. Mechanism of etoposide resistance in small cell lung cancer and the potential therapeutic options. Med Oncol. 2025;42(5):167. doi:10.1007/s12032-025-02718-0
  • Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: role of microRNAs and upstream mediators. Cell Signal. 2021;78(December 2020):109871. doi:10.1016/j.cellsig.2020.109871
  • Perini GF, Ribeiro GN, Pinto Neto JV, Campos LT, Hamerschlak N. BCL-2 as therapeutic target for hematological malignancies. J Hematol Oncol. 2018;11(1):1-15. doi:10.1186/s13045-018-0608-2
  • Kawakatsu R, Tadagaki K, Yamasaki K, Yoshida T. Venetoclax efficacy on acute myeloid leukemia is enhanced by the combination with butyrate. Sci Rep. 2024;14(1):1-12. doi:10.1038/s41598-024-55286-0
  • Du Y, Li C, Zhao Z, Liu Y, Zhang C, Yan J. Efficacy and safety of venetoclax combined with hypomethylating agents for relapse of acute myeloid leukemia and myelodysplastic syndrome post allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. BMC Cancer. 2023;23(1):764. doi:10.1186/s12885-023-11259-6
  • Dixon SJ, Stockwell BR. The hallmarks of ferroptosis. Annu Rev Cancer Biol. 2019;3(1):35-54. doi:10.1146/annurev-cancerbio-030518-055844
  • Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci Rep. 2018;8(1):1-9. doi:10.1038/s41598-018-19213-4
  • Zhou Q, Meng Y, Li D, et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther. 2024;9(1):55. doi:10.1038/s41392-024-01769-5
  • Xu C, Chen Y, Yu Q, Song J, Jin Y, Gao X. Compounds targeting ferroptosis in breast cancer: progress and their therapeutic potential. Front Pharmacol. 2023;14(October):1-15. doi:10.3389/fphar.2023.1243286
  • Yu X, Wang Y, Tan J, et al. Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 2024;10(1):35. doi:10.1038/s41420-024-01800-2
  • Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244-1253. doi:10.1080/ 03639045.2017.1310223
  • Davou G, Chuwang N, Essien U, Choji T, Echeonwu B, Lugos M. Cytotoxicity analysis of etoposide and cisplatin on cell lines from human lung cancer and normal human lung. Int Res J Med Med Sci. 2019;7(2):40-47. doi:10.30918/IRJMMS.72.19.022
  • Karademir D, Özgür A. The effects of STA-9090 (Ganetespib) and venetoclax (ABT-199) combination on apoptotic pathways in human cervical cancer cells. Med Oncol. 2023;40(8):1-10. doi:10.1007/s12032-023-02107-5
  • Özkaya Gül S, Şimşek B, Yıldız F, Aydemir E. Cytotoxic effect of escitalopram/etoposide combination on etoposide-resistant lung cancer. Pharmaceuticals. 2025;18(4). doi:10.3390/ph18040531
  • Chu JCH, Xiong J, Wong CTT, et al. Detection and elimination of senescent cells with a self-assembled senescence-associated β-galactosidase-activatable nanophotosensitizer. J Med Chem. 2024; 67(1):234-244. doi:10.1021/acs.jmedchem.3c01306
  • Almammadov T, Elmazoglu Z, Atakan G, et al. Locked and loaded: β-galactosidase activated photodynamic therapy agent enables selective ımaging and targeted treatment of glioblastoma multiforme cancer cells. ACS Appl Bio Mater. 2022. doi:10.1021/acsabm.2c00484
  • Monteleone L, Speciale A, Valenti GE, et al. PKCα inhibition as a strategy to sensitize neuroblastoma stem cells to etoposide by stimulating ferroptosis. Antioxidants. 2021;10(5):691. doi:10.3390/antiox10050691
  • Ye LF, Chaudhary KR, Zandkarimi F, et al. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 2020;15(2):469-484. doi:10.1021/acschembio. 9b00939
  • Abbasi U, Abbina S, Gill A, Bhagat V, Kizhakkedathu JN. A facile colorimetric method for the quantification of labile iron pool and total iron in cells and tissue specimens. Sci Rep. 2021;11(1):1-12. doi:10.1038/s41598-021-85387-z
  • Zhang Q, Yi H, Yao H, et al. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis. J Cancer. 2021;12(13):4075-4085. doi:10.7150/jca.57054
  • Jia Y, Zhang D, Li H, et al. Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism. Biochem Pharmacol. 2021;185(January): 114422. doi:10.1016/j.bcp.2021.114422
  • Lochmann TL, Floros KV, Naseri M, et al. Venetoclax is effective in small-cell lung cancers with high BCL-2 expression. Clin Cancer Res. 2018;24(2):360-369. doi:10.1158/1078-0432.CCR-17-1606
  • Liu X, Zhang Y, Wu X, et al. Targeting ferroptosis pathway to combat therapy resistance and metastasis of cancer. Front Pharmacol. 2022; 13(June):1-27. doi:10.3389/fphar.2022.909821
  • Peng C, Chen Y, Jiang M. Targeting ferroptosis: a promising strategy to overcome drug resistance in breast cancer. Front Oncol. 2024; 14(December):1-9. doi:10.3389/fonc.2024.1499125
  • Setiawan SA, Liu WZ, Weng P, et al. Synergistic disruption of BTK and BCL-2 causes apoptosis while inducing ferroptosis in double-hit lymphoma. Eur J Pharmacol. 2023;943(July 2022):175526. doi:10.1016/j.ejphar.2023.175526
  • Vogler M, Braun Y, Smith VM, et al. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther. 2025;10(1):91. doi:10.1038/s41392-025-02176-0
  • López J, Llop-Hernández À, Verdura S, et al. Mitochondrial priming and response to BH3 mimetics in “one-two punch” senogenic-senolytic strategies. Cell Death Discov. 2025;11(1):91. doi:10.1038/s41420-025-02379-y
  • Yan H, Zou T, Tuo Q, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6(1):49. doi:10.1038/s41392-020-00428-9
  • An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15(8):556. doi:10.1038/s41419-024-06939-5
  • Loftus LV, Rolle LTA, Wang B, Pienta KJ, Amend SR. Dysregulation of labile iron predisposes chemotherapy resistant cancer cells to ferroptosis. Int J Mol Sci. 2025;26(9):4193. doi:10.3390/ijms26094193
  • Shao M, Jiang Q, Shen C, Liu Z, Qiu L. Sinapine induced ferroptosis in non-small cell lung cancer cells by upregulating transferrin/transferrin receptor and downregulating SLC7A11. Gene. 2022;827(November 2021):146460. doi:10.1016/j.gene.2022.146460
  • Ding X, Cui L, Mi Y, et al. Ferroptosis in cancer: revealing the multifaceted functions of mitochondria. Cell Mol Life Sci. 2025;82(1):277. doi:10.1007/s00018-025-05812-8
  • Chen P-H, Tseng WH-S, Chi J-T. The intersection of DNA damage response and ferroptosis—a rationale for combination therapeutics. Biology (Basel). 2020;9(8):187. doi:10.3390/biology9080187
  • Shin H-J, Kwon H-K, Lee J-H, Anwar MA, Choi S. Etoposide induced cytotoxicity mediated by ROS and ERK in human kidney proximal tubule cells. Sci Rep. 2016;6(1):34064. doi:10.1038/srep34064
  • Jiang Y, Zhang L, Lin Y, et al. Iron metabolism dysregulation and ferroptosis: emerging drivers in pulmonary fibrosis pathogenesis and therapy. Mol Cells. 2025;48(10):100264. doi:10.1016/j.mocell.2025.100264
  • Pawłowska M, Nuszkiewicz J, Jarek DJ, Woźniak A. Ferroptosis and metabolic dysregulation: emerging chemical targets in cancer and infection. Molecules. 2025;30(14):3020. doi:10.3390/molecules30143020
  • Collins PL, Purman C, Porter SI, et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat Commun. 2020;11(1):3158. doi:10.1038/s41467-020-16926-x
  • Morales M, Xue X. Targeting iron metabolism in cancer therapy. Theranostics. 2021;11(17):8412-8429. doi:10.7150/thno.59092
  • Yusoh NA, Ahmad H, Vallis KA, Gill MR. Advances in platinum-based cancer therapy: overcoming platinum resistance through rational combinatorial strategies. Med Oncol. 2025;42(7):262. doi:10.1007/s12032-025-02812-3
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası, Temel Farmakoloji
Bölüm Research Articles
Yazarlar

Zübeyir Elmazoglu 0000-0003-4527-8834

Erva Özkan 0000-0001-9461-2339

Yayımlanma Tarihi 26 Ekim 2025
Gönderilme Tarihi 18 Eylül 2025
Kabul Tarihi 25 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 6

Kaynak Göster

AMA Elmazoglu Z, Özkan E. Rewiring chemotherapy response: venetoclax sensitizes human lung cancer cells to etoposide via enhanced DNA damage and ferroptotic pathways. Anatolian Curr Med J / ACMJ / acmj. Ekim 2025;7(6):925-932. doi:10.38053/acmj.1786765

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği: Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

-  Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not: Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamaktadır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/3449/page/10809/update 

Dergi Dizin ve Platformları

TR Dizin ULAKBİM, Google Scholar, Crossref, Worldcat (OCLC), DRJI, EuroPub, OpenAIRE, Turkiye Citation Index, Turk Medline, ROAD, ICI World of Journal's, Index Copernicus, ASOS Index, General Impact Factor, Scilit.