Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Conditioned Media-Mediated Communication between Pancreatic Cancer Cells and Neurons

Yıl 2025, Cilt: 8 Sayı: 1, 15 - 22, 28.02.2025
https://doi.org/10.53446/actamednicomedia.1530253

Öz

Objective: Pancreatic cancer (PCa) is one of the deadliest cancers, characterized by prominent pathological changes in nerves. PCa cells invade nerves, termed neural invasion, driven by bidirectional interactions between cancer cells and nerves, leading to severe pain and shorter patient survival. However, the understanding of this communication remains limited, particularly in cell culture experiments. Therefore, we investigated the effect of soluble factors derived from neurons and PCa cells on behaviors of each cell type.

Material and Methods: SH-SY5Y cells were differentiated into neurons, and the differentiation efficacy was confirmed by immunofluorescence staining and Western blot. PANC-1 and BxPC-3 PCa cells were exposed to conditioned media (CM) from neurons, and changes in migration and invasion were evaluated by wound healing and transwell invasion assay, respectively. Similarly, neurons were treated with CM derived from PANC-1 or BxPC-3 cells, and changes in migration and neuronal markers were assessed.

Results: Neuron-derived CM showed no significant impact on PCa cell migration and invasion. Similarly, exposure of neurons from PCa cells did not significantly migration of them, but slightly increased neurite formation.

Conclusion: This study provided preliminary information on the possible effect of CM on the interaction between PCa cells and neurons. However, the absence of other cell types in the TME (such as fibroblasts and Schwann cells) in the study design might be a reason for not obtaining the expected changes. Therefore, different culture models and further research are needed to investigate the role of cells and factors that may potentially contribute to cancer-neuron interaction.

Kaynakça

  • 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.
  • 2. Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015;2(11):649-659.
  • 3. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11:695–707.
  • 4. Schorn S, Demir IE, Haller B, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma-A systematic review and meta-analysis. Surg Oncol. 2017;26:105- 115.
  • 5. Lubig S, Thiesler T, Müller S, Vorreuther R, Leipner N, Kristiansen G. Quantitative perineural invasion is a prognostic marker in prostate cancer. Pathology. 2018;50:298-304.
  • 6. Aurello P, Berardi G, Tierno SM, et al. Influence of perineural invasion in predicting overall survival and disease-free survival in patients with locally advanced gastric cancer. Am J Surg. 2017;213:748- 753.
  • 7. España-Ferrufino A, Lino-Silva LS, Salcedo-Hernández RA. Extramural perineural invasion in pT3 and pT4 gastric carcinomas. J Pathol Transl Med. 2018;52:79-84.
  • 8. Cracchiolo JR, Xu B, Migliacci JC, et al. Patterns of recurrence in oral tongue cancer with perineural invasion. Head Neck. 2018;40:1287-1295.
  • 9. Schmitd LB, Scanlon CS, D’Silva NJ. Perineural invasion in head and neck cancer. J Dent Res. 2018;97:742-750.
  • 10. Jobling P, Pundavela J, Oliveira SM, et al. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Res. 2015;75(9):1777-1781.
  • 11. Dwivedi S, Krishnan A. Neural invasion: a scenic trail for the nervous tumor and hidden therapeutic opportunity. Am J Cancer Res. 2020;10(8):2258-2270.
  • 12. Ferdoushi A, Griffin N, Marsland M, et al. Tumor innervation and clinical outcome in pancreatic cancer. Sci Rep. 2021;11(1):7390.
  • 13. Chari ST, Kelly K, Hollingsworth MA, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693-712.
  • 14. Liu Z, Gou A, Wu X. Liver metastasis of pancreatic cancer: the new choice at the crossroads. Hepatobiliary Surg Nutr. 2023;12(1):88-91.
  • 15. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7-30.
  • 16. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309-322.
  • 17. Schmitd LB, Perez-Pacheco C, D'Silva NJ. Nerve density in cancer: Less is better. FASEB Bioadv. 2021;3(10):773-786.
  • 18. Hirth M, Gandla J, Höper C, et al. CXCL10 and CCL21 Promote Migration of Pancreatic Cancer Cells Toward Sensory Neurons and Neural Remodeling in Tumors in Mice, Associated With Pain in Patients. Gastroenterology. 2020;159(2):665-681.
  • 19. Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology. 2012;59:889-893.
  • 20. Qian W, Lv S, Li J, et al. Norepinephrine enhances cell viability and invasion, and inhibits apoptosis of pancreatic cancer cells in a Notch1 dependent manner. Oncol Rep. 2018;40:3015-3023.
  • 21. Jiang SH, Li J, Dong FY, et al. Increased serotonin signaling contributes to the warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology. 2017;153:277-291.
  • 22. Takehara A, Hosokawa M, Eguchi H, et al. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res. 2007;67:9704-9712.
  • 23. Munoz M, Covenas R. Involvement of substance P and the NK-1 receptor in pancreatic cancer. World J. Gastroenterol. 2014;20:2321-2334.
  • 24. Herner A, Sauliunaite D, Michalski CW, et al. Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 2011;129 2349- 2359.
  • 25. Moskowitz PF, Smith R, Pickett J, Frankfurter A, Oblinger MM. Expression of the class III beta- tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res. 1993;34(1):129-134.
  • 26. Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv Exp Med Biol. 2015;867:125-143.
  • 27. Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta Naturae. 2015;7(2):42-47.
  • 28. Dahlstrand J, Lardelli M, Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res. 1995;84:109–29.
  • 29. Banh RS, Biancur DE, Yamamoto K, et al. Neurons Release Serine to Support mRNA Translation in Pancreatic Cancer. Cell. 2020;183(5):1202-1218.
  • 30. Hung YH, Wang HC, Hsu SH, et al. Neuron-derived neurotensin promotes pancreatic cancer invasiveness and gemcitabine resistance via the NTSR1/Akt pathway. Am J Cancer Res. 2024;14(2):448-466.
  • 31. Göhrig A, Hilfenhaus G, Rosseck F, et al. Placental growth factor promotes neural invasion and predicts disease prognosis in resectable pancreatic cancer. J Exp Clin Cancer Res. 2024;43(1):153.
  • 32. Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol. 2023;13:1185093.
  • 33. Azam SH, Pecot CV. Cancer's got nerve: Schwann cells drive perineural invasion. J Clin Invest. 2016;126(4):1242-1244.

Pankreas Kanseri Hücreleri ve Nöronlar Arasında Koşullu Besiyeri Aracılı Etkileşimin Araştırılması

Yıl 2025, Cilt: 8 Sayı: 1, 15 - 22, 28.02.2025
https://doi.org/10.53446/actamednicomedia.1530253

Öz

Amaç: Pankreas kanseri (PKa), sinirlerde belirgin patolojik değişikliklerle karakterize, en ölümcül kanserlerden biridir. Kanser hücreleri ve sinirler arasındaki çift yönlü etkileşimler sonucu PKa hücrelerinin sinirleri istila ettiği bilinmektedir. Nöral invazyon olarak adlandırılan bu durum, hastalarda şiddetli ağrı ve kısa sağkalım süreleriyle ilişkilidir. Sinirler ve kanser hücreleri arasındaki ilişkinin anlaşılmasına yönelik bazı çalışmalar bulunmakla birlikte, özellikle bu kapsamdaki hücre kültürü çalışmaları oldukça sınırlıdır. Bu nedenle, bu çalışmada, nöronlardan ve PKa hücrelerinden salınan faktörlerin her bir hücre tipinin davranışları üzerindeki etkisini araştırılmıştır.

Yöntem: SH-SY5Y hücreleri nöronlara farklılaştırıldı ve farklılaşma etkinliği immünofloresan boyama ve Western blot ile doğrulandı. PANC-1 ve BxPC-3 kanser hücreleri nöronlardan elde edilen koşullu besiyerine (CM) maruz bırakıldıktan sonra migrasyon ve invazyon yeteneklerindeki değişiklikler sırasıyla yara iyileşmesi ve matrijel invazyon deneyi ile değerlendirildi. Benzer şekilde, nöronlar PANC-1 veya BxPC-3 hücrelerinden elde edilen besiyerine maruz bırakıldı ve nöronların migrasyon ve nöronal belirteçlerdeki değişiklikler değerlendirildi.

Bulgular: Nöronlardan toplanan besiyerinin, PKa hücrelerinin migrasyon ve invazyonu üzerinde anlamlı bir etki göstermediği görüldü. Benzer şekilde, PKa hücrelerine ait besiyerinin nöronlara uygulanmasının, nöronların migrasyonunu anlamlı şekilde etkilemediği, ancak nörit oluşumunu arttırdığı bulundu.

Sonuç: Bu çalışma, PKa hücreleri ve nöronlar arasındaki karşılıklı etkileşimde koşullu besiyerinin olası etkisine dair öncül bilgi üretilmesine olanak sağlamıştır. Ancak, tümör mikroçevresindeki diğer hücre türlerinin (fibroblastlar ve Schwann hücreleri gibi) çalışma tasarımında yer almamasının beklenen değişikliklerin elde edilememesinde bir neden olabileceği düşünülmüştür. Bu nedenle, kanser-nöron etkileşimine potansiyel olarak katkı sağlayabilecek hücrelerin ve faktörlerin detaylı olarak incelenebilmesi için farklı kültür modellerine ve daha fazla araştırmaya ihtiyaç bulunmaktadır.

Kaynakça

  • 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.
  • 2. Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015;2(11):649-659.
  • 3. Bapat AA, Hostetter G, Von Hoff DD, Han H. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer. 2011;11:695–707.
  • 4. Schorn S, Demir IE, Haller B, et al. The influence of neural invasion on survival and tumor recurrence in pancreatic ductal adenocarcinoma-A systematic review and meta-analysis. Surg Oncol. 2017;26:105- 115.
  • 5. Lubig S, Thiesler T, Müller S, Vorreuther R, Leipner N, Kristiansen G. Quantitative perineural invasion is a prognostic marker in prostate cancer. Pathology. 2018;50:298-304.
  • 6. Aurello P, Berardi G, Tierno SM, et al. Influence of perineural invasion in predicting overall survival and disease-free survival in patients with locally advanced gastric cancer. Am J Surg. 2017;213:748- 753.
  • 7. España-Ferrufino A, Lino-Silva LS, Salcedo-Hernández RA. Extramural perineural invasion in pT3 and pT4 gastric carcinomas. J Pathol Transl Med. 2018;52:79-84.
  • 8. Cracchiolo JR, Xu B, Migliacci JC, et al. Patterns of recurrence in oral tongue cancer with perineural invasion. Head Neck. 2018;40:1287-1295.
  • 9. Schmitd LB, Scanlon CS, D’Silva NJ. Perineural invasion in head and neck cancer. J Dent Res. 2018;97:742-750.
  • 10. Jobling P, Pundavela J, Oliveira SM, et al. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Res. 2015;75(9):1777-1781.
  • 11. Dwivedi S, Krishnan A. Neural invasion: a scenic trail for the nervous tumor and hidden therapeutic opportunity. Am J Cancer Res. 2020;10(8):2258-2270.
  • 12. Ferdoushi A, Griffin N, Marsland M, et al. Tumor innervation and clinical outcome in pancreatic cancer. Sci Rep. 2021;11(1):7390.
  • 13. Chari ST, Kelly K, Hollingsworth MA, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693-712.
  • 14. Liu Z, Gou A, Wu X. Liver metastasis of pancreatic cancer: the new choice at the crossroads. Hepatobiliary Surg Nutr. 2023;12(1):88-91.
  • 15. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7-30.
  • 16. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309-322.
  • 17. Schmitd LB, Perez-Pacheco C, D'Silva NJ. Nerve density in cancer: Less is better. FASEB Bioadv. 2021;3(10):773-786.
  • 18. Hirth M, Gandla J, Höper C, et al. CXCL10 and CCL21 Promote Migration of Pancreatic Cancer Cells Toward Sensory Neurons and Neural Remodeling in Tumors in Mice, Associated With Pain in Patients. Gastroenterology. 2020;159(2):665-681.
  • 19. Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology. 2012;59:889-893.
  • 20. Qian W, Lv S, Li J, et al. Norepinephrine enhances cell viability and invasion, and inhibits apoptosis of pancreatic cancer cells in a Notch1 dependent manner. Oncol Rep. 2018;40:3015-3023.
  • 21. Jiang SH, Li J, Dong FY, et al. Increased serotonin signaling contributes to the warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology. 2017;153:277-291.
  • 22. Takehara A, Hosokawa M, Eguchi H, et al. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res. 2007;67:9704-9712.
  • 23. Munoz M, Covenas R. Involvement of substance P and the NK-1 receptor in pancreatic cancer. World J. Gastroenterol. 2014;20:2321-2334.
  • 24. Herner A, Sauliunaite D, Michalski CW, et al. Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 2011;129 2349- 2359.
  • 25. Moskowitz PF, Smith R, Pickett J, Frankfurter A, Oblinger MM. Expression of the class III beta- tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res. 1993;34(1):129-134.
  • 26. Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv Exp Med Biol. 2015;867:125-143.
  • 27. Gusel'nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta Naturae. 2015;7(2):42-47.
  • 28. Dahlstrand J, Lardelli M, Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res. 1995;84:109–29.
  • 29. Banh RS, Biancur DE, Yamamoto K, et al. Neurons Release Serine to Support mRNA Translation in Pancreatic Cancer. Cell. 2020;183(5):1202-1218.
  • 30. Hung YH, Wang HC, Hsu SH, et al. Neuron-derived neurotensin promotes pancreatic cancer invasiveness and gemcitabine resistance via the NTSR1/Akt pathway. Am J Cancer Res. 2024;14(2):448-466.
  • 31. Göhrig A, Hilfenhaus G, Rosseck F, et al. Placental growth factor promotes neural invasion and predicts disease prognosis in resectable pancreatic cancer. J Exp Clin Cancer Res. 2024;43(1):153.
  • 32. Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol. 2023;13:1185093.
  • 33. Azam SH, Pecot CV. Cancer's got nerve: Schwann cells drive perineural invasion. J Clin Invest. 2016;126(4):1242-1244.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücresel Etkileşimler , Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Didem Karakaş 0000-0002-3781-6834

Yayımlanma Tarihi 28 Şubat 2025
Gönderilme Tarihi 8 Ağustos 2024
Kabul Tarihi 29 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

AMA Karakaş D. Investigation of Conditioned Media-Mediated Communication between Pancreatic Cancer Cells and Neurons. Acta Med Nicomedia. Şubat 2025;8(1):15-22. doi:10.53446/actamednicomedia.1530253

images?q=tbn:ANd9GcSZGi2xIvqKAAwnJ5TSwN7g4cYXkrLAiHoAURHIjzbYqI5bffXt&s

"Acta Medica Nicomedia" Tıp dergisinde https://dergipark.org.tr/tr/pub/actamednicomedia adresinden yayımlanan makaleler açık erişime sahip olup Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı (CC BY SA 4.0) ile lisanslanmıştır.