Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'de Aşırı Kilolu Prevalansının Eğilimleri ve Tahminleri: ARIMA Modellerini Kullanan Bir Zaman Serisi Yaklaşımı

Yıl 2025, Cilt: 8 Sayı: 1, 52 - 58, 28.02.2025
https://doi.org/10.53446/actamednicomedia.1603153

Öz

Amaç: Bu çalışmanın amacı, Türkiye'nin genel, kadın ve erkek nüfusundaki aşırı kilolu prevalansı verilerine Otoregresif Entegre Hareketli Ortalama (ARIMA) modellerini uygulamak ve en iyi performans gösteren ARIMA modellerini kullanarak gelecekteki eğilimleri tahmin etmektir.
Yöntem: Çalışmadaki veri seti, Dünya Sağlık Örgütü ve Dünya Bankası Grubu veri tabanlarından elde edilen 1974-2022 yılları arasında Türkiye'nin genel, kadın ve erkek nüfuslarına ait yıllık aşırı kilolu prevalans değerlerinden oluşmaktadır. Veri seti, kronolojik bir sıra ile 80:20 oranında, sırasıyla eğitim ve test setlerine bölünmüştür. Eğitim setleri ARIMA modellerinin oluşturulması için kullanılırken, test setleri modellerin tahmin performansını değerlendirmek için kullanılmıştır. Çeşitli değerlendirme ölçütlerine göre en iyi ARIMA modelleri seçilmiştir.
Bulgular: En iyi modeller genel nüfus için ARIMA (1,3,1), kadınlar için ARIMA (1,3,1) ve erkekler için ARIMA (3,3,1) olarak belirlenmiş ve en düşük hata metriklerini vermiştir. Bu modeller aşırı kilolu prevalansındaki artış eğilimini etkili bir şekilde yakalamıştır. Kısa vadeli tahminler, artış eğiliminin yakın gelecekte de devam edeceğini göstermektedir.
Sonuç: Bu çalışma, Türkiye'de aşırı kilolu prevalansının gidişatının temelden anlaşılmasına katkıda bulunarak kanıta dayalı müdahaleler ve uzun dönemde sağlık planlaması için bir temel oluşturmaktadır.

Kaynakça

  • World Health Organization. Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Published: March 2024. Accessed: Sep 1, 2024.
  • Burton BT, Foster WR. Health implications of obesity: an NIH Consensus Development Conference. J Am Diet Assoc. 1985;85(9):1117-1121. doi:10.1016/S0002-8223(21)03768-8
  • Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC public health. 2009;9:1-20. doi:10.1186/1471-2458-9-88
  • Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. Jama. 1999;282(16):1523-1529. doi:10.1001/jama.282.16.1523
  • Türkiye İstatistik Kurumu. Türkiye Sağlık Araştırması Bülteni. https://data.tuik.gov.tr/Bulten/Index?p=Turkiye-Saglik-Arastirmasi-2022-49747. Published: June 2023. Accessed: Sep 10, 2024.
  • Gandon S, Day T, Metcalf CJE, Grenfell BT. Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends Ecol Evol. 2016;31(10):776-788. doi:10.1016/j.tree.2016.07.010
  • Nobre FF, Monteiro ABS, Telles PR, Williamson GD. Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology. Stat Med. 2001;20(20):3051-3069. doi: 10.1002/sim.963
  • Bozkurt M, Güngör Y. Kentsel Alanda Yaşayan Okul Çağındaki Çocuklarda Kiloluluk ve Obezite Görülme Sıklığının Belirlenmesi. J Child. 2021;21(2):128-135. doi:10.26650/jchild.2021.874569
  • Işık Ü, Bağcı B, Aktepe E, Kılıç F, Pirgon Ö. Obezite Tanılı Ergenlerde Eşlik Eden Psikiyatrik Bozuklukların Araştırılması. Turk J Child Adolesc Ment Health. 2020;27(2):85-90. doi:10.4274/tjcamh.galenos.2020.76486
  • Kılınç E, Kartal A. Lise öğrencilerinde sedanter yaşam, beslenme davranışları ve fazla kiloluluk-obezite arasındaki ilişkinin değerlendirilmesi: Bir Vaka Kontrol Çalışması. Dokuz Eylul Univ Hem Fak Elektron Derg. 2022;15(1):30-39. doi:10.46483/deuhfed.898847
  • World Bank Group. Health Nutrition and Population Statistics. https://databank.worldbank.org/source/health-nutrition-and-population-statistics#. Accessed: Sep 1,2024.
  • World Health Organization. The Global Health Observatory. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi--25-(age-standardized-estimate)-(-). Accessed: Sep 1,2024.
  • Box GE, Jenkins GM. Time Series Analysis: Forecasting and Control. San Francisco: Holden Bay; 1976.
  • Cerqueira V, Torgo L, Soares C. Machine learning vs statistical methods for time series forecasting: Size matters. arXiv preprint arXiv:190913316. 2019. doi:10.48550/arXiv.1909.13316
  • Nielsen A. Practical time series analysis: Prediction with statistics and machine learning. 1st Edition.California: O'Reilly Media; 2019.
  • Hyndman R. Athanasopoulos G. Forecasting: principles and practice. 2nd Edition. OTexts; 2018.
  • Shmueli G, Lichtendahl Jr KC. Practical Time Series Forecasting With R. 2nd Edition. Axelrod Schnall Publishers; 2016.
  • Dickey DA, Fuller WA. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica. 1981:1057-1072. doi:10.2307/1912517
  • Ljung GM, Box GE. On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297-303. doi:10.1093/biomet/65.2.297
  • R Core Team. R: A language and environment for statistical computing [computer software]. Version 4.2.2. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/.
  • RStudio Team. RStudio: Integrated Development Environment for R [computer software]. Version 2023.09.1+494. Boston, MA: RStudio, PBC; 2023. Available from: http://www.rstudio.com/.
  • Grolemund G, Wickham H. Dates and Times Made Easy with lubridate. J Stat Softw. 2011;40(3):1-25. Available from: https://www.jstatsoft.org/v40/i03/.
  • Hyndman R, Athanasopoulos G, Bergmeir C, et al. forecast: Forecasting functions for time series and linear models [computer software]. Version 8.23.0. Melbourne, Australia: Monash University; 2024. Available from: https://pkg.robjhyndman.com/forecast/.
  • Trapletti A, Hornik K. tseries: Time Series Analysis and Computational Finance [computer software]. Version 0.10-58. Vienna, Austria: R Foundation for Statistical Computing; 2024. Available from: https://CRAN.R-project.org/package=tseries.
  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York, NY: Springer-Verlag; 2016.
  • Karaketir ŞG, Lüleci NE, Eryurt MA, Emecen AN, Haklıdır M, Hıdıroğlu S. Overweight and obesity in preschool children in Turkey: A multilevel analysis. J Biosoc Sci. 2023;55(2):344-366. doi:10.1017/S0021932022000025
  • Hatemi H, Yumuk VD, Turan N, Arik N. Prevalence of overweight and obesity in Turkey. Metab Syndr Relat Disord. 2003;1(4):285-290. doi:10.1089/1540419031361363
  • Gültekin T, Özer BK, Akın G, Bektaş Y, Saǧir M, Güleç E. Prevalence of overweight and obesity in Turkish adults. Anthropol Anz. 2009:205-212. doi:10.1127/0003-5548/2009/0297
  • Çelmeli G, Çürek Y, Gülten ZA, et al. Remarkable increase in the prevalence of overweight and obesity among school age children in Antalya, Turkey, between 2003 and 2015. J Clin Res Pediatr Endocrinol. 2019;11(1):76. doi:10.4274/jcrpe.galenos.2018.2018.0108
  • Ampofo AG, Boateng EB. Beyond 2020: Modelling obesity and diabetes prevalence. Diabetes Res Clin Pract. 2020;167:108362. doi:10.1016/j.diabres.2020.108362
  • Okunogbe A, Nugent R, Spencer G, Powis J, Ralston J, Wilding J. Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Glob Health. 2022;7(9):e009773. doi:10.1136/bmjgh-2022-009773

Trends and Forecasts of Overweight Prevalence in Türkiye: A Time Series Approach Using ARIMA Models

Yıl 2025, Cilt: 8 Sayı: 1, 52 - 58, 28.02.2025
https://doi.org/10.53446/actamednicomedia.1603153

Öz

Objective: This study aimed to fit Autoregressive Integrated Moving Average (ARIMA) models to the prevalence of overweight in Türkiye's overall, female, and male populations and to forecast future trends using the best-performing ARIMA models.
Methods: The dataset comprised annual overweight prevalence values for Türkiye's overall, female, and male populations from 1974 to 2022, obtained from the World Health Organization and World Bank Group databases. The dataset was divided into training and test sets in a chronological sequence with the ratio 80:20, respectively. Training sets were used to fit ARIMA models, while test sets were used to evaluate the predictive performance of the models. Best ARIMA models were chosen based on various evaluation metrics.
Results: The best models were identified as ARIMA (1,3,1) for the overall population, ARIMA (1,3,1) for females, and ARIMA (3,3,1) for males, yielding the lowest error metrics. These models effectively captured the increasing trend in overweight prevalence. Short-term forecasts indicated that the upward trend is likely to continue in the near future.
Conclusion: This study contributes to a foundational understanding of the trajectory of overweight prevalence in Türkiye, providing a basis for evidence-based interventions and long-term health planning.

Kaynakça

  • World Health Organization. Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Published: March 2024. Accessed: Sep 1, 2024.
  • Burton BT, Foster WR. Health implications of obesity: an NIH Consensus Development Conference. J Am Diet Assoc. 1985;85(9):1117-1121. doi:10.1016/S0002-8223(21)03768-8
  • Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC public health. 2009;9:1-20. doi:10.1186/1471-2458-9-88
  • Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. Jama. 1999;282(16):1523-1529. doi:10.1001/jama.282.16.1523
  • Türkiye İstatistik Kurumu. Türkiye Sağlık Araştırması Bülteni. https://data.tuik.gov.tr/Bulten/Index?p=Turkiye-Saglik-Arastirmasi-2022-49747. Published: June 2023. Accessed: Sep 10, 2024.
  • Gandon S, Day T, Metcalf CJE, Grenfell BT. Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends Ecol Evol. 2016;31(10):776-788. doi:10.1016/j.tree.2016.07.010
  • Nobre FF, Monteiro ABS, Telles PR, Williamson GD. Dynamic linear model and SARIMA: a comparison of their forecasting performance in epidemiology. Stat Med. 2001;20(20):3051-3069. doi: 10.1002/sim.963
  • Bozkurt M, Güngör Y. Kentsel Alanda Yaşayan Okul Çağındaki Çocuklarda Kiloluluk ve Obezite Görülme Sıklığının Belirlenmesi. J Child. 2021;21(2):128-135. doi:10.26650/jchild.2021.874569
  • Işık Ü, Bağcı B, Aktepe E, Kılıç F, Pirgon Ö. Obezite Tanılı Ergenlerde Eşlik Eden Psikiyatrik Bozuklukların Araştırılması. Turk J Child Adolesc Ment Health. 2020;27(2):85-90. doi:10.4274/tjcamh.galenos.2020.76486
  • Kılınç E, Kartal A. Lise öğrencilerinde sedanter yaşam, beslenme davranışları ve fazla kiloluluk-obezite arasındaki ilişkinin değerlendirilmesi: Bir Vaka Kontrol Çalışması. Dokuz Eylul Univ Hem Fak Elektron Derg. 2022;15(1):30-39. doi:10.46483/deuhfed.898847
  • World Bank Group. Health Nutrition and Population Statistics. https://databank.worldbank.org/source/health-nutrition-and-population-statistics#. Accessed: Sep 1,2024.
  • World Health Organization. The Global Health Observatory. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi--25-(age-standardized-estimate)-(-). Accessed: Sep 1,2024.
  • Box GE, Jenkins GM. Time Series Analysis: Forecasting and Control. San Francisco: Holden Bay; 1976.
  • Cerqueira V, Torgo L, Soares C. Machine learning vs statistical methods for time series forecasting: Size matters. arXiv preprint arXiv:190913316. 2019. doi:10.48550/arXiv.1909.13316
  • Nielsen A. Practical time series analysis: Prediction with statistics and machine learning. 1st Edition.California: O'Reilly Media; 2019.
  • Hyndman R. Athanasopoulos G. Forecasting: principles and practice. 2nd Edition. OTexts; 2018.
  • Shmueli G, Lichtendahl Jr KC. Practical Time Series Forecasting With R. 2nd Edition. Axelrod Schnall Publishers; 2016.
  • Dickey DA, Fuller WA. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica. 1981:1057-1072. doi:10.2307/1912517
  • Ljung GM, Box GE. On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297-303. doi:10.1093/biomet/65.2.297
  • R Core Team. R: A language and environment for statistical computing [computer software]. Version 4.2.2. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.R-project.org/.
  • RStudio Team. RStudio: Integrated Development Environment for R [computer software]. Version 2023.09.1+494. Boston, MA: RStudio, PBC; 2023. Available from: http://www.rstudio.com/.
  • Grolemund G, Wickham H. Dates and Times Made Easy with lubridate. J Stat Softw. 2011;40(3):1-25. Available from: https://www.jstatsoft.org/v40/i03/.
  • Hyndman R, Athanasopoulos G, Bergmeir C, et al. forecast: Forecasting functions for time series and linear models [computer software]. Version 8.23.0. Melbourne, Australia: Monash University; 2024. Available from: https://pkg.robjhyndman.com/forecast/.
  • Trapletti A, Hornik K. tseries: Time Series Analysis and Computational Finance [computer software]. Version 0.10-58. Vienna, Austria: R Foundation for Statistical Computing; 2024. Available from: https://CRAN.R-project.org/package=tseries.
  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York, NY: Springer-Verlag; 2016.
  • Karaketir ŞG, Lüleci NE, Eryurt MA, Emecen AN, Haklıdır M, Hıdıroğlu S. Overweight and obesity in preschool children in Turkey: A multilevel analysis. J Biosoc Sci. 2023;55(2):344-366. doi:10.1017/S0021932022000025
  • Hatemi H, Yumuk VD, Turan N, Arik N. Prevalence of overweight and obesity in Turkey. Metab Syndr Relat Disord. 2003;1(4):285-290. doi:10.1089/1540419031361363
  • Gültekin T, Özer BK, Akın G, Bektaş Y, Saǧir M, Güleç E. Prevalence of overweight and obesity in Turkish adults. Anthropol Anz. 2009:205-212. doi:10.1127/0003-5548/2009/0297
  • Çelmeli G, Çürek Y, Gülten ZA, et al. Remarkable increase in the prevalence of overweight and obesity among school age children in Antalya, Turkey, between 2003 and 2015. J Clin Res Pediatr Endocrinol. 2019;11(1):76. doi:10.4274/jcrpe.galenos.2018.2018.0108
  • Ampofo AG, Boateng EB. Beyond 2020: Modelling obesity and diabetes prevalence. Diabetes Res Clin Pract. 2020;167:108362. doi:10.1016/j.diabres.2020.108362
  • Okunogbe A, Nugent R, Spencer G, Powis J, Ralston J, Wilding J. Economic impacts of overweight and obesity: current and future estimates for 161 countries. BMJ Glob Health. 2022;7(9):e009773. doi:10.1136/bmjgh-2022-009773
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Sağlığı
Bölüm Araştırma Makaleleri
Yazarlar

Hülya Özen 0000-0003-4144-3732

Doğukan Özen 0000-0003-1943-2690

Yayımlanma Tarihi 28 Şubat 2025
Gönderilme Tarihi 17 Aralık 2024
Kabul Tarihi 13 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

AMA Özen H, Özen D. Trends and Forecasts of Overweight Prevalence in Türkiye: A Time Series Approach Using ARIMA Models. Acta Med Nicomedia. Şubat 2025;8(1):52-58. doi:10.53446/actamednicomedia.1603153

images?q=tbn:ANd9GcSZGi2xIvqKAAwnJ5TSwN7g4cYXkrLAiHoAURHIjzbYqI5bffXt&s

"Acta Medica Nicomedia" Tıp dergisinde https://dergipark.org.tr/tr/pub/actamednicomedia adresinden yayımlanan makaleler açık erişime sahip olup Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı (CC BY SA 4.0) ile lisanslanmıştır.