Araştırma Makalesi
BibTex RIS Kaynak Göster

Balık ve Balık Tezgahlarından İzole Edilen Bakterilerin Biyofilm Oluşumu ve Önlenmesi

Yıl 2023, , 21 - 34, 01.03.2023
https://doi.org/10.22392/actaquatr.1116548

Öz

Biyofilm, bakterilerin uygun besiortamları varlığında oluşturdukları yapılardır. Biyofilm yapısı ile bakteriler kendilerini ozon, ısı, ışık, klor gibi kimyasal maddelerden korumaktadır. Balık önemli bir gıda maddesidir ve bakterilerin kolayca üreyebildiği bir ortamdır. Bu nedenle biyofilm oluşumu için de uygundur. Balık ve balık tezgahlarında biyofilm oluşumu insan sağlığını tehdit eden bir durumdur. Bu çalışmada balık ve balık tezgahlarında gelişebilen bakteriler ile biyofilm oluşturma kabiliyetleri ve doğal ürünlerin (kaya tuzu, limon suyu, sirke) etkisi araştırılmıştır. Çalışmada balık ve balık tezgahlarından 47 bakteri izolatı elde edilmiş ve moleküler tanılamaları yapılmıştır. Tanılanan bakterilerin biyofilm oluşturma kabiliyetleri kalitatif ve kantitatif analizler ile saptanmıştır. Analiz sonucunda 36 bakteri türünün biyofilm oluşturduğu belirlenmiştir. Ayrıca biyofilm oluşumuna karşı kullanılan doğal ürünler içerisinde sirke ve limon suyunun etkili olduğu görülmüştür. Buna rağmen biyofilm oluşturan bakterilere karşı kaya tuzu etkili bulunmamıştır.

Destekleyen Kurum

Aydın Adnan Menderes Üniversitesi

Proje Numarası

FEF- 16008

Teşekkür

Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür ederiz.

Kaynakça

  • ArunKumara, M., LewisOscar, F., Thajuddin, N., & Nithyaa, C. (2019). Isolation and screening of biofilm forming Vibrio spp. from fish sample around south east region of Tamil Nadu and Puducherry. Biocatalysis and Agricultural Biotechnology, 17, 379-389. https://doi.org/10.1016/j.bcab.2018.12.017
  • Bai, X., Nakatsu, C.H., & Bhunia, A.K. (2021). Bacterial biofilms and their implications in pathogenesis and food safety. Foods, 10(9), 1-26. https://doi.org/10.3390/foods10092117
  • Boğa, A, & Binokay, S. (2010). Gıda katkı maddeleri ve sağlığımıza etkileri. Dergipark, 19(3), 141-154.
  • Brandwein, M., Steinberg, D., & Meshner, S. (2016). Microbial biofilms and the human skin microbiome. NJP Biofilms Microbiomes, 23(3), 1-6. https://doi.org/10.1038/s41522-016-0004-z
  • Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial biofilms in the food industry-A comprehensive review. International Journal of Environmental Research and Public Health, 18(4), 1-31. https://doi.org/10.3390/ijerph18042014
  • Chauhan, A., Bernardin, A., Mussard, W., Kriegel, I., Estève, M., Ghigo, J. M., Beloin, C., & Semetey, V. (2014). Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters. Journal of Infectious Diseases, 210(9), 1347-1356. https://doi.org/10.1093/infdis/jiu249
  • Christensen, G. D., Simpson, W. A., Bisno, A. L., Beachey, & E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. https://doi.org/10.1128/iai.37.1.318-326.1982
  • Clinical and Laboratory Standards Institute. (2015). M02-A12: Performance standards for antimicrobial disk susceptibility tests: Approved standard. (12th Eds). (pp. 1-73). CLSI, Wayne.
  • Çoban, E. P., & Barışık, E. (2021a). Investigation of the antimicrobial activities of solvent extracts of two endemic species from Turkey: Campanula tomentosa Lam. and Verbascum mykales Bornm. İstanbul Journal of Pharmacy, 51(3), 348-356. https://doi.org/10.26650/IstanbulJPharm.2021.821070
  • Çoban, E. P, Ertuğrul, E., Fırıncı, R., Bıyık, H., & Günay, M. E. (2021b). Effects of novel silver (I) N-heterocyclic carbene complexes on mycotoxin producing fungi and biofilm forming microorganisms. Drug Discovery, 15(35), 69-79.
  • Dass, S. C., & Wang, R. (2022). Biofilm through the looking glass: A microbial food safety perspective. Pathogens, 11(346), 1-15. https://doi.org/10.3390/pathogens11030346
  • De Boer, S. H., & Ward, L. J. (1995). PCR detection of Erwinia carotovora subsp. atroceptica associated with potato tissue. Phytopathology, 85(8), 854-858.
  • Demir, C., & İnanç, B. B. (2015). Species investigate nasal colonize staphylococcus species biofilm produced. Journal of Clinical and Analytical Medicine, 6(4), 414-418. https://doi.org/10.4328/JCAM.2082
  • Diriba, K., Kassa, T., Alemu, Y., & Bekele, S. (2020). In vitro biofilm formation and antibiotic susceptibility patterns of bacteria from suspected external eye infected patients attending ophthalmology clinic, Southwest Ethiopia. International Journal of Microbiology, 2020, 1-12. https://doi.org/10.1155/2020/8472395
  • Erkmen, O. (2010). Gıda kaynaklı tehlikeler ve güvenli gıda üretimi. Çocuk Sağlığı Hastalık Dergisi, 53, 220-235.
  • EUCAST (2019). Disk diffusion method for antimicrobial susceptibility testing, Version 7.0
  • Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42(8), 872-874.
  • Galie, S., Garcia-Gutierrez, C., Miguelez, E. M., Villar, C. J., & Lambo, F. (2018). Biofilms in the food industry: health aspects and control methods. Frontiers in Microbiology, 9, 1-18. https://doi.org/10.3389/fmicb.2018.00898 Giaouris, E. E., & Simoes, M. V. (2018). Pathogenic biofilm formation in the food industry and alternative control strategies. Foodborne diseases, Edited by: A. M., & Grumezescu, A. M. (pp. 309-377). Academic Press. https://doi.org/10.1016/B978-0-12-811444-5.00011-7
  • Giaouris, E., Simões, M., & Dubois-Brissonnet, F. (2020). The role of biofilms in the development and dissemination of microbial resistance within the food industry. Foods, 9(6), 1-5. https://doi.org/10.3390/foods9060816
  • Iijima, S., Washio, K., Okahara, R., & Morikawa, M. (2009). Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that was isolated from fish farm sediments. Microbial Biotechnology, 2(3), 361-369.
  • Kartal, M. O., Ekinci, M. B, & Poyraz, B. (2021). Biyofilm yapısı ve önlenmesi. Akademik Gıda, 19(3): 353-363. https://doi.org/10.24323/akademik-gida.1011231
  • Koutsoumanis, K., & Nychas, G. J. (2000). Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions. International Journal of Food Microbiology, 60(2-3), 171-184. https://doi.org/10.1016/s0168-1605(00)00309-3.
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054
  • Lane, D. J. (1991). 16S/23S rRNA Sequencing. In nucleic acid techniques in bacterial systematics. Edited by Stackebrandt, E. & Goodfellow, M. (pp. 115-175). Wiley, New York.
  • Langsrud, S., Moen, B., Møretrø, T., Loype, M., & Heir, E. (2016). Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. Journal of Applied Microbiology, 120(2), 366-378. https://doi.org/10.1111/jam.13013
  • Laxmi, M., & Sarita, G. B. (2018). Biofilms in food industry: Mitigation using bacteriophage. Advances in biotechnology for food industry, Edited by: Holban, A.M., & Grumezescu, A.M. (pp. 393-423). Academic Press.
  • Lim, E. S, Lee, J. E, Kim, J. S, & Koo, O. K. (2017). Isolation of indigenous bacteria from a cafeteria kitchen and their biofilm formation and disinfectant susceptibility. LWT - Food Science and Technology, 77, 376-382. https://doi.org/10.1016/j.lwt.2016.11.060
  • Mathur, T., Singhal, S., Khan, S., Upadhyay, D. J., Fatma, T., & Rattan, A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Indian Journal of Medical Microbiology, 24(1), 25-29. https://doi.org/10.4103/0255-0857.19890
  • Melo, P. C., Ferreira, L. M., Filho, A. N., Zafalon, L. F., Vicente, H. I. G., & Souza, V. (2013). Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Brazilian Journal of Microbiology, 44(1), 119-124. Mizan, F. R., Jahid, I. K., & Ha, S. D. (2015). Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiology, 49, 41-55. https://doi.org/10.1016/j.fm.2015.01.009
  • Møretrø, T., Moen, B., Heir, E., Hansen, A. A., & Langsrud, S. (2016). Contamination of salmon fillets and processing plants with spoilage bacteria. International Journal of Food Microbiology, 237, 98-108. https://doi.org/10.1016/j.ijfoodmicro.2016.08.016
  • Møretrø, T., & Langsrud, S. (2017). Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 16, 1-20. https://doi.org/10.1111/1541-4337.12283
  • Nurcan, N., Kubilay, A., & Boşgelmez, G. T. (2016). Vibrio anguillarum suşlarında çevreyi algılama sistemi ve virülens faktörlerinin incelenmesi. Eğirdir Su Ürünleri Fakültesi Dergisi, 12(1), 49-57. https://doi.org/10.22392/egirdir.246324
  • Niederle, M. V., Bosch, J., Ale, C. E., Nader-Macı´as, M. E., Aristimuño F. C., Toledo, L. F., Valenzuela-Sa´nchez, A., Soto-Azat, C., & Pasteris, S. E. (2019). Skin-associated lactic acid bacteria from north american bullfrogs as potential control agents of Batrachochytrium dendrobatidis. Plos One, 14(9), 1-23. https://doi.org/10.1371/journal.pone.0223020
  • Pippo, F. D., Gregorio, L. D., Congestri, R., Tandoi, V., & Rossetti, V. (2018). Biofilm growth and control in cooling water industrial systems. FEMS Microbiology Ecology, 94(5), 1-13. https://doi.org/10.1093/femsec/fiy044
  • Raksha, L., Gangashettappa, N., Shantala, G. B., Nandan, B. R., & Sinha, D. (2019). Study of biofilm formation in bacterial isolates from contact lens wearers. Indian Journal of Ophthalmology, 68(1), 1-6. https://doi.org/10.4103/ijo.IJO_947_19
  • Şahin, Y., Çoban, E. P., Sevinçek, R., Bıyık, H. H., Ozgener, H., & Aygün, M. (2021). 1,2-Diborolanes with strong donor substituents: Synthesis and high antimicrobial activity. Bioorganic Chemistry, 106, https://doi.org/10.1016/j.bioorg.2020.104494
  • Shin, K., Yun, Y., Yi, S., Lee, H. G., Cho, J. C., Suh, K. D., Lee, J., & Park, J. (2013). Biofilm-forming ability of Staphylococcus aureus strains isolated from human skin. Journal of Dermatological Science, 71(2), 130-137. https://doi.org/10.1016/j.jdermsci.2013.04.004
  • Shrestha, L. B., Bhattarai, N. R., & Khana, B. (2018). Comparative evaluation of methods for the detection of biofilm formation in coagulase negative staphylococci and correlation with antibiogram. Infection and Drug Resistance, 11, 607-613. https://doi.org/10.2147/IDR.S159764
  • Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., & Xiangmin, L. (2021). Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Frontiers in Microbiology, 12, 1-19. https://doi.org/10.3389/fmicb.2021.676458
  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substituions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Tekin, K., & Çoban, E. P. (2021). Bacterial diversity in soil samples collected from geothermal fields in Aydın province. 1st International Congress on Natural Sciences (ICNAS-2021) Book. (pp. 242-250). Erzurum.
  • Törün, B., Kalyoncu, R. G., Çoban, E. P., & Bıyık, H. H. (2017). Bacterial biodiversity of industrial soils from Aydın and Trabzon province. International Journal of Secondary Metabolite, 4(2), 90-98. https://doi.org/10.21448/ijsm.288229
  • Winkelströter, L. K., Teixeira, F. B. R., Silva, E. P., Alves, V. F., & Martinis, E. C. P. (2014). Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, 68(1), 35-46. https://doi.org/10.1007/s00248-013-0347-4
  • Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances, 7, 1-14. https://doi.org/10.1039/c7ra02497e

Biofilm Formation and Prevention of Bacteria Isolated from Fish and Fish Stalls

Yıl 2023, , 21 - 34, 01.03.2023
https://doi.org/10.22392/actaquatr.1116548

Öz

Biofilms are structures formed by bacteria in the presence of convenient media. Bacteria protect themselves from chemicals such as ozone, heat, light and chlorine with biofilm structure. Fish is an important food item and it is an environment where bacteria can easily reproduce. Therefore, it is also appropriate for biofilm formation. Biofilm formation in fish and fish stalls is a threat to human health. In this study, bacteria that can grow on fish and fish stalls and their ability to form biofilms and the effect of natural products (rock salt, lemon juice, vinegar) were investigated. In the study, 47 bacterial isolates were obtained from fish and fish stalls and their molecular identifications were made. The biofilm forming abilities of the identified bacteria were determined by qualitative and quantitative analyzes. As a result of the analysis, it was determined that 36 bacterial species formed biofilm. It has been observed that vinegar and lemon juice are effective. However, rock salt was not found to be effective against biofilm forming bacteria.

Proje Numarası

FEF- 16008

Kaynakça

  • ArunKumara, M., LewisOscar, F., Thajuddin, N., & Nithyaa, C. (2019). Isolation and screening of biofilm forming Vibrio spp. from fish sample around south east region of Tamil Nadu and Puducherry. Biocatalysis and Agricultural Biotechnology, 17, 379-389. https://doi.org/10.1016/j.bcab.2018.12.017
  • Bai, X., Nakatsu, C.H., & Bhunia, A.K. (2021). Bacterial biofilms and their implications in pathogenesis and food safety. Foods, 10(9), 1-26. https://doi.org/10.3390/foods10092117
  • Boğa, A, & Binokay, S. (2010). Gıda katkı maddeleri ve sağlığımıza etkileri. Dergipark, 19(3), 141-154.
  • Brandwein, M., Steinberg, D., & Meshner, S. (2016). Microbial biofilms and the human skin microbiome. NJP Biofilms Microbiomes, 23(3), 1-6. https://doi.org/10.1038/s41522-016-0004-z
  • Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial biofilms in the food industry-A comprehensive review. International Journal of Environmental Research and Public Health, 18(4), 1-31. https://doi.org/10.3390/ijerph18042014
  • Chauhan, A., Bernardin, A., Mussard, W., Kriegel, I., Estève, M., Ghigo, J. M., Beloin, C., & Semetey, V. (2014). Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters. Journal of Infectious Diseases, 210(9), 1347-1356. https://doi.org/10.1093/infdis/jiu249
  • Christensen, G. D., Simpson, W. A., Bisno, A. L., Beachey, & E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. https://doi.org/10.1128/iai.37.1.318-326.1982
  • Clinical and Laboratory Standards Institute. (2015). M02-A12: Performance standards for antimicrobial disk susceptibility tests: Approved standard. (12th Eds). (pp. 1-73). CLSI, Wayne.
  • Çoban, E. P., & Barışık, E. (2021a). Investigation of the antimicrobial activities of solvent extracts of two endemic species from Turkey: Campanula tomentosa Lam. and Verbascum mykales Bornm. İstanbul Journal of Pharmacy, 51(3), 348-356. https://doi.org/10.26650/IstanbulJPharm.2021.821070
  • Çoban, E. P, Ertuğrul, E., Fırıncı, R., Bıyık, H., & Günay, M. E. (2021b). Effects of novel silver (I) N-heterocyclic carbene complexes on mycotoxin producing fungi and biofilm forming microorganisms. Drug Discovery, 15(35), 69-79.
  • Dass, S. C., & Wang, R. (2022). Biofilm through the looking glass: A microbial food safety perspective. Pathogens, 11(346), 1-15. https://doi.org/10.3390/pathogens11030346
  • De Boer, S. H., & Ward, L. J. (1995). PCR detection of Erwinia carotovora subsp. atroceptica associated with potato tissue. Phytopathology, 85(8), 854-858.
  • Demir, C., & İnanç, B. B. (2015). Species investigate nasal colonize staphylococcus species biofilm produced. Journal of Clinical and Analytical Medicine, 6(4), 414-418. https://doi.org/10.4328/JCAM.2082
  • Diriba, K., Kassa, T., Alemu, Y., & Bekele, S. (2020). In vitro biofilm formation and antibiotic susceptibility patterns of bacteria from suspected external eye infected patients attending ophthalmology clinic, Southwest Ethiopia. International Journal of Microbiology, 2020, 1-12. https://doi.org/10.1155/2020/8472395
  • Erkmen, O. (2010). Gıda kaynaklı tehlikeler ve güvenli gıda üretimi. Çocuk Sağlığı Hastalık Dergisi, 53, 220-235.
  • EUCAST (2019). Disk diffusion method for antimicrobial susceptibility testing, Version 7.0
  • Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of Clinical Pathology, 42(8), 872-874.
  • Galie, S., Garcia-Gutierrez, C., Miguelez, E. M., Villar, C. J., & Lambo, F. (2018). Biofilms in the food industry: health aspects and control methods. Frontiers in Microbiology, 9, 1-18. https://doi.org/10.3389/fmicb.2018.00898 Giaouris, E. E., & Simoes, M. V. (2018). Pathogenic biofilm formation in the food industry and alternative control strategies. Foodborne diseases, Edited by: A. M., & Grumezescu, A. M. (pp. 309-377). Academic Press. https://doi.org/10.1016/B978-0-12-811444-5.00011-7
  • Giaouris, E., Simões, M., & Dubois-Brissonnet, F. (2020). The role of biofilms in the development and dissemination of microbial resistance within the food industry. Foods, 9(6), 1-5. https://doi.org/10.3390/foods9060816
  • Iijima, S., Washio, K., Okahara, R., & Morikawa, M. (2009). Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that was isolated from fish farm sediments. Microbial Biotechnology, 2(3), 361-369.
  • Kartal, M. O., Ekinci, M. B, & Poyraz, B. (2021). Biyofilm yapısı ve önlenmesi. Akademik Gıda, 19(3): 353-363. https://doi.org/10.24323/akademik-gida.1011231
  • Koutsoumanis, K., & Nychas, G. J. (2000). Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions. International Journal of Food Microbiology, 60(2-3), 171-184. https://doi.org/10.1016/s0168-1605(00)00309-3.
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054
  • Lane, D. J. (1991). 16S/23S rRNA Sequencing. In nucleic acid techniques in bacterial systematics. Edited by Stackebrandt, E. & Goodfellow, M. (pp. 115-175). Wiley, New York.
  • Langsrud, S., Moen, B., Møretrø, T., Loype, M., & Heir, E. (2016). Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. Journal of Applied Microbiology, 120(2), 366-378. https://doi.org/10.1111/jam.13013
  • Laxmi, M., & Sarita, G. B. (2018). Biofilms in food industry: Mitigation using bacteriophage. Advances in biotechnology for food industry, Edited by: Holban, A.M., & Grumezescu, A.M. (pp. 393-423). Academic Press.
  • Lim, E. S, Lee, J. E, Kim, J. S, & Koo, O. K. (2017). Isolation of indigenous bacteria from a cafeteria kitchen and their biofilm formation and disinfectant susceptibility. LWT - Food Science and Technology, 77, 376-382. https://doi.org/10.1016/j.lwt.2016.11.060
  • Mathur, T., Singhal, S., Khan, S., Upadhyay, D. J., Fatma, T., & Rattan, A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Indian Journal of Medical Microbiology, 24(1), 25-29. https://doi.org/10.4103/0255-0857.19890
  • Melo, P. C., Ferreira, L. M., Filho, A. N., Zafalon, L. F., Vicente, H. I. G., & Souza, V. (2013). Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Brazilian Journal of Microbiology, 44(1), 119-124. Mizan, F. R., Jahid, I. K., & Ha, S. D. (2015). Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiology, 49, 41-55. https://doi.org/10.1016/j.fm.2015.01.009
  • Møretrø, T., Moen, B., Heir, E., Hansen, A. A., & Langsrud, S. (2016). Contamination of salmon fillets and processing plants with spoilage bacteria. International Journal of Food Microbiology, 237, 98-108. https://doi.org/10.1016/j.ijfoodmicro.2016.08.016
  • Møretrø, T., & Langsrud, S. (2017). Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Comprehensive Reviews in Food Science and Food Safety, 16, 1-20. https://doi.org/10.1111/1541-4337.12283
  • Nurcan, N., Kubilay, A., & Boşgelmez, G. T. (2016). Vibrio anguillarum suşlarında çevreyi algılama sistemi ve virülens faktörlerinin incelenmesi. Eğirdir Su Ürünleri Fakültesi Dergisi, 12(1), 49-57. https://doi.org/10.22392/egirdir.246324
  • Niederle, M. V., Bosch, J., Ale, C. E., Nader-Macı´as, M. E., Aristimuño F. C., Toledo, L. F., Valenzuela-Sa´nchez, A., Soto-Azat, C., & Pasteris, S. E. (2019). Skin-associated lactic acid bacteria from north american bullfrogs as potential control agents of Batrachochytrium dendrobatidis. Plos One, 14(9), 1-23. https://doi.org/10.1371/journal.pone.0223020
  • Pippo, F. D., Gregorio, L. D., Congestri, R., Tandoi, V., & Rossetti, V. (2018). Biofilm growth and control in cooling water industrial systems. FEMS Microbiology Ecology, 94(5), 1-13. https://doi.org/10.1093/femsec/fiy044
  • Raksha, L., Gangashettappa, N., Shantala, G. B., Nandan, B. R., & Sinha, D. (2019). Study of biofilm formation in bacterial isolates from contact lens wearers. Indian Journal of Ophthalmology, 68(1), 1-6. https://doi.org/10.4103/ijo.IJO_947_19
  • Şahin, Y., Çoban, E. P., Sevinçek, R., Bıyık, H. H., Ozgener, H., & Aygün, M. (2021). 1,2-Diborolanes with strong donor substituents: Synthesis and high antimicrobial activity. Bioorganic Chemistry, 106, https://doi.org/10.1016/j.bioorg.2020.104494
  • Shin, K., Yun, Y., Yi, S., Lee, H. G., Cho, J. C., Suh, K. D., Lee, J., & Park, J. (2013). Biofilm-forming ability of Staphylococcus aureus strains isolated from human skin. Journal of Dermatological Science, 71(2), 130-137. https://doi.org/10.1016/j.jdermsci.2013.04.004
  • Shrestha, L. B., Bhattarai, N. R., & Khana, B. (2018). Comparative evaluation of methods for the detection of biofilm formation in coagulase negative staphylococci and correlation with antibiogram. Infection and Drug Resistance, 11, 607-613. https://doi.org/10.2147/IDR.S159764
  • Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., & Xiangmin, L. (2021). Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Frontiers in Microbiology, 12, 1-19. https://doi.org/10.3389/fmicb.2021.676458
  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substituions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Tekin, K., & Çoban, E. P. (2021). Bacterial diversity in soil samples collected from geothermal fields in Aydın province. 1st International Congress on Natural Sciences (ICNAS-2021) Book. (pp. 242-250). Erzurum.
  • Törün, B., Kalyoncu, R. G., Çoban, E. P., & Bıyık, H. H. (2017). Bacterial biodiversity of industrial soils from Aydın and Trabzon province. International Journal of Secondary Metabolite, 4(2), 90-98. https://doi.org/10.21448/ijsm.288229
  • Winkelströter, L. K., Teixeira, F. B. R., Silva, E. P., Alves, V. F., & Martinis, E. C. P. (2014). Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, 68(1), 35-46. https://doi.org/10.1007/s00248-013-0347-4
  • Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances, 7, 1-14. https://doi.org/10.1039/c7ra02497e
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Esin Poyrazoğlu 0000-0002-3921-5362

Fatma Yaman 0000-0002-4505-4091

Proje Numarası FEF- 16008
Yayımlanma Tarihi 1 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Poyrazoğlu, E., & Yaman, F. (2023). Biofilm Formation and Prevention of Bacteria Isolated from Fish and Fish Stalls. Acta Aquatica Turcica, 19(1), 21-34. https://doi.org/10.22392/actaquatr.1116548