Glutatyon ile İlişkili Enzim Sistemleri Kullanılarak Oreochromis niloticus’ta Cıva Toksisitesi Üzerine Antioksidan Olarak Selenyum ve Mineral Olarak Zeolitin Koruyucu Etkilerinin Araştırılması
Yıl 2021,
, 306 - 316, 01.09.2021
Özge Fırat
,
Ferit Kargın
Öz
Cıva yeryüzündeki en toksik ağır metallerden biridir. Selenyum canlılar için gerekli olan ve antioksidan özellikleri de bulunan bir elementtir. Zeolit ise sucul ortamlarda ağır metallerin uzaklaştırılmasında yaygın bir şekilde kullanılan bir mineraldir. Bu araştırmada Oreochromis niloticus’un dokularındaki glutatyon (GSH) ve GSH ile ilişkili enzim sistemleri üzerine cıvanın toksik etkileri ve bu biyokimyasal toksisite üzerine selenyumun ve zeolitin olası koruyucu etkilerinin belirlenmesi amaçlanmıştır. Bu amaçla balıklar 0,01 ve 0,1 mg/L cıva; 0,01 mg/L cıva+0,1 mg/L selenyum, 0,1 mg/L cıva+1,0 mg/L selenyum ve 0,01 mg/L cıva+ 0,1 g/L zeolit, 0,1 mg/L cıva+1,0 g/L zeolit derişimlerinin etkisine 7 ve 21 gün süreler ile bırakılmış ve solungaç, karaciğer ve kas dokularındaki GSH düzeyi ve glutatyon peroksidaz (GPx), glutatyon-S-transferaz (GST) ve glutatyon redüktaz (GR) enzim aktiviteleri belirlenmiştir. Cıvanın tek başına ve cıva+selenyum ve cıva+zeolit karşımlarının etkisinde incelenen tüm biyokimyasal parametrelerde dokulara, ortam derişimlerine ve etki süresine bağlı olarak önemli değişimler saptanmıştır. Solungaç ve karaciğerde GSH düzeyi ve GR aktivitesi azalma, GPx ve GST aktiviteleri ise artış göstermiştir. Kasta ise GST dışındaki parametrelerde önemli bir değişim gözlenmemiştir. İncelenen tüm parametreler üzerine tek başına cıva etkisinin selenyum ve zeolit ile birlikte etkisine göre daha yüksek ve kimyasalların etkilerinin genel olarak Hg>Hg+Zeolit>Hg+Se şeklinde olduğu saptanmıştır. Araştırma sonuçlarımız O. niloticus’ta cıvanın neden olduğu toksisite üzerine selenyum ve zeolitin koruyucu bir etkiye sahip ve selenyumun zeolite oranla koruyuculuk etkisinin biraz daha fazla olduğunu göstermektedir.
Destekleyen Kurum
Çukurova Üniversitesi-Bilimsel Araştırma Projeleri Birimi
Teşekkür
Bu çalışma “Cıva, Cıva-Selenyum ve Cıva-Zeolit Karışımlarına bırakılan Oreochromis niloticus’ta Cıvanın, Dokulardaki Birikimi ve GSH ile İlişkili Enzim Aktivitelerine Etkisi” başlıklı ve YÖK Ulusal Tez Merkezi Referans Nosu “414359” olan Doktora tez çalışmasından (kabul tarihi: 26.01.2016) üretilmiştir. Bu araştırma FEF2012D1 nolu Çukurova Üniversitesi (Ç.Ü.) Bilimsel Araştırma Projesi ile yürütülmüştür.
Kaynakça
- ATSDR (Agenyc for Toxic Subtances and Disease Registry) (2020). Priority list of hazardous substances. Alıntılama adresi: http://www.atsdr.cdc.gov/cercla/05list.html (22.09.2020).
- Azevedo, M. M., Carvalho, A., Pascoal, C., Rodrigues, F. & Cassıo, F. (2007). Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of The Total Environment, 377, 233–243. https://doi.org/10.1016/j.scitotenv.2007.02.027
- Berntssen, M. H. G., Aatland, A., & Handy, R. D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behavior in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology, 65, 55–72. https://doi.org/10.1016/S0166-445X(03)00104-8
- Beutler, E. (1984). Red cell metabolism: a manual of biochemical methods,2nd edition. Grune and Starton, New York, pp 160.
- Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250, 5475–5480.
- Cogun, H. Y., Firat, Ö., Firat, Ö., Yuzereroglu, T. A., Gok, G., Kargin, F., & Kotemen, Y. (2012). Protective effect of selenium against mercury induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. Journal of Biochemical and Molecular Toxicology, 26(3), 117-122. https://doi.org/10.1002/jbt.20417
- Elia, A. C., Dorr, A. J. M., Mantilacci, L., Taticchi, M. I., & Galarini, R. (2000). Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert, B., Friese, K. (Eds.), Trace elements—their distribution and effects in the environment: trace metals in the environment, Vol. 4. Elsevier Science, Amsterdam, pp. 411–421.
- Elia, A. C., Galarin., R., Taticchi, M. I., Dorr, A. J. M., & Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55, 162-167. https://doi.org/10.1016/S0147-6513(02)00123-9
- Eroglu, A., Dogan, Z., Kanak, E. G., Atlı, G., & Canlı, M. (2015). Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environmental Science and Pollution Research, 22, 3229–3237. https://doi.org/10.1007/s11356-014-2972-y
- Fırat, Ö., Cogun, H. Y., Aslanyavrusu, S., & Kargın, F. (2009). Antioxidant responses and metal accumulation in tissues of Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. Journal of Applied Toxicology, 29, 295-301. https://doi.org/10.1002/jat.1406
- Fırat, Ö., Fırat, Ö., Çoğun, H. Y., Aytekin, T., Firidin, G., Temiz, Ö., Sağ, H., & Kargın, F. (2018). Atatürk Baraj Gölü’nün kirli ve temiz bölgelerinden yakalanan balıkların (Silurus triostegus Heckel, 1843, Chalcalburnus tarichi Pallas, 1811, Chondrostoma regium Heckel, 1843, Carassius carassius Linnaeus, 1758) dokularındaki ağır metal düzeylerinin karşılaştırılması. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(3), 173-183.
- Fırat, Ö., & Kaya, Ö. (2019). Evaluation of protective role of selenium on mercury toxicity by superoxide dismutase, catalase and malondialdehyde parameters in Oreochromis niloticus (Linnaeus, 1758). Ege Journal of Fisheries and Aquatic Sciences, 36(3), 245-253. https://doi.org/10.12714/egejfas.2019.36.3.05
- Firidin, G., Kargin, F., Fırat, Ö., Cogun, H.Y., Fırat, Ö., Firidin, B., & Yüzereroğlu, T.A. (2015). Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury+selenium. Fresenius Environmental Bulletin, 24(5), 1958-1965.
- Fontainhas-Fernandes, A. A. (1998). Tilapia production, in: M.A. Reis- Henriques (Ed.), Aquaculture Handbook, pp. 135–150.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139.
- Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment, 326, 1-31. https://doi.org/10.1016/j.scitotenv.2004.01.019
- Ishikawa, N. M., Ranzani-Paiva, M. J. T., Lombardi, J. V., & Ferreira, C. M. (2007). Hematological parameters in Nile tilapia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Brazilian Archives of Biology and Technology, 50, 619-626.
- Larose, C., Canuel, R., Lucotte, M., & Di Giulio, R. T. (2008). Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comparative Biochemistry and Physiology, 147, 139–149. https://doi.org/10.1016/j.cbpc.2007.09.002
- Lowry, O. H., Rosebrough, N. J., Farra, N. J., & Randall, R. J. (1951). Protein measurements with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
- Luo, Y., Su, Y., Lin, R. Z., Shi, H. H., & Wang, X. R. (2006). 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere, 65, 1064–1073. https://doi.org/10.1016/j.chemosphere.2006.02.054
- Mishra, M., & Jain, S. K. (2011). Properties and applications of zeolites: A Review. Proceedings of the National Academy of Sciences, 81, 250-259.
- Monteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stres biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19, 105–123. https://doi.org/10.1007/s10646-009-0395-1
- Mozhdeganloo, Z., Moghadam, J. A., Koohi, M. K., & Heidarpour, M. (2015). Methylmercury-induced oxidative stress in rainbow trout (Oncorhynchus mykiss) liver: Ameliorating effect of vitamin C. Biological Trace Element Research, 165, 103–109. https://doi.org/10.1007/s12011-015-0241-7
- Papaioannou, D., Katsoulos, P. D., Panousis, N., & Karatzias, H. (2005). The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Microporous and Mesoporous Materials, 84, 161–170. https://doi.org/10.1016/j.micromeso.2005.05.030
- Pena-Llopis, S., Pena, J. B., Sancho, E., Fernandez-Vega, C., & Ferrando, M. D. (2001). Glutathione-dependent resistance of the European ell Anguilla anguilla to the herbicide molinate. Chemosphere, 45, 671-681. https://doi.org/10.1016/S0045-6535(00)00500-2
- Soares, S. S., Martins, H., Gutierrez-Merino, C., & Aureliano, M. (2008). Vanadium and cadmium in vivo effects in teleost cardiac muscle: Metal accumulation and oxidative stress markers. Comparative Biochemistry and Physiology, 147, 168–178. https://doi.org/10.1016/j.cbpc.2007.09.003
- Su, L., Wang, M., Yin, S., Wang, H., Chen, L., Sun, L., & Ruan, D. (2008). The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicology and Environmental Safety, 70, 483-489. https://doi.org/10.1016/j.ecoenv.2007.05.018
- Van Der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6
- Verma, R. S., Mehta, A., & Srivastava, N. (2007). In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology, 88, 191–196. https://doi.org/10.1016/j.pestbp.2006.11.002
- Yang, D., Ye, X., Chen, Y., & Belzile, N. (2010). Inverse relationships between selenium and mercury in tissues of young walleye (Stizosedion vitreum) from Canadian boreal lakes. Science of the Total Environment, 408, 1676–1683. https://doi.org/10.1016/j.scitotenv.2009.11.049
- Zirong X., & Shijun B. (2007). Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicology and Environmental Safety, 67, 89–94. https://doi.org/10.1016/j.ecoenv.2006.04.006
Investigation of Protective Effects of Selenium as Antioxidant and Zeolite as Mineral on Mercury Toxicity in Oreochromis niloticus Using Glutathione-Related Enzyme Systems
Yıl 2021,
, 306 - 316, 01.09.2021
Özge Fırat
,
Ferit Kargın
Öz
Mercury is one of the most toxic heavy metals on earth. Selenium is an element that is essential for living things and has antioxidant properties. Zeolite is a mineral commonly used in the removal of heavy metals in aquatic environments. In this study, it was aimed to determine the toxic effects of mercury on glutathione (GSH) and GSH-related enzyme systems and the possible protective effects of selenium and zeolite on this biochemical toxicity in tissues of Oreochromis niloticus. For this purpose fish were exposed to 0.01 and 0.1 mg/L mercury; 0.01 mg/L mercury+0.1 mg/L selenium, 0.1 mg/L mercury+1.0 mg/L selenium and 0.01 mg/L mercury+ 0.1 g/L zeolite, 0.1 mg/L mercury+1.0 g/L zeolite for 7 and 21 days and and GSH level and activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in gill, liver and muscle tissues were determined. Significant alterations in GSH level and GSH-related enzymes activities in the exposure of Hg alone, Hg+Se, and Hg+zeolite mixtures were observed due to tissues, medium concentrations, and exposure period. In the gill and liver tissues, GSH level and GR activity reduced while GPx and GST activities increased. In the muscle, it was not observed a significant change in other parameters except for the GST. The effect of Hg alone on analyzed all parameters were higher than in combination with Se and zeolite and the order of their effects found Hg>Hg+zeolite>Hg+Se. Our research results show that selenium and zeolite have a protective effect on the toxicity caused by mercury in O. niloticus and that selenium has a slightly more protective effect than zeolite.
Kaynakça
- ATSDR (Agenyc for Toxic Subtances and Disease Registry) (2020). Priority list of hazardous substances. Alıntılama adresi: http://www.atsdr.cdc.gov/cercla/05list.html (22.09.2020).
- Azevedo, M. M., Carvalho, A., Pascoal, C., Rodrigues, F. & Cassıo, F. (2007). Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of The Total Environment, 377, 233–243. https://doi.org/10.1016/j.scitotenv.2007.02.027
- Berntssen, M. H. G., Aatland, A., & Handy, R. D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behavior in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology, 65, 55–72. https://doi.org/10.1016/S0166-445X(03)00104-8
- Beutler, E. (1984). Red cell metabolism: a manual of biochemical methods,2nd edition. Grune and Starton, New York, pp 160.
- Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry, 250, 5475–5480.
- Cogun, H. Y., Firat, Ö., Firat, Ö., Yuzereroglu, T. A., Gok, G., Kargin, F., & Kotemen, Y. (2012). Protective effect of selenium against mercury induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. Journal of Biochemical and Molecular Toxicology, 26(3), 117-122. https://doi.org/10.1002/jbt.20417
- Elia, A. C., Dorr, A. J. M., Mantilacci, L., Taticchi, M. I., & Galarini, R. (2000). Effects of mercury on glutathione and glutathione-dependent enzymes in catfish (Ictalurus melas R.). In: Markert, B., Friese, K. (Eds.), Trace elements—their distribution and effects in the environment: trace metals in the environment, Vol. 4. Elsevier Science, Amsterdam, pp. 411–421.
- Elia, A. C., Galarin., R., Taticchi, M. I., Dorr, A. J. M., & Mantilacci, L. (2003). Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety, 55, 162-167. https://doi.org/10.1016/S0147-6513(02)00123-9
- Eroglu, A., Dogan, Z., Kanak, E. G., Atlı, G., & Canlı, M. (2015). Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environmental Science and Pollution Research, 22, 3229–3237. https://doi.org/10.1007/s11356-014-2972-y
- Fırat, Ö., Cogun, H. Y., Aslanyavrusu, S., & Kargın, F. (2009). Antioxidant responses and metal accumulation in tissues of Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. Journal of Applied Toxicology, 29, 295-301. https://doi.org/10.1002/jat.1406
- Fırat, Ö., Fırat, Ö., Çoğun, H. Y., Aytekin, T., Firidin, G., Temiz, Ö., Sağ, H., & Kargın, F. (2018). Atatürk Baraj Gölü’nün kirli ve temiz bölgelerinden yakalanan balıkların (Silurus triostegus Heckel, 1843, Chalcalburnus tarichi Pallas, 1811, Chondrostoma regium Heckel, 1843, Carassius carassius Linnaeus, 1758) dokularındaki ağır metal düzeylerinin karşılaştırılması. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(3), 173-183.
- Fırat, Ö., & Kaya, Ö. (2019). Evaluation of protective role of selenium on mercury toxicity by superoxide dismutase, catalase and malondialdehyde parameters in Oreochromis niloticus (Linnaeus, 1758). Ege Journal of Fisheries and Aquatic Sciences, 36(3), 245-253. https://doi.org/10.12714/egejfas.2019.36.3.05
- Firidin, G., Kargin, F., Fırat, Ö., Cogun, H.Y., Fırat, Ö., Firidin, B., & Yüzereroğlu, T.A. (2015). Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury+selenium. Fresenius Environmental Bulletin, 24(5), 1958-1965.
- Fontainhas-Fernandes, A. A. (1998). Tilapia production, in: M.A. Reis- Henriques (Ed.), Aquaculture Handbook, pp. 135–150.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139.
- Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment, 326, 1-31. https://doi.org/10.1016/j.scitotenv.2004.01.019
- Ishikawa, N. M., Ranzani-Paiva, M. J. T., Lombardi, J. V., & Ferreira, C. M. (2007). Hematological parameters in Nile tilapia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Brazilian Archives of Biology and Technology, 50, 619-626.
- Larose, C., Canuel, R., Lucotte, M., & Di Giulio, R. T. (2008). Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comparative Biochemistry and Physiology, 147, 139–149. https://doi.org/10.1016/j.cbpc.2007.09.002
- Lowry, O. H., Rosebrough, N. J., Farra, N. J., & Randall, R. J. (1951). Protein measurements with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
- Luo, Y., Su, Y., Lin, R. Z., Shi, H. H., & Wang, X. R. (2006). 2-Chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere, 65, 1064–1073. https://doi.org/10.1016/j.chemosphere.2006.02.054
- Mishra, M., & Jain, S. K. (2011). Properties and applications of zeolites: A Review. Proceedings of the National Academy of Sciences, 81, 250-259.
- Monteiro, D. A., Rantin, F. T., & Kalinin, A. L. (2010). Inorganic mercury exposure: toxicological effects, oxidative stres biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology, 19, 105–123. https://doi.org/10.1007/s10646-009-0395-1
- Mozhdeganloo, Z., Moghadam, J. A., Koohi, M. K., & Heidarpour, M. (2015). Methylmercury-induced oxidative stress in rainbow trout (Oncorhynchus mykiss) liver: Ameliorating effect of vitamin C. Biological Trace Element Research, 165, 103–109. https://doi.org/10.1007/s12011-015-0241-7
- Papaioannou, D., Katsoulos, P. D., Panousis, N., & Karatzias, H. (2005). The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment of certain farm animal diseases: A review. Microporous and Mesoporous Materials, 84, 161–170. https://doi.org/10.1016/j.micromeso.2005.05.030
- Pena-Llopis, S., Pena, J. B., Sancho, E., Fernandez-Vega, C., & Ferrando, M. D. (2001). Glutathione-dependent resistance of the European ell Anguilla anguilla to the herbicide molinate. Chemosphere, 45, 671-681. https://doi.org/10.1016/S0045-6535(00)00500-2
- Soares, S. S., Martins, H., Gutierrez-Merino, C., & Aureliano, M. (2008). Vanadium and cadmium in vivo effects in teleost cardiac muscle: Metal accumulation and oxidative stress markers. Comparative Biochemistry and Physiology, 147, 168–178. https://doi.org/10.1016/j.cbpc.2007.09.003
- Su, L., Wang, M., Yin, S., Wang, H., Chen, L., Sun, L., & Ruan, D. (2008). The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicology and Environmental Safety, 70, 483-489. https://doi.org/10.1016/j.ecoenv.2007.05.018
- Van Der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6
- Verma, R. S., Mehta, A., & Srivastava, N. (2007). In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology, 88, 191–196. https://doi.org/10.1016/j.pestbp.2006.11.002
- Yang, D., Ye, X., Chen, Y., & Belzile, N. (2010). Inverse relationships between selenium and mercury in tissues of young walleye (Stizosedion vitreum) from Canadian boreal lakes. Science of the Total Environment, 408, 1676–1683. https://doi.org/10.1016/j.scitotenv.2009.11.049
- Zirong X., & Shijun B. (2007). Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicology and Environmental Safety, 67, 89–94. https://doi.org/10.1016/j.ecoenv.2006.04.006