Ultrasound, whose use has increased in recent years, is one of the most important food processing methods that provides to maintain food quality and increase food safety. The effect of ultrasound treatment on some quality characteristics of vacuum-packed rainbow trout (Oncorhynchus mykiss W.) fillets during cold storage was determined. Experimental groups were formed using different power and duration variables (30%W/5 min.; 30%W/15 min.; 80%W/5 min, and 80%W/15 min.). The samples were stored at 4±1ºC until physico-chemical (moisture, pH, color, and texture), sensory, and microbiological analyses were performed. The effect rates of ultrasound application on the evaluated quality characteristics differed from each other. While there was a significant difference between the groups in the decrease in moisture, increase in pH value and changes in sensory parameters, the change depending on storage was not observed within the group. The decrease in colour and texture values was prevented to a certain extent. It was observed that the effect of ultrasound applications on microbiological inactivation varied according to the type of bacteria and application conditions. The lowest increase in the number of the total mesophilic aerobic bacteria, the total psychrophilic aerobic bacteria, and the lactic acid bacteria was detected in the 80W/5 min. group, while Enterobactericeae and Pseudomonas spp. were detected in the 80 W/15 min. group. The highest inactivation was observed in Pseudomonas spp. bacteria. Our results showed that ultrasound can be an important alternative food processing method to maintain the quality characteristics and food safety of fish meat.
Alves, L. L., Silva, M. S., & Flores, D.R.M. (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. https://doi.org/10.1016/j.foodres.2017.12.074
Alves, L. L., Donadel, J. Z., & Athayde, D. R. (2020). Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrasonics Sonochemistry, 67,105161. https://doi.org/10.1016/j.ultsonch.2020.105161
American Public Health Association (1974). Standarts methods for the examination of dairy products. 13 th. Ed. American Public Health Association, New York.
Anonymous (2008). Hunter L, A, b color scale. Applications note, 8(9), 1- 4.
AOAC (2005). Association of official analytical chemists. AOAC official method 950.46 moisture in meat, First action 1950.
Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., & Vilkhu, K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9, 155-160. https://doi.org/10.1016/j.ifset.2007.05.005
Ayvaz, Z., Çakır, F., & Gündüz. H. (2019). Determination of the effect of different frequency ultrasound waves on the color and shelf life of vacuum packaged marinated anchovy (Engraulis encrasicolus). Turkish Journal of Agriculture - Food Science and Technology, 7(3), 405-416. https://doi.org/10.24925/turjaf.v7i3.405-416.2341
Barretto, T.L., Pollonio, M.A.R., & Telis-Romero, J. (2018). Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Science, 145, 55-62. https://doi.org/10.1016/j.meatsci.2018.05.023
Başlar, M., Kılıçlı, M., & Yalınkılıç, B. (2015). Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrasonics Sonochemistry, 27, 495-502. https://doi.org/10.1016/j.ultsonch.2015.06.018
Bermudez-Aguirre, D., Corradini, M.G., Mawson, R., & Barbosa-Canovas, G.V. (2010). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative Food Science & Emerging Technologies, 10, 172-178. https://doi.org/10.1016/j.ifset.2008.11.005
Caraveo, O., Alarcon-Rojo, A.D., & Renteria, A. (2015). Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 ∘C. Journal of The Science of Food Agriculture, 95, 2487-2493. https://doi.org/10.1002/jsfa.6979
Chemat, F., & Ashokkumar, M. (2017). Preface: ultrasound in the processing of liquid foods, beverages and alcoholic drinks. Ultrasonics Sonochemistry, 38, 753. https://doi.org/10.1016/j.ultsonch.2017.01.041
Chouliara, E., Georgogianni, K.G., & Kanellopoulou, N. (2010). Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk. International Dairy Journal, 20, 307-313. https://doi.org/10.1016/j.idairyj.2009.12.006
Elez-Martinez, P., Escola-Hernandez, J., Soliva Fortuny, RC., & Martin-Belloso, O. (2005). Inactivation of Lactobacillus brevis in orange juice by high intensity pulsed electric fields. Food Microbiology, 22, 311-319. https://doi.org/10.1016/j.fm.2004.09.005
Esteves, E., Diler, A., & Genç, İ.Y. (2016). General introduction to seafood quality and safety maintenance and applications. In Handbook of Seafood: Quality and safety maintenance and applications, Genç, İ.Y., Esteves, E., & Diler, A., Eds., Nova Science Publishers Inc.: New York, NY, USA, 2016, 1-11.
Esteves, E. (2011). Statistical analysis in food science. In R. M. Cruz (Ed.), Practical Food and Research, 409-451. New York: Science Publishers.
González-González, L., Luna-Rodríguez, L., Carrillo-López, L. M., Alarcón-Rojo, A. D., García-Galicia, I., & Reyes-Villagrana, R. (2017).Ultrasound as an alternative to conventional marination: acceptability and mass transfer. Journal of Food Quality, 1-8. https://doi.org/10.1155/2017/8675720
Got, F., Culioli, J., Berge, P., Vignon, X., Astruc, T., Quideau, J.M., & Lethiecq, M. (1999). Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef. Meat Science, 51, 35-42. https://doi.org/10.1016/S0309-1740(98)00094-1
Gündüz, H., Aras Hisar, Ş., & Gündüz, F. (2019). The effect of different ultrasound powers treatment on some quality parameters of sardines (Sardina pilchardus) packed in vacuum packaging. The Journal of Food, 44, 1071-1080. https://doi.org/10.15237/gida.GD19114
Herceg, Z., Jambrak, A.R., Lelas, V., & Thagard, S.M. (2012). The effect of high intensity ultrasound treatment on the amount of Staphylococcus aureus and Escherichia coli in milk. Food Technology and Biotechnology, 50 (1), 46-52.
Huss, H. H. (1995). Quality and quality changes in fresh fish. FAO Fisheries Technical Paper 348, Rome, 202.
Inguglia, E.S., Zhang, Z., & Burgess, C. (2018). Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing. Ultrasonics, 83, 164-170. https://doi.org/10.1016/j.ultras.2017.03.017
ISO 4833 (2003). Microbiology of food and animal feeding stuffs horizontal method for the enumeration of microorganisms colony-count technique at 30 oC. International Organization for Standardization, Genève, Switzerland, 9.
ISO 17410 (2001). Microbiology of food and animal feeding stuffs horizontal method for the enumeration of psychrotrophic microorganisms. International Organization for Standardization, Genève, Switzerland, 7.
ISO 5552 (1997). Meat and meat products-detection and enumeration of Enterobacteriaceae without resuscitation-mpn technique and colony-count technique.
ISO 13720 (2000). Microbiology of food and animal feeding stuffs - horizontal method for the enumeration of Pseudomonas spp. International Standardisation Organisation.
Jayasooriya, S.D., Torley, P.J., D’Arcy, B.R., & Bhandari, B.R. (2007). Effect of high power ultrasound and ageing on the physical properties of bovine semitendinosus and longissimus muscles. Meat Science, 75 (4), 628-639. https://doi.org/10.1016/j.meatsci.2019.02.010
Karabacak, A.Ö. (2015). The effects of non-thermal processing methods on food components. Master's thesis, Uludag University Institute of Science and Technology.
Kordowska-Wıater, M., & Stasıak, D.M. (2011). Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bulletin of the Veterinary Institute in Pulawy, 55, 207-210.
Leães, Y.S.V., Pinton, M.B., & de Aguiar Rosa, C.T. (2020). Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by nacl reduction in meat emulsions. Ultrasonics Sonochemistry, 61, 104830. https://doi.org/10.1016/j.ultsonch.2019.104830
Li, K., Kang, Z.L., Zou, Y.F., Xu, X.L., & Zhou, G.H. (2015). Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. Journal of Food Science Technology, 52, 2622-2633. https://doi.org/10.1007/s13197-014-1356-0
Li, X., Li, Z., & Lin, H. (2011). Effect of power ultrasound on the immunoactivity and texture changes of shrimp (Penaeus vannamei). Czech Journal of Food Science, 29, 508-514. https://doi.org/10.17221/242/2009-CJFS
Liu, D., Liu, D., Q, H., M, Z., G. X., C, L., Y, Q., & W, W. (2023). Effects of ultrasound treatment on muscle structure, volatile compounds, and small molecule metabolites of salted Culter alburnus fish. Ultrasonics Sonochemistry 97(2023)106440. https://doi.org/10.1016/j.ultsonch.2023.106440
Ojha, K.S., Kerry, J.P., & Tiwari, B.K. (2017). Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky. LWT Food Science and Technology, 81, 42-49. https://doi.org/10.1016/j.lwt.2017.03.011
Özden, Ö., & Gökoğlu, N. (1996) . Determination of shelf life of cold-stored sardine fish (Sardina pilchardus W.). Food Technology, 1(6), 37- 42.
Pan, Q., Yang, G.H.,Wang, Y., Wang, X., Zhou, Y., Li, Y., & Chen, C. (2020). Application of ultrasound-assisted and tumbling dry-curing techniques for reduced-sodium bacon. Journal Food Processing and Preservation, 44, 14607. https://doi.org/10.1111/jfpp.14607
Pedrós-Garrido, S., Condón-Abanto, S., & Beltrán, J.A. (2017). Assessment of high intensity ultrasound for surface decontamination of salmon (S. salar), mackerel (S. scombrus), cod (G. morhua) and hake (M. merluccius) fillets, and its impact on fish quality. Innovative Food Science & Emerging Technologies, 41, 64-70. https://doi.org/10.1016/j.ifset.2017.02.006
Peña-Gonzalez, E., Alarcon-Rojo, A.D., & Garcia-Galicia, I. (2019). Ultrasound as a potential process to tenderize beef: sensory and technological parameters. Ultrasonics Sonochemistry, 53, 134-141. https://doi.org/10.1016/j.ultsonch.2018.12.045
Peña-González, E.M.M., Alarcón-Rojo, A.D.D., Rentería, A., García, I., Santellano, E., Quintero, A. & Luna, L. (2017). Quality and sensory profile of ultrasound treated beef. Italian Journal of Food Science, 29, 463-475. https://doi.org/10.14674/1120-1770/ijfs.v604
Piñon, M.I., Alarcon-Rojo. A.D., Renteria, A.L. (2020). Microbiological properties of poultry breast meat treated with high-intensity ultrasound. Ultrasonics, 102, 105680. https://doi.org/10.1016/j.ultras.2018.01.001
Pinton, M. B., Correa, L. P., Facchi, M. M. X., Heck, R. T., Leães, Y. S. V., Cichoski, A. J., & Campagnol, P.C. B.(2019). Ultrasound: A new approach to reduce phosphate content of meat emulsions. Meat Science, 152, 88-95. https://doi.org/10.1016/j.meatsci.2019.02.010
Piyasena, P., Mohareb, E. & McKellar, R.C. (2003). Inactivation of microbes using ultrasound. International Journal of Food Microbiology, 87, 207-216. https://doi.org/10.1016/S0168-1605(03)00075-8
Pohlman, F.W., Dikeman, M.E. & Kropf, D.H. (1997). Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle. Meat Science, 46, 89-100. https://doi.org/10.1016/S0309-1740(96)00105-2
Raso, J., & Barbosa-Canovas, G.V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food and Nutrition, 43(3), 265-285. https://doi.org/10.1080/10408690390826527
Regenstein, J.M., & Regenstein, C.E. (1991) Assessing fish quality. Introduction to Fish Technology. An Osprey Book, 90-103.
Sanches, M.A.R., Silva, P.M.O.C., & Barretto, T.L. (2021). Technological and diffusion properties in the wet salting of beef assisted by ultrasound. LWT, 149, 112036. https://doi.org/10.1016/j.lwt.2021.112036
Sikes, A.L., Mawson, R., Stark, J. & Warner, R. (2014). Quality properties of pre- and postrigor beef muscle after interventions with high frequency ultrasound. Ultrasonic Sonochemistry, 21(6), 2138-2143. https://doi.org/10.1016/j.ultsonch.2014.03.008
Smith, N.B., Cannon, J.E., Novakofski, J.E., McKeith, F.K. & O’Brien Jr, W.D (1991). Tenderization of semitendinosus muscle using high intensity ultrasound. IEEE Ultrasonics Symposium, 1371-1374. https://doi.org/10.1109/ULTSYM.1991.234038
Szczesniak, A.A. (2002). Texture is a sensory property. Food Ouality and Preference, 13, 215-225. https://doi.org/10.1016/S0950-3293(01)00039-8
Turhan, S., Sarıcaoğlu, F.T., & Öz, F. (2013). The effect of ultrasonic marinating on the transport of acetic acid and salt in anchovy marinades. Food Science Technology Research, 19, 849-853. https://doi.org/10.3136/fstr.19.849
Türksönmez, Ç., & Diler, A. (2021). Ultrasound applications in food industry. Aydin Gastronomy, 5(2), 177-191. doi:10.17932/IAU.GASTRONOMY.2017.016/gastronomy_v05i2008
Varlık, C., Özden, Ö., & Erkan, N. (2007). Quality Control in Aquaculture. Istanbul University, Faculty of Fisheries, 202.
Xiong, G., Fu, X., & Pan, D. (2020). Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrasonics Sonochemistry, 60, 104808. https://doi.org/10.1016/j.ultsonch.2019.104808
Wang, T., Ning, Z., & Wang, X. (2018). Effects of ultrasound on the physicochemical properties and microstructure of salted-dried grass carp (Ctenopharyngodon idella). Journal of Food Process Engineering, 41(1). https://doi.org/10.1111/jfpe.12643
Yeung, C.K., & Huang, S.C. (2017). Effects of ultrasound pretreatment and ageing processing on quality and tenderness of pork loin. Journal of Food and Nutrition Research, 5, 809-816. doi: 10.12691/jfnr-5-11-3
Zhang, F., Zhao, H., & Cao, C. (2021). Application of temperature-controlled ultrasound treatment and its potential to reduce phosphate content in frankfurter-type sausages by 50%. Ultrasonics Sonochemistry, 71, 105379. https://doi.org/10.1016/j.ultsonch.2020.105379
Zou, Y., Zhang, W., Kang, D. & Zhou, G. (2018). Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science and Technology, 53, 828-836. https://doi.org/10.1111/ijfs.13659
Ultrason Uygulamalarının Gökkuşağı Alabalığının (Oncorhynchus Mykiss W.) Fiziko-Kimyasal, Duyusal ve Mikrobiyolojik Kalitesi Üzerine Etkisi
Son yıllarda kullanımı artan ultrason, gıda kalitesinin korunmasını ve gıda güvenliğinin artırılmasını sağlayan en önemli gıda işleme yöntemlerinden biridir. Vakum paketlenmiş gökkuşağı alabalığı (Oncorhynchus mykiss W.) filetolarının soğukta muhafazası sırasında ultrason uygulamasının bazı kalite özellikleri üzerine etkisi belirlenmiştir. Farklı güç ve süre değişkenleri (%30W/5 dk.; %30W/15 dk.; %80W/5 dk. ve %80W/15 dk.) kullanılarak deney grupları oluşturulmuş ve örnekler fiziko-kimyasal (nem, pH, renk ve tekstür), duyusal ve mikrobiyolojik analizler yapılana kadar 4±1ºC'de depolanmıştır. Ultrason uygulamasının değerlendirilen kalite özellikleri üzerindeki etki oranları birbirinden farklılık göstermiştir. Nem düzeyindeki azalma, pH değerindeki artış ve duyusal parametrelerde meydana gelen değişimler gruplar arasında önemli bulunurken (p<0.05), depolamaya bağlı değişim grup içinde gözlenmemiştir. Renk ve tekstür değerlerindeki azalma ise belli oranda engellenmiştir. Ultrason uygulamalarının mikrobiyolojik inaktivasyon üzerindeki etkisinin bakteri türüne ve uygulama koşullarına göre değiştiği gözlenmiştir. Toplam mezofilik aerobik bakteri, toplam psikrofilik aerobik bakteri ve laktik asit bakteri sayısında en düşük artış 80W/5 dk. grubunda tespit edilirken, Enterobacteriaceae ve Pseudomonas spp. sayısındaki en düşük artış 80W/15 dk. grubunda tespit edilmiştir. En yüksek inaktivasyon Pseudomonas spp. bakterisinde gözlenmiştir. Sonuçlarımız, ultrasonun balık etinin kalite özelliklerini ve gıda güvenliğini korumak için alternatif bir gıda işleme yöntemi olarak kullanılabileceğini göstermiştir.
Kocaeli Üniversitesi ve Isparta Uygulamalı Bilimler Üniversitesi
Teşekkür
Kocaeli Üniversitesi ve Isparta Uygulamalı Bilimler Üniversitesi
Kaynakça
Alves, L. L., Silva, M. S., & Flores, D.R.M. (2018). Effect of ultrasound on the physicochemical and microbiological characteristics of Italian salami. Food Research International, 106, 363-373. https://doi.org/10.1016/j.foodres.2017.12.074
Alves, L. L., Donadel, J. Z., & Athayde, D. R. (2020). Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrasonics Sonochemistry, 67,105161. https://doi.org/10.1016/j.ultsonch.2020.105161
American Public Health Association (1974). Standarts methods for the examination of dairy products. 13 th. Ed. American Public Health Association, New York.
Anonymous (2008). Hunter L, A, b color scale. Applications note, 8(9), 1- 4.
AOAC (2005). Association of official analytical chemists. AOAC official method 950.46 moisture in meat, First action 1950.
Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., & Vilkhu, K. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9, 155-160. https://doi.org/10.1016/j.ifset.2007.05.005
Ayvaz, Z., Çakır, F., & Gündüz. H. (2019). Determination of the effect of different frequency ultrasound waves on the color and shelf life of vacuum packaged marinated anchovy (Engraulis encrasicolus). Turkish Journal of Agriculture - Food Science and Technology, 7(3), 405-416. https://doi.org/10.24925/turjaf.v7i3.405-416.2341
Barretto, T.L., Pollonio, M.A.R., & Telis-Romero, J. (2018). Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Science, 145, 55-62. https://doi.org/10.1016/j.meatsci.2018.05.023
Başlar, M., Kılıçlı, M., & Yalınkılıç, B. (2015). Dehydration kinetics of salmon and trout fillets using ultrasonic vacuum drying as a novel technique. Ultrasonics Sonochemistry, 27, 495-502. https://doi.org/10.1016/j.ultsonch.2015.06.018
Bermudez-Aguirre, D., Corradini, M.G., Mawson, R., & Barbosa-Canovas, G.V. (2010). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innovative Food Science & Emerging Technologies, 10, 172-178. https://doi.org/10.1016/j.ifset.2008.11.005
Caraveo, O., Alarcon-Rojo, A.D., & Renteria, A. (2015). Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 ∘C. Journal of The Science of Food Agriculture, 95, 2487-2493. https://doi.org/10.1002/jsfa.6979
Chemat, F., & Ashokkumar, M. (2017). Preface: ultrasound in the processing of liquid foods, beverages and alcoholic drinks. Ultrasonics Sonochemistry, 38, 753. https://doi.org/10.1016/j.ultsonch.2017.01.041
Chouliara, E., Georgogianni, K.G., & Kanellopoulou, N. (2010). Effect of ultrasonication on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk. International Dairy Journal, 20, 307-313. https://doi.org/10.1016/j.idairyj.2009.12.006
Elez-Martinez, P., Escola-Hernandez, J., Soliva Fortuny, RC., & Martin-Belloso, O. (2005). Inactivation of Lactobacillus brevis in orange juice by high intensity pulsed electric fields. Food Microbiology, 22, 311-319. https://doi.org/10.1016/j.fm.2004.09.005
Esteves, E., Diler, A., & Genç, İ.Y. (2016). General introduction to seafood quality and safety maintenance and applications. In Handbook of Seafood: Quality and safety maintenance and applications, Genç, İ.Y., Esteves, E., & Diler, A., Eds., Nova Science Publishers Inc.: New York, NY, USA, 2016, 1-11.
Esteves, E. (2011). Statistical analysis in food science. In R. M. Cruz (Ed.), Practical Food and Research, 409-451. New York: Science Publishers.
González-González, L., Luna-Rodríguez, L., Carrillo-López, L. M., Alarcón-Rojo, A. D., García-Galicia, I., & Reyes-Villagrana, R. (2017).Ultrasound as an alternative to conventional marination: acceptability and mass transfer. Journal of Food Quality, 1-8. https://doi.org/10.1155/2017/8675720
Got, F., Culioli, J., Berge, P., Vignon, X., Astruc, T., Quideau, J.M., & Lethiecq, M. (1999). Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef. Meat Science, 51, 35-42. https://doi.org/10.1016/S0309-1740(98)00094-1
Gündüz, H., Aras Hisar, Ş., & Gündüz, F. (2019). The effect of different ultrasound powers treatment on some quality parameters of sardines (Sardina pilchardus) packed in vacuum packaging. The Journal of Food, 44, 1071-1080. https://doi.org/10.15237/gida.GD19114
Herceg, Z., Jambrak, A.R., Lelas, V., & Thagard, S.M. (2012). The effect of high intensity ultrasound treatment on the amount of Staphylococcus aureus and Escherichia coli in milk. Food Technology and Biotechnology, 50 (1), 46-52.
Huss, H. H. (1995). Quality and quality changes in fresh fish. FAO Fisheries Technical Paper 348, Rome, 202.
Inguglia, E.S., Zhang, Z., & Burgess, C. (2018). Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing. Ultrasonics, 83, 164-170. https://doi.org/10.1016/j.ultras.2017.03.017
ISO 4833 (2003). Microbiology of food and animal feeding stuffs horizontal method for the enumeration of microorganisms colony-count technique at 30 oC. International Organization for Standardization, Genève, Switzerland, 9.
ISO 17410 (2001). Microbiology of food and animal feeding stuffs horizontal method for the enumeration of psychrotrophic microorganisms. International Organization for Standardization, Genève, Switzerland, 7.
ISO 5552 (1997). Meat and meat products-detection and enumeration of Enterobacteriaceae without resuscitation-mpn technique and colony-count technique.
ISO 13720 (2000). Microbiology of food and animal feeding stuffs - horizontal method for the enumeration of Pseudomonas spp. International Standardisation Organisation.
Jayasooriya, S.D., Torley, P.J., D’Arcy, B.R., & Bhandari, B.R. (2007). Effect of high power ultrasound and ageing on the physical properties of bovine semitendinosus and longissimus muscles. Meat Science, 75 (4), 628-639. https://doi.org/10.1016/j.meatsci.2019.02.010
Karabacak, A.Ö. (2015). The effects of non-thermal processing methods on food components. Master's thesis, Uludag University Institute of Science and Technology.
Kordowska-Wıater, M., & Stasıak, D.M. (2011). Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bulletin of the Veterinary Institute in Pulawy, 55, 207-210.
Leães, Y.S.V., Pinton, M.B., & de Aguiar Rosa, C.T. (2020). Ultrasound and basic electrolyzed water: A green approach to reduce the technological defects caused by nacl reduction in meat emulsions. Ultrasonics Sonochemistry, 61, 104830. https://doi.org/10.1016/j.ultsonch.2019.104830
Li, K., Kang, Z.L., Zou, Y.F., Xu, X.L., & Zhou, G.H. (2015). Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. Journal of Food Science Technology, 52, 2622-2633. https://doi.org/10.1007/s13197-014-1356-0
Li, X., Li, Z., & Lin, H. (2011). Effect of power ultrasound on the immunoactivity and texture changes of shrimp (Penaeus vannamei). Czech Journal of Food Science, 29, 508-514. https://doi.org/10.17221/242/2009-CJFS
Liu, D., Liu, D., Q, H., M, Z., G. X., C, L., Y, Q., & W, W. (2023). Effects of ultrasound treatment on muscle structure, volatile compounds, and small molecule metabolites of salted Culter alburnus fish. Ultrasonics Sonochemistry 97(2023)106440. https://doi.org/10.1016/j.ultsonch.2023.106440
Ojha, K.S., Kerry, J.P., & Tiwari, B.K. (2017). Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky. LWT Food Science and Technology, 81, 42-49. https://doi.org/10.1016/j.lwt.2017.03.011
Özden, Ö., & Gökoğlu, N. (1996) . Determination of shelf life of cold-stored sardine fish (Sardina pilchardus W.). Food Technology, 1(6), 37- 42.
Pan, Q., Yang, G.H.,Wang, Y., Wang, X., Zhou, Y., Li, Y., & Chen, C. (2020). Application of ultrasound-assisted and tumbling dry-curing techniques for reduced-sodium bacon. Journal Food Processing and Preservation, 44, 14607. https://doi.org/10.1111/jfpp.14607
Pedrós-Garrido, S., Condón-Abanto, S., & Beltrán, J.A. (2017). Assessment of high intensity ultrasound for surface decontamination of salmon (S. salar), mackerel (S. scombrus), cod (G. morhua) and hake (M. merluccius) fillets, and its impact on fish quality. Innovative Food Science & Emerging Technologies, 41, 64-70. https://doi.org/10.1016/j.ifset.2017.02.006
Peña-Gonzalez, E., Alarcon-Rojo, A.D., & Garcia-Galicia, I. (2019). Ultrasound as a potential process to tenderize beef: sensory and technological parameters. Ultrasonics Sonochemistry, 53, 134-141. https://doi.org/10.1016/j.ultsonch.2018.12.045
Peña-González, E.M.M., Alarcón-Rojo, A.D.D., Rentería, A., García, I., Santellano, E., Quintero, A. & Luna, L. (2017). Quality and sensory profile of ultrasound treated beef. Italian Journal of Food Science, 29, 463-475. https://doi.org/10.14674/1120-1770/ijfs.v604
Piñon, M.I., Alarcon-Rojo. A.D., Renteria, A.L. (2020). Microbiological properties of poultry breast meat treated with high-intensity ultrasound. Ultrasonics, 102, 105680. https://doi.org/10.1016/j.ultras.2018.01.001
Pinton, M. B., Correa, L. P., Facchi, M. M. X., Heck, R. T., Leães, Y. S. V., Cichoski, A. J., & Campagnol, P.C. B.(2019). Ultrasound: A new approach to reduce phosphate content of meat emulsions. Meat Science, 152, 88-95. https://doi.org/10.1016/j.meatsci.2019.02.010
Piyasena, P., Mohareb, E. & McKellar, R.C. (2003). Inactivation of microbes using ultrasound. International Journal of Food Microbiology, 87, 207-216. https://doi.org/10.1016/S0168-1605(03)00075-8
Pohlman, F.W., Dikeman, M.E. & Kropf, D.H. (1997). Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle. Meat Science, 46, 89-100. https://doi.org/10.1016/S0309-1740(96)00105-2
Raso, J., & Barbosa-Canovas, G.V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food and Nutrition, 43(3), 265-285. https://doi.org/10.1080/10408690390826527
Regenstein, J.M., & Regenstein, C.E. (1991) Assessing fish quality. Introduction to Fish Technology. An Osprey Book, 90-103.
Sanches, M.A.R., Silva, P.M.O.C., & Barretto, T.L. (2021). Technological and diffusion properties in the wet salting of beef assisted by ultrasound. LWT, 149, 112036. https://doi.org/10.1016/j.lwt.2021.112036
Sikes, A.L., Mawson, R., Stark, J. & Warner, R. (2014). Quality properties of pre- and postrigor beef muscle after interventions with high frequency ultrasound. Ultrasonic Sonochemistry, 21(6), 2138-2143. https://doi.org/10.1016/j.ultsonch.2014.03.008
Smith, N.B., Cannon, J.E., Novakofski, J.E., McKeith, F.K. & O’Brien Jr, W.D (1991). Tenderization of semitendinosus muscle using high intensity ultrasound. IEEE Ultrasonics Symposium, 1371-1374. https://doi.org/10.1109/ULTSYM.1991.234038
Szczesniak, A.A. (2002). Texture is a sensory property. Food Ouality and Preference, 13, 215-225. https://doi.org/10.1016/S0950-3293(01)00039-8
Turhan, S., Sarıcaoğlu, F.T., & Öz, F. (2013). The effect of ultrasonic marinating on the transport of acetic acid and salt in anchovy marinades. Food Science Technology Research, 19, 849-853. https://doi.org/10.3136/fstr.19.849
Türksönmez, Ç., & Diler, A. (2021). Ultrasound applications in food industry. Aydin Gastronomy, 5(2), 177-191. doi:10.17932/IAU.GASTRONOMY.2017.016/gastronomy_v05i2008
Varlık, C., Özden, Ö., & Erkan, N. (2007). Quality Control in Aquaculture. Istanbul University, Faculty of Fisheries, 202.
Xiong, G., Fu, X., & Pan, D. (2020). Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat. Ultrasonics Sonochemistry, 60, 104808. https://doi.org/10.1016/j.ultsonch.2019.104808
Wang, T., Ning, Z., & Wang, X. (2018). Effects of ultrasound on the physicochemical properties and microstructure of salted-dried grass carp (Ctenopharyngodon idella). Journal of Food Process Engineering, 41(1). https://doi.org/10.1111/jfpe.12643
Yeung, C.K., & Huang, S.C. (2017). Effects of ultrasound pretreatment and ageing processing on quality and tenderness of pork loin. Journal of Food and Nutrition Research, 5, 809-816. doi: 10.12691/jfnr-5-11-3
Zhang, F., Zhao, H., & Cao, C. (2021). Application of temperature-controlled ultrasound treatment and its potential to reduce phosphate content in frankfurter-type sausages by 50%. Ultrasonics Sonochemistry, 71, 105379. https://doi.org/10.1016/j.ultsonch.2020.105379
Zou, Y., Zhang, W., Kang, D. & Zhou, G. (2018). Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. International Journal of Food Science and Technology, 53, 828-836. https://doi.org/10.1111/ijfs.13659
Toplam 56 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Balıkçılık Yönetimi, Sucul Kültür ve Balıkçılık (Diğer)