Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Oxidative Stress Responses in Dreissena polymorpha Exposed to Rare Earth Elements (Terbium, Lanthanum, Gadolinium and Praseodymium) with Temperature

Yıl 2025, Cilt: 21 Sayı: 2, 145 - 157
https://doi.org/10.22392/actaquatr.1585378

Öz

The continuous development of industry pushes people to search for new resources, and for this reason, the usage areas of Rare Earth Elements (REEs) are increasing day by day. Increasing concentrations of REEs, as a result of increased use, create pollution in the environment and harm living organisms. This pollution interacts with increasing temperature and causes more negative synergistic effects of the pollutant in the environment and in the living body. In this study, sublethal concentration values were determined by literature review and the concentration value was determined as 125 mg/L. In the present study tt was aimed to investigate some oxidative stress and antioxidant responses of Terbium, Lanthanum, Gadolinium and Praseodymium REEs in Dreissena polymorpha at 125 mg/L concentration at 3 different temperatures (16, 18, 20 0C) with biomarkers. For this purpose, 24 and 96 hour experimental trial design was created and 7 D. polymorpha were used in each trial group, and the application experiments were carried out with 3 replications. The samples at the end of the experimental phase were stored at -80 degrees Celsius until they were analyzed. In this study, Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzyme activities and glutathione (GSH) and Thiobarbituric acid (TBARS) level biomarker responses were determined by ELISA test microplate reader. CAYMAN brand SOD (Catalog No 706002), CAT Catalog No 707002) and GPx (Catalog No 703102), GSH (Catalog No 703002) and TBARS (Catalog No 10009055) were used in the study. SPSS 24.0 package program one-way ANOVA (Duncan 0.05) was used for the evaluation of biochemical analyzes. According to the study data, statistically significant decreases were observed in SOD and CAT activities in the oxidative stress responses of REEs on D. Polymorpha with increasing temperature, while there was no significant change in GPx activities. It was determined that there were increases in TBARS levels and decreases in GSH levels. It is thought that the temperature factor, application concentration and application time are effective in the formation of these changes. It can be said that temperature change and pollutants cause oxidative stress in organisms and cause cell damage.

Kaynakça

  • Abdel-Tawwab, M., & Wafeek, M. (2017). Fluctuations in water temperature affected waterborne cadmium toxicity: hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 477, 106-111. https://doi.org/10.1016/j.aquaculture.2017.05.007
  • Almroth, B.C., Sturve, J., Berglund, A. & Förlin, L. (2005). Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquatic Toxicology, 73, 171–180. https://doi.org/10.1016/j.aquatox.2005.03.007
  • Andrade, M., Soares, A. M., Solé, M., Pereira, E., & Freitas, R. (2023). Threats of Pollutants Derived from Electronic Waste to Marine Bivalves: The Case of the Rare‐Earth Element Yttrium. Environmental Toxicology and Chemistry, 42(1), 166-177.
  • Arthur, J. R. (2001). The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS, 57, 1825-1835.
  • Aydın, A. N., & Serdar, O. (2023). Probiyotiğin Dreissena polymorpha'da Bakır Nanopartikül Birikimi Üzerine Etkisi. 10, Issue: 139-46, 2149-4428, Journal of Limnology and Freshwater Fisheries Research, Journal of Limnology and Freshwater Fisheries Research
  • Aydın, A. N., & Serdar, O. (2024). Terbiyumun Pontastacus leptodactylus’ ta ki Oksidatif Stres ve Antioksidan Yanıtlarının Belirlenmesi. Acta Aquatica Turcica, 20 (1), 23-32. https://doi.org/10.22392/actaquatr.1294250
  • Banni, M., Hajer, A., Sforzini, S., Oliveri, C., Boussetta, H., & Viarengo, A. (2014). Transcriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 160, 23-29. https://doi.org/10.1016/j.cbpc.2013.11.005
  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1-22. https://doi.org/10.1016/j.jclepro.2012.12.037
  • Binelli, A., Della Torre, C., Magni, S., & Parolini, M. (2015). Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Environmental pollution, 196, 386-403.
  • Blaise, C., Gagné, F., Harwood, M., Quinn, B., & Hanana, H. (2018). Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements. Ecotoxicology and Environmental Safety, 163, 486-491. https://doi.org/10.1016/j.ecoenv.2018.07.033
  • Brito, P., Prego, R., Mil-Homens, M., Caçador, I., & Caetano, M. (2018). Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Science of the Total Environment, 621, 317-325. https://doi.org/10.1016/j.scitotenv.2017.11.245
  • Cairns, J., Heath, A. G., & Parker, B. C. (1975). The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia, 47, 135-171.
  • Celep, O., Yazıcı, E. Y., & Deveci, H. (2021). Nadir Toprak Elementlerinin Birincil ve İkincil Kaynaklardan Üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 264-280. https://doi.org/10.1016/j.hydromet.2021.105610
  • Choi, J. & Oris, J.T. (2000). Evidence of oxidative stress in bluegill sunfish (Lepomis macrochirus) liver microsomes simultaneously exposed to solar ultraviolet radiation and anthracene. Environmental Toxicology and Chemistry, 19, 1795–1799. https://doi.org/10.1002/etc.5620190713
  • David, M., Munaswamy, V., Halappa, R., & Marigoudar, S. R. (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pesticide biochemistry and physiology, 92(1), 15-18. https://doi.org/10.1016/j.pestbp.2008.03.013
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109: 212- 228. https://doi.org/10.1016/j.envexpbot.2014.06.021
  • Dubé, M., Auclair, J., Hanana, H., Turcotte, P., Gagnon, C., & Gagné, F. (2019). Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 88-95. https://doi.org/10.1016/j.cbpc.2019.05.009
  • Falfushynska, H., Gnatyshyna, L., Yurchak, I., Ivanina, A., Stoliar, O., & Sokolova, I. (2014). Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae). Science of the Total Environment, 500, 339-350. https://doi.org/10.1016/j.scitotenv.2014.08.112
  • Faria, M., Carrasco, L., Diez, S., Riva, M.C., Bayona, J.M. & Barata, C. (2009). Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to Polychlorobiphenyls and metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149, 281-288. https://doi.org/10.1016/j.cbpc.2008.07.012
  • Figueiredo, C., Grilo, T.F., Lopes, C., Brito, P., Diniz, M., Caetano, M., ... & Raimundo, J. (2018). Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla). Chemosphere, 206, 414-423. https://doi.org/10.1016/j.chemosphere.2018.05.029
  • Figueiredo, C., Grilo, T. F., Oliveira, R., Ferreira, I. J., Gil, F., Lopes, C., ... & Raimundo, J. (2022). Single and combined ecotoxicological effects of ocean warming, acidification and lanthanum exposure on the surf clam (Spisula solida). Chemosphere, 302, 134850. https://doi.org/10.1016/j.chemosphere.2022.134850
  • Freitas, R., Costa, S., Cardoso, C. E., Morais, T., Moleiro, P., Matias, A. C., ... & Pereira, E. (2020). Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. Chemosphere, 244, 125457. https://doi.org/10.1016/j.chemosphere.2019.125457
  • Gholamhosseini, A., Banaee, M., Sureda, A., Timar, N., Zeidi, A., & Faggio, C. (2023). Physiological response of freshwater crayfish, Astacus leptodactylus exposed to polyethylene microplastics at different temperature. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 267, 109581. https://doi.org/10.1016/j.cbpc.2023.109581
  • Hanana, H., Kleinert, C., & Gagné, F. (2021a). Toxicity of representative mixture of five rare earth elements in juvenile rainbow trout (Oncorhynchus mykiss) juveniles. Environmental Science and Pollution Research, 28(22), 28263-28274.
  • Hanana, H., Taranu, Z. E., Turcotte, P., Gagnon, C., Kowalczyk, J., & Gagné, F. (2021b). Evaluation of general stress, detoxification pathways, and genotoxicity in rainbow trout exposed to rare earth elements dysprosium and lutetium. Ecotoxicology and Environmental Safety, 208, 111588. https://doi.org/10.1016/j.ecoenv.2020.111588
  • Hooper, M. J., Ankley, G. T., Cristol, D. A., Maryoung, L. A., Noyes, P. D., & Pinkerton, K. E. (2013). Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environmental Toxicology and Chemistry, 32(1), 32-48. https://doi.org/10.1002/etc.2043
  • Huang, S. F., Li, Z. Y., Wang, X. Q., Wang, Q. X., & Hu, F. F. (2010). Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster. Ecotoxicology and environmental safety, 73(1), 89-93. https://doi.org/10.1016/j.ecoenv.2009.09.017
  • Ihunwo, O. C., & Ibezim-Ezeani, M. U. (2022). Metal accumulation in muscle and oxidative stress response in the liver of juvenile Oreochromis niloticus from contaminated sediment under a simulation of increasing temperature. Environmental Research Communications, 4(7), 075008. https://doi.org/10.1088/2515-7620/ac803d
  • IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.). Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3056. https://doi.org/10.1017/9781009325844
  • Kim, B. M., Rhee, J. S., Park, G. S., Lee, J., Lee, Y. M., & Lee, J. S. (2011). Cu/Zn-and Mn-superoxide dismutase (SOD) from the copepod Tigriopus japonicus: molecular cloning and expression in response to environmental pollutants. Chemosphere, 84(10), 1467-1475. https://doi.org/10.1016/j.chemosphere.2011.04.043
  • Klaver, G., Verheul, M., Bakker, I., Petelet-Giraud, E., & Négrel, P. (2014). Anthropogenic Rare Earth Element in rivers: Gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (the Netherlands). Applied Geochemistry, 47, 186-197. https://doi.org/10.1016/j.apgeochem.2014.05.020
  • Krishnamurthy, N. & Gupta, C. K. (2016). Extractive Metallurgy of Rare Earths (Second Edition). CRC Press-Taylor & Francis Group.
  • Lannig, G., Flores, J. F., & Sokolova, I. M. (2006). Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquatic toxicology, 79(3), 278-287. https://doi.org/10.1016/j.aquatox.2006.06.017
  • Liu, D., Wu, X., Hu, C., Zeng, Y., & Pang, Q. (2023). Neodymium affects the generation of reactive oxygen species via GSK-3β/Nrf2 signaling in the gill of zebrafish. Aquatic Toxicology, 261, 106621. https://doi.org/10.1016/j.aquatox.2023.106621
  • Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic toxicology, 101(1), 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  • Lürling, M., & Tolman, Y. (2010). Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Research, 44(1), 309-319. https://doi.org/10.1016/j.watres.2009.09.034
  • Mlouka, R., Cachot, J., Boukadida, K., Clérandeau, C., Gourves, P. Y., & Banni, M. (2019). Compared responses to copper and increased temperatures of hybrid and pure offspring of two mussel species. Science of the Total Environment, 685, 795-805. https://doi.org/10.1016/j.scitotenv.2019.05.466
  • Morgan, B., Johnston, S. G., Burton, E. D., & Hagan, R. E. (2016). Acidic drainage drives anomalous rare earth element signatures in intertidal mangrove sediments. Science of the Total Environment, 573, 831-840. https://doi.org/10.1016/j.scitotenv.2016.08.172
  • Nagarani, N., Devi, V. J., & Kumaraguru, A. K. (2011). Mercuric chloride induced proteotoxicity and structural destabilization in marine fish (Therapon jarbua). Toxicological & Environmental Chemistry, 93(2), 296-306. https://doi.org/10.1080/02772248.2010.512812
  • Negri, A., Oliveri, C., Sforzini, S., Mignione, F., Viarengo, A., & Banni, M. (2013). Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PloS one, 8(6), e66802. https://doi.org/10.1371/journal.pone.0066802
  • Oakes, K.D. ve Van Der Kraak, G.J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63, 447–463. https://doi.org/10.1016/S0166-445X(02)00204
  • Olmez, I., Sholkovitz, E. R., Hermann, D., & Eganhouse, R. P. (1991). Rare earth elements in sediments off southern California: a new anthropogenic indicator. Environmental science & technology, 25(2), 310-316.
  • Park, K., Han, E. J., Ahn, G., & Kwak, I. S. (2020). Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. Science of the Total Environment, 716, 137130. https://doi.org/10.1016/j.scitotenv.2020.137130
  • Pastorino, P., Pizzul, E., Barceló, D., Abete, M. C., Magara, G., Brizio, P., ... & Elia, A. C. (2021). Ecology of oxidative stress in the Danube barbel (Barbus balcanicus) from a winegrowing district: Effects of water parameters, trace and rare earth elements on biochemical biomarkers. Science of The Total Environment, 772, 145034. https://doi.org/10.1016/j.scitotenv.2021.145034
  • Romero-Freire, A., Joonas, E., Muna, M., Cossu-Leguille, C., Vignati, D. & Giamberini, L. (2019). Assessment of the toxic effects of mixtures of three lanthanides (ce, gd, lu) to aquatic biota. Science of the Total Environment, 661, 276–284. https://doi.org/10.1016/j.scitotenv.2019.01.155
  • Serdar, O. (2019). The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environmental Science and Pollution Research, 26(21), 21905-21914.
  • Serdar, O., Yıldırım, N., Tatar, Ş., & Yildirim, N.C. (2021). Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences, 7(2), 229-236. https://doi.org/10.29132/ijpas.873218
  • Serdar, O., Erol, N. D., & Aydin, A. N. (2024a). Effect of light and noise pollution on oxidative stress and proximate composition in Dreissena polymorpha. Ecohydrology & Hydrobiology. https://doi.org/10.1016/j.ecohyd.2024.03.007
  • Serdar, O., Aydin, A. N., & Çimen, I. C. Ç. (2024b). Determination of oxidative stress responses caused by aluminum oxide (γ-Al2O3 and α-Al2O3) nanoparticles in Gammarus pulex. Chemosphere, 352, 141193. https://doi.org/10.1016/j.chemosphere.2024.141193
  • Trifuoggi, M., Donadio, C., Ferrara, L., Stanislao, C., Toscanesi, M., & Arienzo, M. (2018). Levels of pollution of rare earth elements in the surface sediments from the Gulf of Pozzuoli (Campania, Italy). Marine pollution bulletin, 136, 374-384. https://doi.org/10.1016/j.marpolbul.2018.09.034
  • Tseng, M.T., Lu, X., Duan, X., Hardas, S.S., Sultana, R., Wu, P., Unrine, J.M., Graham, U., Butterfield, D.A., Grulke, E.A. ve Yokel, R.A. (2012). Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicology and Applied Pharmacology, 260, 173–182. https://doi.org/10.1016/j.taap.2012.02.008 URL 1: https://evrimagaci.org/lantan-10153 (2023).
  • USGS (U.S. Geological Survey), 2020. Mineral Commodity Summaries 2020. Erişim adresi https://pubs.usgs.gov/periodicals/mcs2020/mcs2 020.pdf.
  • Venkatesan, B., Mahimainathan, L., Das, F., Ghosh‐Choudhury, N., & Ghosh Choudhury, G. (2007). Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells. Journal of cellular physiology, 211(2), 457-467. https://doi.org/10.1002/jcp.20953
  • Vergauwen, L., Hagenaars, A., Blust, R., & Knapen, D. (2013). Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. Aquatic toxicology, 126, 52-62. https://doi.org/10.1016/j.aquatox.2012.10.004
  • Verlecar, X. N., Jena, K. B., & Chainy, G. B. N. (2007). Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chemico-biological interactions, 167(3), 219-226. https://doi.org/10.1016/j.cbi.2007.01.018
  • Wang, L., Wang, W., Zhou, Q. & Huang, X. (2014). Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere, 112, 355–361. https://doi.org/10.1016/j.chemosphere.2014.04.069
  • Ward, J. V., & Stanford, J. A. (1982). Thermal responses in the evolutionary ecology of aquatic insects. Annual review of entomology, 27(1), 97-117.
  • Yang, W., Yingjun, W., Jinge, D. U., Zhanghong, W., & Qinglian, W. U. (2016). Effects of yttrium under lead stress on growth and physiological characteristics of Microcystis aeruginosa. Journal of Rare Earths, 34(7), 747-756. https://doi.org/10.1016/S1002-0721(16)60089-3
  • Zhang, Y., Wang, L., Ma, X., Guan, T., Shi, W., Zhu, C., ... & Li, J. (2023). Response of antioxidation and immunity to combined influences of ammonia and temperature in red swamp crayfish (Procambarus clarkii). Aquaculture, 563, 738906. https://doi.org/10.1016/j.aquaculture.2022.738906
  • Zhang, Z., Bai, W., Zhang, L., He, X., Ma, Y., Liu, Y., & Chai, Z. (2012). Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. Journal of Environmental Sciences, 24(2), 209-213. https://doi.org/10.1016/S1001-0742(11)60755-9
  • Zhao, H., Hong, J., Yu, X., Zhao, X., Sheng, L., Ze, Y., Sang, X., Gui, S., Sun, Q., Wang, L. & Hong, F. (2013). Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere, 93, 875–884. https://doi.org/10.1016/j.chemosphere.2013.05.034

Sıcaklıkla Birlikte Nadir Toprak Elementlerine (Terbium, Lantan, Gadolinyum ve Praseodimyum) Maruz Bırakılan Dreissena polymorpha'da Oksidatif Stres Tepkilerinin Belirlenmesi

Yıl 2025, Cilt: 21 Sayı: 2, 145 - 157
https://doi.org/10.22392/actaquatr.1585378

Öz

Sanayi ve endüstrinin sürekli gelişmesi insanları yeni kaynak arayışlarına itmekte ve bu amaçla kullanım alanları her geçen gün artan Nadir Toprak Elementlerinin (NTE) kullanım alanları hızla artmaktadır. Artan kullanım sonucu NTE'lerin artan konsantrasyonları çevrede kirlilik yaratmakta ve canlı organizmalara zarar vermektedir. Bu kirlilik artan sıcaklıkla etkileşime girerek kirleticinin çevrede ve canlı vücudunda daha olumsuz sinerjik etkilere neden olmaktadır. Bu çalışmada, subletal konsantrasyon değerleri literatür taraması ile belirlenmiş ve konsantrasyon değeri 125 mg/L olarak tespit edilmiştir. Dreissena polymorpha'da Terbium, Lanthanum, Gadolinium ve Praseodymium NTE'lerin 125 mg/L konsantrasyonda 3 farklı sıcaklıkta (16, 18, 20 0C) bazı oksidatif stres ve antioksidan tepkilerinin biyobelirteçler ile araştırılması amaçlanmıştır. Bu amaçla 24 ve 96 saatlik deneme deseni oluşturularak her deneme grubunda 7 adet D. polymorpha kullanılmış ve uygulama deneyleri 3 tekrarlı olarak gerçekleştirilmiştir. Deneme aşaması biten örnekler analiz edilene kadar -80 derecede muhafaza edilmiştir. Bu çalışmada Süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GPx) enzim aktiviteleri ile glutatyon (GSH) ve Tiyobarbitürik asit (TBARS) düzeyi biyobelirteç yanıtları ELISA testi mikroplaka okuyucu ile belirlenmiştir. Çalışmada CAYMAN marka SOD (Katalog No 706002), CAT Katalog No 707002) ve GPx (Katalog No 703102), GSH (Katalog No 703002) ve TBARS (Katalog No 10009055) kullanılmıştır. Biyokimyasal analizlerin değerlendirilmesi için SPSS 24.0 paket programı tek yönlü ANOVA (Duncan 0.05) kullanılmıştır. Çalışma verilerine göre, D. Polymorpha üzerinde NTE'lerin oksidatif stres tepkilerinde artan sıcaklıkla birlikte SOD ve CAT aktivitelerinde istatistiksel olarak anlamlı düşüşler gözlenirken, GPx aktivitelerinde anlamlı bir değişiklik olmamıştır. TBARS seviyelerinde artışlar, GSH seviyelerinde ise düşüşler olduğu tespit edilmiştir. Bu değişikliklerin oluşumunda sıcaklık faktörü, uygulama konsantrasyonu ve uygulama süresinin etkili olduğu düşünülmektedir. Sıcaklık değişiminin ve kirleticinin organizmalarda oksidatif strese neden olduğu ve hücre hasarına yol açtığı söylenebilir.

Etik Beyan

All authors declare that there is no ethical violation in this manuscript. Also, this manuscript does not contain data belonging to others. The authors declare that they have no conflict of interest. The authors alone are responsible for the content and authoring of the present paper.

Destekleyen Kurum

No support was received from any institution or organization.

Kaynakça

  • Abdel-Tawwab, M., & Wafeek, M. (2017). Fluctuations in water temperature affected waterborne cadmium toxicity: hematology, anaerobic glucose pathway, and oxidative stress status of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 477, 106-111. https://doi.org/10.1016/j.aquaculture.2017.05.007
  • Almroth, B.C., Sturve, J., Berglund, A. & Förlin, L. (2005). Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquatic Toxicology, 73, 171–180. https://doi.org/10.1016/j.aquatox.2005.03.007
  • Andrade, M., Soares, A. M., Solé, M., Pereira, E., & Freitas, R. (2023). Threats of Pollutants Derived from Electronic Waste to Marine Bivalves: The Case of the Rare‐Earth Element Yttrium. Environmental Toxicology and Chemistry, 42(1), 166-177.
  • Arthur, J. R. (2001). The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS, 57, 1825-1835.
  • Aydın, A. N., & Serdar, O. (2023). Probiyotiğin Dreissena polymorpha'da Bakır Nanopartikül Birikimi Üzerine Etkisi. 10, Issue: 139-46, 2149-4428, Journal of Limnology and Freshwater Fisheries Research, Journal of Limnology and Freshwater Fisheries Research
  • Aydın, A. N., & Serdar, O. (2024). Terbiyumun Pontastacus leptodactylus’ ta ki Oksidatif Stres ve Antioksidan Yanıtlarının Belirlenmesi. Acta Aquatica Turcica, 20 (1), 23-32. https://doi.org/10.22392/actaquatr.1294250
  • Banni, M., Hajer, A., Sforzini, S., Oliveri, C., Boussetta, H., & Viarengo, A. (2014). Transcriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 160, 23-29. https://doi.org/10.1016/j.cbpc.2013.11.005
  • Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A. & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1-22. https://doi.org/10.1016/j.jclepro.2012.12.037
  • Binelli, A., Della Torre, C., Magni, S., & Parolini, M. (2015). Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Environmental pollution, 196, 386-403.
  • Blaise, C., Gagné, F., Harwood, M., Quinn, B., & Hanana, H. (2018). Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements. Ecotoxicology and Environmental Safety, 163, 486-491. https://doi.org/10.1016/j.ecoenv.2018.07.033
  • Brito, P., Prego, R., Mil-Homens, M., Caçador, I., & Caetano, M. (2018). Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Science of the Total Environment, 621, 317-325. https://doi.org/10.1016/j.scitotenv.2017.11.245
  • Cairns, J., Heath, A. G., & Parker, B. C. (1975). The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia, 47, 135-171.
  • Celep, O., Yazıcı, E. Y., & Deveci, H. (2021). Nadir Toprak Elementlerinin Birincil ve İkincil Kaynaklardan Üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 264-280. https://doi.org/10.1016/j.hydromet.2021.105610
  • Choi, J. & Oris, J.T. (2000). Evidence of oxidative stress in bluegill sunfish (Lepomis macrochirus) liver microsomes simultaneously exposed to solar ultraviolet radiation and anthracene. Environmental Toxicology and Chemistry, 19, 1795–1799. https://doi.org/10.1002/etc.5620190713
  • David, M., Munaswamy, V., Halappa, R., & Marigoudar, S. R. (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pesticide biochemistry and physiology, 92(1), 15-18. https://doi.org/10.1016/j.pestbp.2008.03.013
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109: 212- 228. https://doi.org/10.1016/j.envexpbot.2014.06.021
  • Dubé, M., Auclair, J., Hanana, H., Turcotte, P., Gagnon, C., & Gagné, F. (2019). Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 88-95. https://doi.org/10.1016/j.cbpc.2019.05.009
  • Falfushynska, H., Gnatyshyna, L., Yurchak, I., Ivanina, A., Stoliar, O., & Sokolova, I. (2014). Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae). Science of the Total Environment, 500, 339-350. https://doi.org/10.1016/j.scitotenv.2014.08.112
  • Faria, M., Carrasco, L., Diez, S., Riva, M.C., Bayona, J.M. & Barata, C. (2009). Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to Polychlorobiphenyls and metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149, 281-288. https://doi.org/10.1016/j.cbpc.2008.07.012
  • Figueiredo, C., Grilo, T.F., Lopes, C., Brito, P., Diniz, M., Caetano, M., ... & Raimundo, J. (2018). Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla). Chemosphere, 206, 414-423. https://doi.org/10.1016/j.chemosphere.2018.05.029
  • Figueiredo, C., Grilo, T. F., Oliveira, R., Ferreira, I. J., Gil, F., Lopes, C., ... & Raimundo, J. (2022). Single and combined ecotoxicological effects of ocean warming, acidification and lanthanum exposure on the surf clam (Spisula solida). Chemosphere, 302, 134850. https://doi.org/10.1016/j.chemosphere.2022.134850
  • Freitas, R., Costa, S., Cardoso, C. E., Morais, T., Moleiro, P., Matias, A. C., ... & Pereira, E. (2020). Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. Chemosphere, 244, 125457. https://doi.org/10.1016/j.chemosphere.2019.125457
  • Gholamhosseini, A., Banaee, M., Sureda, A., Timar, N., Zeidi, A., & Faggio, C. (2023). Physiological response of freshwater crayfish, Astacus leptodactylus exposed to polyethylene microplastics at different temperature. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 267, 109581. https://doi.org/10.1016/j.cbpc.2023.109581
  • Hanana, H., Kleinert, C., & Gagné, F. (2021a). Toxicity of representative mixture of five rare earth elements in juvenile rainbow trout (Oncorhynchus mykiss) juveniles. Environmental Science and Pollution Research, 28(22), 28263-28274.
  • Hanana, H., Taranu, Z. E., Turcotte, P., Gagnon, C., Kowalczyk, J., & Gagné, F. (2021b). Evaluation of general stress, detoxification pathways, and genotoxicity in rainbow trout exposed to rare earth elements dysprosium and lutetium. Ecotoxicology and Environmental Safety, 208, 111588. https://doi.org/10.1016/j.ecoenv.2020.111588
  • Hooper, M. J., Ankley, G. T., Cristol, D. A., Maryoung, L. A., Noyes, P. D., & Pinkerton, K. E. (2013). Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environmental Toxicology and Chemistry, 32(1), 32-48. https://doi.org/10.1002/etc.2043
  • Huang, S. F., Li, Z. Y., Wang, X. Q., Wang, Q. X., & Hu, F. F. (2010). Cerium caused life span shortening and oxidative stress resistance in Drosophila melanogaster. Ecotoxicology and environmental safety, 73(1), 89-93. https://doi.org/10.1016/j.ecoenv.2009.09.017
  • Ihunwo, O. C., & Ibezim-Ezeani, M. U. (2022). Metal accumulation in muscle and oxidative stress response in the liver of juvenile Oreochromis niloticus from contaminated sediment under a simulation of increasing temperature. Environmental Research Communications, 4(7), 075008. https://doi.org/10.1088/2515-7620/ac803d
  • IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.). Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3056. https://doi.org/10.1017/9781009325844
  • Kim, B. M., Rhee, J. S., Park, G. S., Lee, J., Lee, Y. M., & Lee, J. S. (2011). Cu/Zn-and Mn-superoxide dismutase (SOD) from the copepod Tigriopus japonicus: molecular cloning and expression in response to environmental pollutants. Chemosphere, 84(10), 1467-1475. https://doi.org/10.1016/j.chemosphere.2011.04.043
  • Klaver, G., Verheul, M., Bakker, I., Petelet-Giraud, E., & Négrel, P. (2014). Anthropogenic Rare Earth Element in rivers: Gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (the Netherlands). Applied Geochemistry, 47, 186-197. https://doi.org/10.1016/j.apgeochem.2014.05.020
  • Krishnamurthy, N. & Gupta, C. K. (2016). Extractive Metallurgy of Rare Earths (Second Edition). CRC Press-Taylor & Francis Group.
  • Lannig, G., Flores, J. F., & Sokolova, I. M. (2006). Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquatic toxicology, 79(3), 278-287. https://doi.org/10.1016/j.aquatox.2006.06.017
  • Liu, D., Wu, X., Hu, C., Zeng, Y., & Pang, Q. (2023). Neodymium affects the generation of reactive oxygen species via GSK-3β/Nrf2 signaling in the gill of zebrafish. Aquatic Toxicology, 261, 106621. https://doi.org/10.1016/j.aquatox.2023.106621
  • Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic toxicology, 101(1), 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  • Lürling, M., & Tolman, Y. (2010). Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Research, 44(1), 309-319. https://doi.org/10.1016/j.watres.2009.09.034
  • Mlouka, R., Cachot, J., Boukadida, K., Clérandeau, C., Gourves, P. Y., & Banni, M. (2019). Compared responses to copper and increased temperatures of hybrid and pure offspring of two mussel species. Science of the Total Environment, 685, 795-805. https://doi.org/10.1016/j.scitotenv.2019.05.466
  • Morgan, B., Johnston, S. G., Burton, E. D., & Hagan, R. E. (2016). Acidic drainage drives anomalous rare earth element signatures in intertidal mangrove sediments. Science of the Total Environment, 573, 831-840. https://doi.org/10.1016/j.scitotenv.2016.08.172
  • Nagarani, N., Devi, V. J., & Kumaraguru, A. K. (2011). Mercuric chloride induced proteotoxicity and structural destabilization in marine fish (Therapon jarbua). Toxicological & Environmental Chemistry, 93(2), 296-306. https://doi.org/10.1080/02772248.2010.512812
  • Negri, A., Oliveri, C., Sforzini, S., Mignione, F., Viarengo, A., & Banni, M. (2013). Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PloS one, 8(6), e66802. https://doi.org/10.1371/journal.pone.0066802
  • Oakes, K.D. ve Van Der Kraak, G.J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63, 447–463. https://doi.org/10.1016/S0166-445X(02)00204
  • Olmez, I., Sholkovitz, E. R., Hermann, D., & Eganhouse, R. P. (1991). Rare earth elements in sediments off southern California: a new anthropogenic indicator. Environmental science & technology, 25(2), 310-316.
  • Park, K., Han, E. J., Ahn, G., & Kwak, I. S. (2020). Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. Science of the Total Environment, 716, 137130. https://doi.org/10.1016/j.scitotenv.2020.137130
  • Pastorino, P., Pizzul, E., Barceló, D., Abete, M. C., Magara, G., Brizio, P., ... & Elia, A. C. (2021). Ecology of oxidative stress in the Danube barbel (Barbus balcanicus) from a winegrowing district: Effects of water parameters, trace and rare earth elements on biochemical biomarkers. Science of The Total Environment, 772, 145034. https://doi.org/10.1016/j.scitotenv.2021.145034
  • Romero-Freire, A., Joonas, E., Muna, M., Cossu-Leguille, C., Vignati, D. & Giamberini, L. (2019). Assessment of the toxic effects of mixtures of three lanthanides (ce, gd, lu) to aquatic biota. Science of the Total Environment, 661, 276–284. https://doi.org/10.1016/j.scitotenv.2019.01.155
  • Serdar, O. (2019). The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environmental Science and Pollution Research, 26(21), 21905-21914.
  • Serdar, O., Yıldırım, N., Tatar, Ş., & Yildirim, N.C. (2021). Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences, 7(2), 229-236. https://doi.org/10.29132/ijpas.873218
  • Serdar, O., Erol, N. D., & Aydin, A. N. (2024a). Effect of light and noise pollution on oxidative stress and proximate composition in Dreissena polymorpha. Ecohydrology & Hydrobiology. https://doi.org/10.1016/j.ecohyd.2024.03.007
  • Serdar, O., Aydin, A. N., & Çimen, I. C. Ç. (2024b). Determination of oxidative stress responses caused by aluminum oxide (γ-Al2O3 and α-Al2O3) nanoparticles in Gammarus pulex. Chemosphere, 352, 141193. https://doi.org/10.1016/j.chemosphere.2024.141193
  • Trifuoggi, M., Donadio, C., Ferrara, L., Stanislao, C., Toscanesi, M., & Arienzo, M. (2018). Levels of pollution of rare earth elements in the surface sediments from the Gulf of Pozzuoli (Campania, Italy). Marine pollution bulletin, 136, 374-384. https://doi.org/10.1016/j.marpolbul.2018.09.034
  • Tseng, M.T., Lu, X., Duan, X., Hardas, S.S., Sultana, R., Wu, P., Unrine, J.M., Graham, U., Butterfield, D.A., Grulke, E.A. ve Yokel, R.A. (2012). Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicology and Applied Pharmacology, 260, 173–182. https://doi.org/10.1016/j.taap.2012.02.008 URL 1: https://evrimagaci.org/lantan-10153 (2023).
  • USGS (U.S. Geological Survey), 2020. Mineral Commodity Summaries 2020. Erişim adresi https://pubs.usgs.gov/periodicals/mcs2020/mcs2 020.pdf.
  • Venkatesan, B., Mahimainathan, L., Das, F., Ghosh‐Choudhury, N., & Ghosh Choudhury, G. (2007). Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells. Journal of cellular physiology, 211(2), 457-467. https://doi.org/10.1002/jcp.20953
  • Vergauwen, L., Hagenaars, A., Blust, R., & Knapen, D. (2013). Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. Aquatic toxicology, 126, 52-62. https://doi.org/10.1016/j.aquatox.2012.10.004
  • Verlecar, X. N., Jena, K. B., & Chainy, G. B. N. (2007). Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chemico-biological interactions, 167(3), 219-226. https://doi.org/10.1016/j.cbi.2007.01.018
  • Wang, L., Wang, W., Zhou, Q. & Huang, X. (2014). Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere, 112, 355–361. https://doi.org/10.1016/j.chemosphere.2014.04.069
  • Ward, J. V., & Stanford, J. A. (1982). Thermal responses in the evolutionary ecology of aquatic insects. Annual review of entomology, 27(1), 97-117.
  • Yang, W., Yingjun, W., Jinge, D. U., Zhanghong, W., & Qinglian, W. U. (2016). Effects of yttrium under lead stress on growth and physiological characteristics of Microcystis aeruginosa. Journal of Rare Earths, 34(7), 747-756. https://doi.org/10.1016/S1002-0721(16)60089-3
  • Zhang, Y., Wang, L., Ma, X., Guan, T., Shi, W., Zhu, C., ... & Li, J. (2023). Response of antioxidation and immunity to combined influences of ammonia and temperature in red swamp crayfish (Procambarus clarkii). Aquaculture, 563, 738906. https://doi.org/10.1016/j.aquaculture.2022.738906
  • Zhang, Z., Bai, W., Zhang, L., He, X., Ma, Y., Liu, Y., & Chai, Z. (2012). Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. Journal of Environmental Sciences, 24(2), 209-213. https://doi.org/10.1016/S1001-0742(11)60755-9
  • Zhao, H., Hong, J., Yu, X., Zhao, X., Sheng, L., Ze, Y., Sang, X., Gui, S., Sun, Q., Wang, L. & Hong, F. (2013). Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere, 93, 875–884. https://doi.org/10.1016/j.chemosphere.2013.05.034
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji , Hidrobiyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Ayşe Nur Aydın 0000-0002-5657-8958

Osman Serdar 0000-0003-1744-8883

Erken Görünüm Tarihi 14 Mayıs 2025
Yayımlanma Tarihi 6 Ekim 2025
Gönderilme Tarihi 14 Kasım 2024
Kabul Tarihi 24 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 2

Kaynak Göster

APA Aydın, A. N., & Serdar, O. (2025). Determination of Oxidative Stress Responses in Dreissena polymorpha Exposed to Rare Earth Elements (Terbium, Lanthanum, Gadolinium and Praseodymium) with Temperature. Acta Aquatica Turcica, 21(2), 145-157. https://doi.org/10.22392/actaquatr.1585378