Derleme
BibTex RIS Kaynak Göster

Ozmotik ve Adaptasyon Zorlukları: Balıkların Artan Tuzluluğa Fizyolojik ve Biyokimyasal Tepkileri

Yıl 2025, Cilt: 21 Sayı: 4, 350 - 363
https://doi.org/10.22392/actaquatr.1658565

Öz

İklim değişikliğinin kıyı ve deniz ekosistemlerindeki abiyotik faktörleri etkilediği bilinmektedir. Çözünebilir tuzları optimum seviyelerin üzerine çıkaran iklim değişikliğiyle ilişkili faktörlerin neden olduğu tuzluluktaki artış, suda yaşayan hayvanların dokularını ve organlarını etkileyebilen akut strese yol açar. Kronik stres koşullarında, organizmalar stres faktörlerine karşı tamamen duyarsız hale gelir veya organizmalar tolerans geliştirebilir, bu da değişmiş büyüme ve üreme oranlarıyla sonuçlanabilir. Balıklar, hücresel düzeyde ozmotik strese ve reaktif oksijen türlerinin (ROS) üretimiyle indüklenen moleküler ve biyokimyasal değişikliklere neden olabilen tuz dalgalanmalarını izlemek için biyoindikatör olarak incelenebilir. Ek olarak, enzimatik aktiviteler özellikle mitokondriyal işlevlerde etkilenir. Tuzluluğun artması, embriyonik ve larval gelişimi destekleyerek ve bazı hastalıkları önleyerek bazı tatlı su balık türlerinde olumlu bir tablo sunmasına rağmen, daha düşük uyum yeteneğine sahip türler aşırı tuzluluktan olumsuz etkilenebilir. Tuzluluk stresinin etkilerini incelerken, hızlı ve ölçülebilir göstergeleri nedeniyle akut fazındaki enerji metabolizmasının analizi yaygın olarak tercih edilen bir yaklaşımdır. Tuzluluğun artmasıyla hücresel ve hormonal düzeylerde (örn. kortizol, prolaktin), üreme, büyüme ve gelişim süreçlerinde farklılıklar meydana gelir. Tolerans ve adaptasyon yetenekleri, örihalin veya stenohalin balık türlerine bağlı olarak değişir. Bu alanda daha ayrıntılı sonuçlar elde etmek için omik teknikleri, metabolik profilleme ve görüntüleme teknikleri gibi gelişmiş analitik yöntemlere ihtiyaç vardır.

Kaynakça

  • Agrahari, S., & Gopal, K. (2009). Retracted: Fluctuations of certain biochemical constituents and markers enzymes as a consequence of monocrotophos toxicity in the edible freshwater fish, channa punctatus. Elsevier.
  • Akbulut, C., Kaymak, G., Esmer, H. E., Yön, N. D., & Kayhan, F. E. (2014). Oxidative stress mechanisms induced by heavy metals and pesticides in fish. Journal of Fisheries and Aquatic Sciences (Su Ürünleri Dergisi). 31(3), 155-160.
  • Barton, B. A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42(3), 517–525.
  • Beyenbach, K. W. (2004). Kidneys sans glomeruli. American Journal of Physiology-Renal Physiology, 286(5), F811–F827.
  • Bœuf, G., & Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4), 411–423.
  • Boutet, I., Ky, C. L. L., & Bonhomme, F. (2006). A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Gene, 379, 40–50.
  • Boyd, C. E., & Tucker, C. S. (2012). Pond aquaculture water quality management. Springer Science & Business Media.
  • Chainy, G. B. N., Paital, B., & Dandapat, J. (2016). An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica, (1), 6126570.
  • Ching, B., Chen, X. L., Yong, J. H. A., Wilson, J. M., Hiong, K. C., Sim, E. W. L., Wong, W. P., Lam, S. H., Chew, S. F., & Ip, Y. K. (2013). Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. Frontiers in Physiology, 4, 135.
  • Chowdhury, S., & Saikia, S. K. (2020). Oxidative Stress in Fish: A Review. Journal of Scientific Research, 12(1).
  • Cloern, J. E., & Jassby, A. D. (2012). Drivers of change in estuarine‐coastal ecosystems: Discoveries from four decades of study in San Francisco Bay. Reviews of Geophysics, 50(4).
  • Davis, K. B., & Peterson, B. C. (2006). The effect of temperature, stress, and cortisol on plasma IGF-I and IGFBPs in sunshine bass. General and Comparative Endocrinology, 149(3), 219–225.
  • Dawood, M. A. O., & Sewilam, H. (2023). The combined effects of salinity and ammonia on the growth behavior, stress‐related markers, and hepato‐renal function of common carp (Cyprinus carpio). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 339(1), 74–82.
  • Deane, E. E., & Woo, N. Y. S. (2005). Cloning and characterization of sea bream Na+-K+-ATPase α and β subunit genes: in vitro effects of hormones on transcriptional and translational expression. Biochemical and Biophysical Research Communications, 331(4), 1229–1238.
  • Dmitrieva, N. I., Ferraris, J. D., Norenburg, J. L., & Burg, M. B. (2006). The saltiness of the sea breaks DNA in marine invertebrates: possible implications for animal evolution. Cell Cycle.
  • Elhakeem, A., & Elshorbagy, W. (2013). Evaluation of the long-term variability of seawater salinity and temperature in response to natural and anthropogenic stressors in the Arabian Gulf. Marine Pollution Bulletin, 76(1–2), 355–359.
  • Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85(1), 97–177.
  • Fiess, J. C., Kunkel-Patterson, A., Mathias, L., Riley, L. G., Yancey, P. H., Hirano, T., & Grau, E. G. (2007). Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(2), 252–264.
  • Geng, L., Tong, G., Jiang, H., & Xu, W. (2016). Effect of salinity and alkalinity on luciobarbus capito Gill Na+/K+‐ATPase enzyme activity, plasma ion concentration, and osmotic pressure. BioMed Research International, (1), 4605839.
  • Genz, J., McDonald, M. D., & Grosell, M. (2011). Concentration of MgSO4 in the intestinal lumen of Opsanus beta limits osmoregulation in response to acute hypersalinity stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(4), R895–R909.
  • Gonzalez, R. J. (2012). The physiology of hyper-salinity tolerance in teleost fish: a review. Journal of Comparative Physiology B, 182, 321–329.
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine. Oxford university press, USA.
  • Hawkins, L. J., & Storey, K. B. (2020). Advances and applications of environmental stress adaptation research. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 240, 110623.
  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., & Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1–43.
  • Hosseini, P., Vahabzade, H., Bourani, M. S., & Kazemi, R. (2011, December). The effects of salinity stress on hematocrit and hemoglobin in fingerling rainbow trout (Oncorhynchus mykiss) [Oral Presentation]. International Conference on Medical, Biological and Pharmaceutical Sciences (ICMBPS'2011) Pattaya, Thailand.
  • Hotos, G. N., & Vlahos, N. (1998). Salinity tolerance of Mugil cephalus and Chelon labrosus (Pisces: Mugilidae) fry in experimental conditions. Aquaculture, 167(3–4), 329–338.
  • Jarvis, P. L., & Ballantyne, J. S. (2003). Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum. Aquaculture, 219(1–4), 891–909.
  • Kammerer, B. D., Sardella, B. A., & Kültz, D. (2009). Salinity stress results in rapid cell cycle changes of tilapia (Oreochromis mossambicus) gill epithelial cells. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311(2), 80-90
  • Kang’ombe, J., & Brown, J. A. (2008). Effect of salinity on growth, feed utilization, and survival of Tilapia rendalli under laboratory conditions. Journal of Applied Aquaculture, 20(4), 256–271.
  • Kim, J.-H., Park, H.-J., Kim, K.-W., Hwang, I.-K., Kim, D.-H., Oh, C. W., Lee, J. S., & Kang, J.-C. (2017). Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish Physiology and Biochemistry, 43, 1421–1431.
  • Kızılkaya, S., Akpinar, G., Sesal, N. C., Kasap, M., Gokalsin, B., & Kayhan, F. E. (2023). Using proteomics, q-PCR and biochemical methods complementing as a multiapproach to elicit the crucial responses of zebrafish liver exposed to neonicotinoid pesticide. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 47(1), 101103.
  • Komoroske, L. M., Jeffries, K. M., Connon, R. E., Dexter, J., Hasenbein, M., Verhille, C., & Fangue, N. A. (2016). Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evolutionary Applications, 9(8), 963-981.
  • Küçük, S. (2013). The effects of salinity on growth of goldfish, Carassius auratus and crucian carp, Carassius carassius. African Journal of Biotechnology, 12(16).
  • Kültz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. The Journal of Experimental Biology, 218(12), 1907–1914.
  • Lamalakshmi Devi, E., Kumar, S., Basanta Singh, T., Sharma, S. K., Beemrote, A., Devi, C. P., Chongtham, S. K., Singh, C. H., Yumlembam, R. A., & Haribhushan, A. (2017). Adaptation strategies and defence mechanisms of plants during environmental stress. Medicinal Plants and Environmental Challenges, (pp. 359–413). Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_20
  • Laverty, G., & Skadhauge, E. (2012). Adaptation of teleosts to very high salinity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(1), 1–6.
  • Lee, S. Y., Lee, H. J., & Kim, Y. K. (2020). Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Scientific Reports, 10(1), 1987.
  • Lemarié, G., Baroiller, J. F., Clota, F., Lazard, J., & Dosdat, A. (2004). A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron. Aquaculture, 240(1–4), 575–587.
  • Lemos, M. F. L., Silva, C. S. E., Rato, L. D., Marques, A. F. S., Passos, R., Duarte, I. A., Duarte, B., Fonseca, V. F., & Novais, S. C. (2024). Assessing the euryhaline characteristics and metabolic responses of meagre (Argyrosomus regius) when reared under different salinities: Opportunities for aquaculture refinement. Aquaculture, 586, 740781.
  • Li, J., & Kültz, D. (2020). Proteomics of osmoregulatory responses in threespine stickleback gills. Integrative and Comparative Biology, 60(2), 304–317.
  • Liu, W., Zhao, C., Wang, P., Wang, S., Lin, H., & Qiu, L. (2018). The response of glutathione peroxidase 1 and glutathione peroxidase 7 under different oxidative stresses in black tiger shrimp, Penaeus monodon. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 217, 1–13.
  • Loro, V. L., Jorge, M. B., da Silva, K. R., & Wood, C. M. (2012). Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquatic Toxicology, 110, 187–193.
  • Martinez-Alvarez, R. M., Hidalgo, M. C., Domezain, A., Morales, A. E., García-Gallego, M., & Sanz, A. (2002). Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. Journal of Experimental Biology, 205(23), 3699–3706.
  • Narnaware, B. Y., Kelly, S., & Woo, N. Y. S. (2000). Effect of salinity and ration size on macrophage phagocytosis in juvenile black sea bream (Mylio macrocephalus). Journal of Applied Ichthyology, 16(2), 86-88.
  • Nguyen, T. V., Jung, H., Nguyen, T. M., Hurwood, D., & Mather, P. (2016). Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Marine Genomics, 25, 75–88.
  • Nielsen, U. N., Wall, D. H., Adams, B. J., Virginia, R. A., Ball, B. A., Gooseff, M. N., & McKnight, D. M. (2012). The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere, 3(2), 1–15.
  • OECD. (2012). OECD Environmental Outlook to 2050. https://doi.org/10.1787/9789264122246-en
  • Ouyang, H., Deng, N., Xu, J., Huang, J., Han, C., Liu, D., Liu, S., Yan, B., Han, L., & Li, S. (2023). Effects of hyperosmotic stress on the intestinal microbiota, transcriptome, and immune function of mandarin fish (Siniperca chuatsi). Aquaculture, 563, 738901.
  • Paital, B., & Chainy, G. B. N. (2014). Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata. Journal of Thermal Biology, 41, 104–111.
  • Park, I.-S., Gil, H. W., & Oh, J. S. (2019). Changing salinity affects hematological and histological response in hybrids and hybrid triploids between river puffer, Takifugu obscurus and tiger puffer, T. rubripes. Development & Reproduction, 23(3), 239.
  • Paul, B. K., & Rashid, H. (2017). Salinity intrusion and impacts. Climatic Hazards in Coastal Bangladesh, 153–182.
  • Pelis, R. M., & McCormick, S. D. (2001). Effects of growth hormone and cortisol on Na+–K+–2Cl− cotransporter localization and abundance in the gills of Atlantic salmon. General and Comparative Endocrinology, 124(2), 134–143.
  • Politis, S. N., Mazurais, D., Servili, A., Zambonino-Infante, J. L., Miest, J. J., Tomkiewicz, J., & Butts, I. A. (2018). Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level. PLoS One, 13(6), e0198294.
  • Portz, D. E., Woodley, C. M., & Cech, J. J. (2006). Stress-associated impacts of short-term holding on fishes. Reviews in Fish Biology and Fisheries, 16, 125–170.
  • Ramaglia, A. C., de Castro, L. M., & Augusto, A. (2018). Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. Journal of Comparative Physiology B, 188, 729–738.
  • Randazzo, B., Chemello, G., Tortarolo, I., Chiarello, G. L., Zalas, M., Santini, A., Liberatore, M., Liberatore, M., Selli, E., & Olivotto, I. (2017). A novel photocatalytic purification system for fish culture. Zebrafish, 14(5), 411–421.
  • Rauf, A., & Arain, N. (2014). Effects of salinity stress on some hematological parameters of Tilapia mossambicus (Peters. 1852). International Journal of Biology and Biotechnology, 11, 67–70.
  • Romero, L. M. (2004). Physiological stress in ecology: lessons from biomedical research. Trends in Ecology & Evolution, 19(5), 249–255.
  • Rosemore, B. J., & Welsh, C. A. (2012). The effects of rearing density, salt concentration, and incubation temperature on Japanese medaka (Oryzias latipes) embryo development. Zebrafish, 9(4), 185–190.
  • Sakamoto, T., & McCormick, S. D. (2006). Prolactin and growth hormone in fish osmoregulation. General and Comparative Endocrinology, 147(1), 24–30.
  • Sandra, O., Le Rouzic, P., Cauty, C., Edery, M., & Prunet, P. (2000). Expression of the prolactin receptor (tiPRL-R) gene in tilapia Oreochromis niloticus: tissue distribution and cellular localization in osmoregulatory organs. Journal of Molecular Endocrinology, 24(2), 215–224.
  • Sangiao-Alvarellos, S., Laiz-Carrion, R., Guzmán, J. M., Martín del Río, M. P., Miguez, J. M., Mancera, J. M., & Soengas, J. L. (2003). Acclimation of S. aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 285(4), R897–R907.
  • Schacht, B. E., Scarpa, J., Fox, J. M., & Vega, R. R. (2022). An Early Larval Feeding Protocol and Hypersaline Acclimation of Larval Spotted Seatrout. North American Journal of Aquaculture, 84(1), 83–94.
  • Schofield, P. J., Brown, M. E., & Fuller, P. L. (2006). Salinity tolerance of goldfish Carassius auratus L., a non-native fish in the United States. Florida Scientist, 258–268.
  • Scott, D. M., Wilson, R. W., & Brown, J. A. (2007). Can sunbleak Leucaspius delineatus or topmouth gudgeon Pseudorasbora parva disperse through saline waters? Journal of Fish Biology, 71, 70–86.
  • Shirangi, S. A., Kalbassi, M. R., Khodabandeh, S., Jafarian, H., Lorin-Nebel, C., Farcy, E., & Lignot, J.-H. (2016). Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish Physiology and Biochemistry, 42, 1741–1754.
  • Skjærven, K. H., Oveland, E., Mommens, M., Samori, E., Saito, T., Adam, A.-C., & Espe, M. (2020). Out-of-season spawning affects the nutritional status and gene expression in both Atlantic salmon female broodstock and their offspring. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 247, 110717.
  • Smith, D. C. W. (1956). The role of the endocrine organs in the salinity tolerance of trout. Mem Soc Endocrinol, 5, 83–101.
  • Stewart, H. A., Noakes, D. L. G., Cogliati, K. M., Peterson, J. T., Iversen, M. H., & Schreck, C. B. (2016). Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, 38–43.
  • Sun, S., Gong, C., Deng, C., Yu, H., Zheng, D., Wang, L., Sun, J., Song, F., & Luo, J. (2023). Effects of salinity stress on the growth performance, health status, and intestinal microbiota of juvenile Micropterus salmoides. Aquaculture, 576, 739888.
  • Tarkhani, R., & Imanpoor, M. R. (2012). Stress response of Carassius auratus to salt and formaldehyde exposure. World Journal of Fish and Marine Sciences, 4(2), 486–488.
  • Tian, Y., Wen, H., Qi, X., Zhang, X., Sun, Y., Li, J., He, F., Zhang, M., Zhang, K., & Yang, W. (2020). Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass. International Journal of Biological Macromolecules, 155, 50–60.
  • Tietze, S. M., & Gerald, G. W. (2016). Trade‐offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. Journal of Fish Biology, 88(5), 1918–1931.
  • Tine, M., De Lorgeril, J., D’Cotta, H., Pepey, E., Bonhomme, F., Baroiller, J. F., & Durand, J.-D. (2008). Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes. Marine Genomics, 1(2), 37–46.
  • Tresguerres, M., Clifford, A., Harter, T., Roa, J., Thies, A., Yee, D., & Brauner, C. (2020). Acid‐base dependent regulation of cellular physiology in aquatic animals. Journal of Experimental Zoology A.
  • Turhan, D.Ö. (2023). Diklofenak Sodyumun Zebra Balığı (Danio rerio) Larvaları Üzerindeki Teratojenik ve Gelişimsel Toksisitesinin Değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(1), 183–191.
  • Vargas-Chacoff, L., Muñoz, J. L. P., Ocampo, D., Paschke, K., & Navarro, J. M. (2019). The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish Harpagifer antarcticus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 235, 131–137.
  • Wang, L., Wang, X., & Yin, S. (2016). Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata. PeerJ, 4, e2149.
  • Watanabe, W. O., Clark, J. H., Dunham, J. B., Wicklund, R. I., & Olla, B. L. (1990). Culture of Florida red tilapia in marine cages: the effect of stocking density and dietary protein on growth. Aquaculture, 90(2), 123–134.
  • Whitehead, A., Zhang, S., Roach, J. L., & Galvez, F. (2013). Common functional targets of adaptive micro‐and macro‐evolutionary divergence in killifish. Molecular Ecology, 22(14), 3780–3796.
  • Wilson, R. W., Wilson, J. M., & Grosell, M. (2002). Intestinal bicarbonate secretion by marine teleost fish—why and how? Biochimica et Biophysica Acta (BBA)-Biomembranes, 1566(1–2), 182–193.
  • Wood, C. M. (2011). Rapid regulation of Na+ and Cl-flux rates in killifish after acute salinity challenge. Journal of Experimental Marine Biology and Ecology, 409(1–2), 62–69.
  • Zhang, M., Sun, Y., Liu, Y., Qiao, F., Chen, L., Liu, W.-T., Du, Z., & Li, E. (2016). Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture, 454, 72–80.
  • Zhou, Z., Hu, F., Li, W., Yang, X., Hallerman, E., & Huang, Z. (2021). Effects of salinity on growth, hematological parameters, gill microstructure and transcriptome of fat greenling Hexagrammos otakii. Aquaculture, 531, 735945.
  • Zhu, H., Liu, Z., Gao, F., Lu, M., Liu, Y., Su, H., Ma, D., Ke, X., Wang, M., & Cao, J. (2018). Characterization and expression of Na+/K+-ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 224, 1–10.

Osmotic and Adaptive Challenges: Physiological and Biochemical Responses of Fish to Increased Salinity

Yıl 2025, Cilt: 21 Sayı: 4, 350 - 363
https://doi.org/10.22392/actaquatr.1658565

Öz

Climate change is known to affect abiotic factors in coastal and marine ecosystems. The increase in salinity, caused by climate change-related factors that raise soluble salts above optimal levels, leads to acute stress. This condition can affect the tissues and organs of aquatic animals. In chronic stress conditions, organisms become entirely insensitive to stress factors or organisms may either develop tolerance, resulting in altered growth and reproduction rates. Fish can be examined as bioindicators to monitor salt fluctuations, which may cause osmotic stress at the cellular level, and molecular and biochemical changes that are induced via the production of reactive oxygen species (ROS). In addition, enzymatic activities are particularly affected in mitochondrial functions. Although increasing salinity presents a positive picture in some freshwater fish species by supporting embryonic and larval development and preventing some diseases, species with lower adaptability may be adversely affected by excessive salinity. When examining the effects of salinity stress, analysis of energy metabolism during its acute phase is a common preferred approach due to its rapid and measurable indicators. With the increase in salinity, differences occur at the cellular and hormonal levels (e.g., cortisol, prolactin), reproduction, growth, and development processes. Tolerance and adaptation abilities vary depending on whether they are euryhaline or stenohaline fish species. Advanced analytical methods such as omics techniques, metabolic profiling, and imaging techniques are needed to obtain more detailed results in this field.

Kaynakça

  • Agrahari, S., & Gopal, K. (2009). Retracted: Fluctuations of certain biochemical constituents and markers enzymes as a consequence of monocrotophos toxicity in the edible freshwater fish, channa punctatus. Elsevier.
  • Akbulut, C., Kaymak, G., Esmer, H. E., Yön, N. D., & Kayhan, F. E. (2014). Oxidative stress mechanisms induced by heavy metals and pesticides in fish. Journal of Fisheries and Aquatic Sciences (Su Ürünleri Dergisi). 31(3), 155-160.
  • Barton, B. A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42(3), 517–525.
  • Beyenbach, K. W. (2004). Kidneys sans glomeruli. American Journal of Physiology-Renal Physiology, 286(5), F811–F827.
  • Bœuf, G., & Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4), 411–423.
  • Boutet, I., Ky, C. L. L., & Bonhomme, F. (2006). A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Gene, 379, 40–50.
  • Boyd, C. E., & Tucker, C. S. (2012). Pond aquaculture water quality management. Springer Science & Business Media.
  • Chainy, G. B. N., Paital, B., & Dandapat, J. (2016). An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica, (1), 6126570.
  • Ching, B., Chen, X. L., Yong, J. H. A., Wilson, J. M., Hiong, K. C., Sim, E. W. L., Wong, W. P., Lam, S. H., Chew, S. F., & Ip, Y. K. (2013). Increases in apoptosis, caspase activity and expression of p53 and bax, and the transition between two types of mitochondrion-rich cells, in the gills of the climbing perch, Anabas testudineus, during a progressive acclimation from freshwater to seawater. Frontiers in Physiology, 4, 135.
  • Chowdhury, S., & Saikia, S. K. (2020). Oxidative Stress in Fish: A Review. Journal of Scientific Research, 12(1).
  • Cloern, J. E., & Jassby, A. D. (2012). Drivers of change in estuarine‐coastal ecosystems: Discoveries from four decades of study in San Francisco Bay. Reviews of Geophysics, 50(4).
  • Davis, K. B., & Peterson, B. C. (2006). The effect of temperature, stress, and cortisol on plasma IGF-I and IGFBPs in sunshine bass. General and Comparative Endocrinology, 149(3), 219–225.
  • Dawood, M. A. O., & Sewilam, H. (2023). The combined effects of salinity and ammonia on the growth behavior, stress‐related markers, and hepato‐renal function of common carp (Cyprinus carpio). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 339(1), 74–82.
  • Deane, E. E., & Woo, N. Y. S. (2005). Cloning and characterization of sea bream Na+-K+-ATPase α and β subunit genes: in vitro effects of hormones on transcriptional and translational expression. Biochemical and Biophysical Research Communications, 331(4), 1229–1238.
  • Dmitrieva, N. I., Ferraris, J. D., Norenburg, J. L., & Burg, M. B. (2006). The saltiness of the sea breaks DNA in marine invertebrates: possible implications for animal evolution. Cell Cycle.
  • Elhakeem, A., & Elshorbagy, W. (2013). Evaluation of the long-term variability of seawater salinity and temperature in response to natural and anthropogenic stressors in the Arabian Gulf. Marine Pollution Bulletin, 76(1–2), 355–359.
  • Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85(1), 97–177.
  • Fiess, J. C., Kunkel-Patterson, A., Mathias, L., Riley, L. G., Yancey, P. H., Hirano, T., & Grau, E. G. (2007). Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(2), 252–264.
  • Geng, L., Tong, G., Jiang, H., & Xu, W. (2016). Effect of salinity and alkalinity on luciobarbus capito Gill Na+/K+‐ATPase enzyme activity, plasma ion concentration, and osmotic pressure. BioMed Research International, (1), 4605839.
  • Genz, J., McDonald, M. D., & Grosell, M. (2011). Concentration of MgSO4 in the intestinal lumen of Opsanus beta limits osmoregulation in response to acute hypersalinity stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(4), R895–R909.
  • Gonzalez, R. J. (2012). The physiology of hyper-salinity tolerance in teleost fish: a review. Journal of Comparative Physiology B, 182, 321–329.
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine. Oxford university press, USA.
  • Hawkins, L. J., & Storey, K. B. (2020). Advances and applications of environmental stress adaptation research. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 240, 110623.
  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., Hopfensperger, K. N., Lamers, L. P. M., & Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 1–43.
  • Hosseini, P., Vahabzade, H., Bourani, M. S., & Kazemi, R. (2011, December). The effects of salinity stress on hematocrit and hemoglobin in fingerling rainbow trout (Oncorhynchus mykiss) [Oral Presentation]. International Conference on Medical, Biological and Pharmaceutical Sciences (ICMBPS'2011) Pattaya, Thailand.
  • Hotos, G. N., & Vlahos, N. (1998). Salinity tolerance of Mugil cephalus and Chelon labrosus (Pisces: Mugilidae) fry in experimental conditions. Aquaculture, 167(3–4), 329–338.
  • Jarvis, P. L., & Ballantyne, J. S. (2003). Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum. Aquaculture, 219(1–4), 891–909.
  • Kammerer, B. D., Sardella, B. A., & Kültz, D. (2009). Salinity stress results in rapid cell cycle changes of tilapia (Oreochromis mossambicus) gill epithelial cells. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311(2), 80-90
  • Kang’ombe, J., & Brown, J. A. (2008). Effect of salinity on growth, feed utilization, and survival of Tilapia rendalli under laboratory conditions. Journal of Applied Aquaculture, 20(4), 256–271.
  • Kim, J.-H., Park, H.-J., Kim, K.-W., Hwang, I.-K., Kim, D.-H., Oh, C. W., Lee, J. S., & Kang, J.-C. (2017). Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish Physiology and Biochemistry, 43, 1421–1431.
  • Kızılkaya, S., Akpinar, G., Sesal, N. C., Kasap, M., Gokalsin, B., & Kayhan, F. E. (2023). Using proteomics, q-PCR and biochemical methods complementing as a multiapproach to elicit the crucial responses of zebrafish liver exposed to neonicotinoid pesticide. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 47(1), 101103.
  • Komoroske, L. M., Jeffries, K. M., Connon, R. E., Dexter, J., Hasenbein, M., Verhille, C., & Fangue, N. A. (2016). Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evolutionary Applications, 9(8), 963-981.
  • Küçük, S. (2013). The effects of salinity on growth of goldfish, Carassius auratus and crucian carp, Carassius carassius. African Journal of Biotechnology, 12(16).
  • Kültz, D. (2015). Physiological mechanisms used by fish to cope with salinity stress. The Journal of Experimental Biology, 218(12), 1907–1914.
  • Lamalakshmi Devi, E., Kumar, S., Basanta Singh, T., Sharma, S. K., Beemrote, A., Devi, C. P., Chongtham, S. K., Singh, C. H., Yumlembam, R. A., & Haribhushan, A. (2017). Adaptation strategies and defence mechanisms of plants during environmental stress. Medicinal Plants and Environmental Challenges, (pp. 359–413). Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_20
  • Laverty, G., & Skadhauge, E. (2012). Adaptation of teleosts to very high salinity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 163(1), 1–6.
  • Lee, S. Y., Lee, H. J., & Kim, Y. K. (2020). Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Scientific Reports, 10(1), 1987.
  • Lemarié, G., Baroiller, J. F., Clota, F., Lazard, J., & Dosdat, A. (2004). A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron. Aquaculture, 240(1–4), 575–587.
  • Lemos, M. F. L., Silva, C. S. E., Rato, L. D., Marques, A. F. S., Passos, R., Duarte, I. A., Duarte, B., Fonseca, V. F., & Novais, S. C. (2024). Assessing the euryhaline characteristics and metabolic responses of meagre (Argyrosomus regius) when reared under different salinities: Opportunities for aquaculture refinement. Aquaculture, 586, 740781.
  • Li, J., & Kültz, D. (2020). Proteomics of osmoregulatory responses in threespine stickleback gills. Integrative and Comparative Biology, 60(2), 304–317.
  • Liu, W., Zhao, C., Wang, P., Wang, S., Lin, H., & Qiu, L. (2018). The response of glutathione peroxidase 1 and glutathione peroxidase 7 under different oxidative stresses in black tiger shrimp, Penaeus monodon. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 217, 1–13.
  • Loro, V. L., Jorge, M. B., da Silva, K. R., & Wood, C. M. (2012). Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquatic Toxicology, 110, 187–193.
  • Martinez-Alvarez, R. M., Hidalgo, M. C., Domezain, A., Morales, A. E., García-Gallego, M., & Sanz, A. (2002). Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. Journal of Experimental Biology, 205(23), 3699–3706.
  • Narnaware, B. Y., Kelly, S., & Woo, N. Y. S. (2000). Effect of salinity and ration size on macrophage phagocytosis in juvenile black sea bream (Mylio macrocephalus). Journal of Applied Ichthyology, 16(2), 86-88.
  • Nguyen, T. V., Jung, H., Nguyen, T. M., Hurwood, D., & Mather, P. (2016). Evaluation of potential candidate genes involved in salinity tolerance in striped catfish (Pangasianodon hypophthalmus) using an RNA-Seq approach. Marine Genomics, 25, 75–88.
  • Nielsen, U. N., Wall, D. H., Adams, B. J., Virginia, R. A., Ball, B. A., Gooseff, M. N., & McKnight, D. M. (2012). The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere, 3(2), 1–15.
  • OECD. (2012). OECD Environmental Outlook to 2050. https://doi.org/10.1787/9789264122246-en
  • Ouyang, H., Deng, N., Xu, J., Huang, J., Han, C., Liu, D., Liu, S., Yan, B., Han, L., & Li, S. (2023). Effects of hyperosmotic stress on the intestinal microbiota, transcriptome, and immune function of mandarin fish (Siniperca chuatsi). Aquaculture, 563, 738901.
  • Paital, B., & Chainy, G. B. N. (2014). Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata. Journal of Thermal Biology, 41, 104–111.
  • Park, I.-S., Gil, H. W., & Oh, J. S. (2019). Changing salinity affects hematological and histological response in hybrids and hybrid triploids between river puffer, Takifugu obscurus and tiger puffer, T. rubripes. Development & Reproduction, 23(3), 239.
  • Paul, B. K., & Rashid, H. (2017). Salinity intrusion and impacts. Climatic Hazards in Coastal Bangladesh, 153–182.
  • Pelis, R. M., & McCormick, S. D. (2001). Effects of growth hormone and cortisol on Na+–K+–2Cl− cotransporter localization and abundance in the gills of Atlantic salmon. General and Comparative Endocrinology, 124(2), 134–143.
  • Politis, S. N., Mazurais, D., Servili, A., Zambonino-Infante, J. L., Miest, J. J., Tomkiewicz, J., & Butts, I. A. (2018). Salinity reduction benefits European eel larvae: Insights at the morphological and molecular level. PLoS One, 13(6), e0198294.
  • Portz, D. E., Woodley, C. M., & Cech, J. J. (2006). Stress-associated impacts of short-term holding on fishes. Reviews in Fish Biology and Fisheries, 16, 125–170.
  • Ramaglia, A. C., de Castro, L. M., & Augusto, A. (2018). Effects of ocean acidification and salinity variations on the physiology of osmoregulating and osmoconforming crustaceans. Journal of Comparative Physiology B, 188, 729–738.
  • Randazzo, B., Chemello, G., Tortarolo, I., Chiarello, G. L., Zalas, M., Santini, A., Liberatore, M., Liberatore, M., Selli, E., & Olivotto, I. (2017). A novel photocatalytic purification system for fish culture. Zebrafish, 14(5), 411–421.
  • Rauf, A., & Arain, N. (2014). Effects of salinity stress on some hematological parameters of Tilapia mossambicus (Peters. 1852). International Journal of Biology and Biotechnology, 11, 67–70.
  • Romero, L. M. (2004). Physiological stress in ecology: lessons from biomedical research. Trends in Ecology & Evolution, 19(5), 249–255.
  • Rosemore, B. J., & Welsh, C. A. (2012). The effects of rearing density, salt concentration, and incubation temperature on Japanese medaka (Oryzias latipes) embryo development. Zebrafish, 9(4), 185–190.
  • Sakamoto, T., & McCormick, S. D. (2006). Prolactin and growth hormone in fish osmoregulation. General and Comparative Endocrinology, 147(1), 24–30.
  • Sandra, O., Le Rouzic, P., Cauty, C., Edery, M., & Prunet, P. (2000). Expression of the prolactin receptor (tiPRL-R) gene in tilapia Oreochromis niloticus: tissue distribution and cellular localization in osmoregulatory organs. Journal of Molecular Endocrinology, 24(2), 215–224.
  • Sangiao-Alvarellos, S., Laiz-Carrion, R., Guzmán, J. M., Martín del Río, M. P., Miguez, J. M., Mancera, J. M., & Soengas, J. L. (2003). Acclimation of S. aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 285(4), R897–R907.
  • Schacht, B. E., Scarpa, J., Fox, J. M., & Vega, R. R. (2022). An Early Larval Feeding Protocol and Hypersaline Acclimation of Larval Spotted Seatrout. North American Journal of Aquaculture, 84(1), 83–94.
  • Schofield, P. J., Brown, M. E., & Fuller, P. L. (2006). Salinity tolerance of goldfish Carassius auratus L., a non-native fish in the United States. Florida Scientist, 258–268.
  • Scott, D. M., Wilson, R. W., & Brown, J. A. (2007). Can sunbleak Leucaspius delineatus or topmouth gudgeon Pseudorasbora parva disperse through saline waters? Journal of Fish Biology, 71, 70–86.
  • Shirangi, S. A., Kalbassi, M. R., Khodabandeh, S., Jafarian, H., Lorin-Nebel, C., Farcy, E., & Lignot, J.-H. (2016). Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish Physiology and Biochemistry, 42, 1741–1754.
  • Skjærven, K. H., Oveland, E., Mommens, M., Samori, E., Saito, T., Adam, A.-C., & Espe, M. (2020). Out-of-season spawning affects the nutritional status and gene expression in both Atlantic salmon female broodstock and their offspring. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 247, 110717.
  • Smith, D. C. W. (1956). The role of the endocrine organs in the salinity tolerance of trout. Mem Soc Endocrinol, 5, 83–101.
  • Stewart, H. A., Noakes, D. L. G., Cogliati, K. M., Peterson, J. T., Iversen, M. H., & Schreck, C. B. (2016). Salinity effects on plasma ion levels, cortisol, and osmolality in Chinook salmon following lethal sampling. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, 38–43.
  • Sun, S., Gong, C., Deng, C., Yu, H., Zheng, D., Wang, L., Sun, J., Song, F., & Luo, J. (2023). Effects of salinity stress on the growth performance, health status, and intestinal microbiota of juvenile Micropterus salmoides. Aquaculture, 576, 739888.
  • Tarkhani, R., & Imanpoor, M. R. (2012). Stress response of Carassius auratus to salt and formaldehyde exposure. World Journal of Fish and Marine Sciences, 4(2), 486–488.
  • Tian, Y., Wen, H., Qi, X., Zhang, X., Sun, Y., Li, J., He, F., Zhang, M., Zhang, K., & Yang, W. (2020). Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass. International Journal of Biological Macromolecules, 155, 50–60.
  • Tietze, S. M., & Gerald, G. W. (2016). Trade‐offs between salinity preference and antipredator behaviour in the euryhaline sailfin molly Poecilia latipinna. Journal of Fish Biology, 88(5), 1918–1931.
  • Tine, M., De Lorgeril, J., D’Cotta, H., Pepey, E., Bonhomme, F., Baroiller, J. F., & Durand, J.-D. (2008). Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes. Marine Genomics, 1(2), 37–46.
  • Tresguerres, M., Clifford, A., Harter, T., Roa, J., Thies, A., Yee, D., & Brauner, C. (2020). Acid‐base dependent regulation of cellular physiology in aquatic animals. Journal of Experimental Zoology A.
  • Turhan, D.Ö. (2023). Diklofenak Sodyumun Zebra Balığı (Danio rerio) Larvaları Üzerindeki Teratojenik ve Gelişimsel Toksisitesinin Değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(1), 183–191.
  • Vargas-Chacoff, L., Muñoz, J. L. P., Ocampo, D., Paschke, K., & Navarro, J. M. (2019). The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish Harpagifer antarcticus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 235, 131–137.
  • Wang, L., Wang, X., & Yin, S. (2016). Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata. PeerJ, 4, e2149.
  • Watanabe, W. O., Clark, J. H., Dunham, J. B., Wicklund, R. I., & Olla, B. L. (1990). Culture of Florida red tilapia in marine cages: the effect of stocking density and dietary protein on growth. Aquaculture, 90(2), 123–134.
  • Whitehead, A., Zhang, S., Roach, J. L., & Galvez, F. (2013). Common functional targets of adaptive micro‐and macro‐evolutionary divergence in killifish. Molecular Ecology, 22(14), 3780–3796.
  • Wilson, R. W., Wilson, J. M., & Grosell, M. (2002). Intestinal bicarbonate secretion by marine teleost fish—why and how? Biochimica et Biophysica Acta (BBA)-Biomembranes, 1566(1–2), 182–193.
  • Wood, C. M. (2011). Rapid regulation of Na+ and Cl-flux rates in killifish after acute salinity challenge. Journal of Experimental Marine Biology and Ecology, 409(1–2), 62–69.
  • Zhang, M., Sun, Y., Liu, Y., Qiao, F., Chen, L., Liu, W.-T., Du, Z., & Li, E. (2016). Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture, 454, 72–80.
  • Zhou, Z., Hu, F., Li, W., Yang, X., Hallerman, E., & Huang, Z. (2021). Effects of salinity on growth, hematological parameters, gill microstructure and transcriptome of fat greenling Hexagrammos otakii. Aquaculture, 531, 735945.
  • Zhu, H., Liu, Z., Gao, F., Lu, M., Liu, Y., Su, H., Ma, D., Ke, X., Wang, M., & Cao, J. (2018). Characterization and expression of Na+/K+-ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 224, 1–10.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji, Ekoloji (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Harika Eylül Esmer Duruel 0000-0002-0792-2062

Şeyma Kızılkaya 0000-0001-8065-217X

Figen Esin Kayhan 0000-0001-7754-1356

Erken Görünüm Tarihi 24 Kasım 2025
Yayımlanma Tarihi 25 Kasım 2025
Gönderilme Tarihi 15 Mart 2025
Kabul Tarihi 10 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 21 Sayı: 4

Kaynak Göster

APA Esmer Duruel, H. E., Kızılkaya, Ş., & Kayhan, F. E. (2025). Osmotic and Adaptive Challenges: Physiological and Biochemical Responses of Fish to Increased Salinity. Acta Aquatica Turcica, 21(4), 350-363. https://doi.org/10.22392/actaquatr.1658565