Derleme
BibTex RIS Kaynak Göster

Elektrikli Araç Şarj ve Haberleşme Protokollerinin Gözden Geçirilmesi

Yıl 2024, Cilt: 2 Sayı: 1, 50 - 79, 28.06.2024

Öz

Günümüzde küresel ısınma ve iklim değişikliği gibi etkenler çevresel farkındalığı artırmıştır. Buna istinaden çevresel, ekonomik ve kaynak kıtlığı gibi sebeplere bağlı olarak elektrikli araçlara olan talep her geçen gün artmaktadır. Bu doğrultuda dünya genelinde 2030’lara kadar 125 milyon elektrikli aracın yollarda olacağı tahmin edilmektedir. Elektrikli araç teknolojisinin şu ana kadar petrol kaynaklı yakıt tüketen araçlara göre geride kalmasının ana nedeni, bu alandaki teknolojinin henüz yeterli seviyeye ulaşamamasıdır. Özellikle batarya teknolojisinde güç yoğunluğu, güvenlik ve şarj süresi gibi etkenler bu durumu daha çok etkilemiştir. Ayrıca tüm elektrikli araçlar tarafından kullanılan ortak bir şarj ve haberleşme protokolü henüz kabul görmemiştir. Dahası orta gerilimden ve megawatt sınıfında şarj konusunda henüz bir standart dahi bulunmamaktadır. Bu doğrultuda batarya ve şarj sistemleri devamlı gelişmektedir. Bu çalışmada elektrikli araçların şarj sistemleri için kullanılan ulusal ve uluslararası standartlar incelenerek karşılaştırma yapılmıştır. Yaygın olarak kullanılan şarj standartları kablolu, kablosuz ve batarya değişimi olarak üçe ayrılmaktadır. CHAdeMO, GB/T, US -COMBO CSS1, EURO-COMBO CSS2, TESLA ve Chaoji gibi güncel kablolu şarj standartları incelenmiştir. Böylece, elektrikli araç şarj sistemlerinde kullanılan standartların genel özellikleri, elektriksel kabiliyetleri, bağlantı tipleri, haberleşme protokolü yapıları, hangi standardın hangi haberleşme protokolünü kullandığı ve bu haberleşme standartlarının genel yapıları incelenmiştir.

Kaynakça

  • Acharige, S. S. G., Haque, M. E., Arif, M. T., Hosseinzadeh, N., Hasan, K. N. & Oo, A. M. T. (2023). Review of Electric Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations. IEEE Access, 11, 41218-41255. doi:10.1109/ACCESS.2023.3267164
  • Ahmad, F., Alam, M. & Mohammad, A. (2017). Developments in xEVs Charging Infrastructure and Energy Management System for Smart Microgrids Including xEVs. Sustainable Cities and Society, 35, 552-564. doi:10.1016/j.scs.2017.09.008\
  • Ahmed, I., ElGhanam, E. A., Hassan, M. S. & Osman, A. (2020). Study of the Feasibility of Using Microwave Power Transfer for Dynamic Wireless Electric Vehicle Charging, IEEE Transportation Electrification Conference & Expo (ITEC), 23-26 June 2020, Chicago, IL, USA
  • BS EN IEC 61851-1:2019: Electric vehicle conductive charging system General requirements, European Standards. Retrieved from https://www.en-standard.eu/bs-en-iec-61851-1-2019-electric-vehicle-conductive-charging-system-general-requirements/, (2024).
  • Boyd, J. (2019). China and Japan drive a global EV charging effort: The new standard will be backward compatible with select charging stations - [News]. IEEE Spectrum, 56, 12-13. doi:10.1109/MSPEC.2019.8635804
  • Chan, C. C. (2013). The Rise & Fall of Electric Vehicles in 1828–1930: Lessons Learned [Scanning Our Past], Proceedings of the IEEE, 101(1), 206-212. doi:10.1109/JPROC.2012.2228370.
  • Corrigan, S. (2016). Introduction to the Controller Area Network (CAN), Texas Instruments Aplication Report, 1-17, Retrieved from https://www.ti.com/lit/an/sloa101b/sloa101b.pdf.
  • Ekici, Y. E., Dikmen, I. C., Nurmuhammed, M. & Karadağ, T. (2021). A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology, 5(4), 316-330.
  • Ferreira, H. C., Lampe, L., Newbury, J. & Swart, T. G. (2011). Power Line Communications Theory and Applications for Narrowband and Broadband Communications Over Power Lines, John Wiley & Sons, ISBN: 978-1-119-95628-0, West Sussex, United Kingdom.
  • GB/T 20234.1-2015: Connection set of conductive charging for electric vehicles – Part 1: General requirements, National Standard of the People's Republic of China. Retrieved from https://www.chinesestandard.net/PDF.aspx/GBT20234.1-2015, (2024).
  • GB/T 20234.2-2015: Connection set of conductive charging for electric vehicles – Part 2: AC Chaging Coupler, National Standard of the People's Republic of China. Retrieved from https://www.chinesestandard.net/Related.aspx/GBT20234.2-2015, (2024).
  • GB/T 20234.3-2015: Connection set of conductive charging for electric vehicles – Part 3: DC Chaging Coupler, National Standard of the People's Republic of China. Retrieved from https://www.chinesestandard.net/PDF.aspx/GBT20234.3-2015, (2024).
  • Grbovic, P. J. (2013). Ultra-Capacitors in Power Conversion Systems: Applications, Analysis, and Design from Theory to Practice. Wiley-IEEE Press, ISBN: 978-1-118-35626-5, West Sussex, United Kingdom.
  • Herron, D. (2019). Types of electric car charging connectors, and compatibility: A Field Guide to electric vehicle service equipment. Retrieved from https://greentransportation.info/ev-charging/range-confidence/chap4-charging/4-evse-field-guide.html
  • Hongzuo, L., Zhang, Y., Hu, Y., Tse, Z. & Wu, J. (2021). Laser Power Transmission and Its Application in Laser-Powered Electrical Motor Drive: A Review. Power Electronics and Drives, 6, 167-184. doi:10.2478/pead-2021-0010
  • Hu, B., Li, H., Li, T., Wang, H., Zhou, Y., Zhao, X. & Ghannouchi, F. (2021). A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier. Energy Reports, 7, 1154-1161. doi:https://doi.org/10.1016/j.egyr.2020.12.026
  • Huang, L. & Hu, A. (2015). Defining the mutual coupling of capacitive power transfer for wireless power transfer. Electronics Letters, (51) 22, 1806–1807. doi:10.1049/el.2015.2709
  • IEC 63245-1:2021: Spatial wireless power transfer based on multiple magnetic resonances - Part 1: Requirements, International Electrotechnical Commission. https://webstore.iec.ch/publication/64142, (2024).
  • IEC/IEEE 62704-2:2017: Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 2: Specific requirements for finite difference time domain (FDTD) modelling of exposure from vehicle mounted antennas, International Electrotechnical Commission. Retrieved from https://webstore.iec.ch/publication/31306, (2024).
  • IEEE C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz, IEEE Standards Association. Retrieved from https://standards.ieee.org/ieee/C95.1/4940/, (2024).
  • IEEE 1901-2020: EEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications, IEEE Standards Association. Retrieved from https://standards.ieee.org/ieee/1901/7598/, (2024).
  • INL–Idaho National Laboratory, (2010). Francfort, J. Electric vehicle charging levels and requirements overview, clean cities. Idaho, USA, INL/MIS-10-20653, (29p) https://avt.inl.gov/sites/default/files/pdf/presentations/CleanCitiesWedinarCharging12-15-10.pdf.
  • ISO 11898-1:2024: Road vehicles — Controller area network (CAN), Part 1: Data link layer and physical coding sublayer, International Standards. Retrieved from https://www.iso.org/standard/86384.html.
  • ISO 15118-1:2019: Road Vehicles - Vehicle To Grid Communication Interface - Part 1: General Information and Use-Case Definition, International Standards. https://webstore.iec.ch/publication/29264, (2024).
  • ISO 15118-3:2015: Road vehicles — Vehicle to grid communication interface, Part 3: Physical and data link layer requirements, International Standards. Retrieved from https://www.iso.org/standard/59675.html, (2024).
  • ISO 15118-8:2020: Road vehicles — Vehicle to grid communication interface, Part 8: Physical layer and data link layer requirements for wireless communication, International Standards. https://webstore.iec.ch/publication/66460, (2024).
  • ISO 15118-9:2022: Road vehicles — Vehicle to grid communication interface, Part 9: Physical and data link layer conformance test for wireless communication, International Standards. Retrieved from https://webstore.iec.ch/publication/62035, (2024).
  • ISO 15118-20:2022: Road vehicles — Vehicle to grid communication interface, Part 20: 2nd generation network layer and application layer requirements, International Standards. Retrieved from https://webstore.iec.ch/publication/26347, (2024).
  • Jeon, S. J. & Seo, D.-W. (2022). Effect of Additional Transmitting Coils on Transfer Distance in Multiple-Transmitter Wireless Power Transfer System. IEEE Access, 10, 9174-9183.
  • JEVS G106-2000: EV inductive charging system: General requirements, Japan Electric Vehicle Association Standards. Retrieved from https://batterystandards.info/standard/jevs-g106, (2024).
  • Kalwar, K. A., Aamir, M. & Mekhilef, S. (2018). A design method for developing a high misalignment tolerant wireless charging system for electric vehicles. Measurement, 118, 237-245. doi:https://doi.org/10.1016/j.measurement.2017.12.013
  • Kerem, A. (2014). Elektrikli araç teknolojisinin gelişimi ve gelecek beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1-13.
  • Kersten, A., Rodionov, A., Kuder, M., Hammarstrom, T., Lesnicar, A. & Thiringer, T. (2021). Review of technical design and safety requirements for vehicle chargers and their ınfrastructure according to national swedish and harmonized european standards. Energies, 14, 3301. doi:10.3390/en14113301
  • Klontz, K. W., Esser, A., Bacon, R. R., Divan, D. M., Novotny, D. W. & Lorenz, R. D. (1993). An electric vehicle charging system with 'universal' inductive interface, Power Conversion Conference, 19-21 April 1993, Yokohama, Japan. doi: 10.1109/PCCON.1993.264219.
  • Koch, M. (2015). Power line communications and hybrid systems for home networks: ın ecological design of smart home networks, woodhead publishing, Elsevier, ISBN: 978-1-78242-124-5, Cambridge,United Kingdom.
  • Lampe, L., Tonello, A. M. & Swart, T. G. (2016). Power line communications: principles, standards and applications from multimedia to smart grid, John Wiley & Sons, ISBN: 978-1-118-67677-6, West Sussex, United Kingdom.
  • Lennartson, K. (2015). Comparing CAN FD with Classical CAN. Retrieved from https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
  • Lita, I. & Visan, D. A. (2012). Power line communication module for distributed control systems, 35th International Spring Seminar on Electronics Technology, 9-13 May 2012, Bad Aussee, Austria. doi: 10.1109/ISSE.2012.6273173
  • Liu Yong Dong, M. D. Y. (2020). ChaoJi Standard. Retrieved from https://www.chademo.com/wp2016/wp-content/uploads/ChaoJi202006/ChaoJiTechnicalPresentation0619.pdf
  • Machura, P., De Santis, V. & Li, Q. (2020). Driving Range of Electric Vehicles Charged by Wireless Power Transfer. IEEE Transactions on Vehicular Technology, 69 (6), 5968-5982. doi: 10.1109/TVT.2020.2984386
  • Mahesh, A., Chokkalingam, B. & Mihet-Popa, L. (2021). Inductive Wireless Power Transfer Charging for Electric Vehicles–A Review. IEEE Access, 9, 137667-137713. doi: 10.1109/ACCESS.2021.3116678
  • Manivannan, B., Kathirvelu, P. & Balasubramanian, R. (2023). A review on wireless charging methods – The prospects for future charging of EV. Renewable Energy Focus, 46, 68-87. doi:https://doi.org/10.1016/j.ref.2023.06.002
  • Mohamed, A. A. S., Lashway, C. R. & Mohammed, O. (2017). Modeling and Feasibility Analysis of Quasi-Dynamic WPT System for EV Applications. IEEE Transactions on Transportation Electrification, 3(2), 343-353. doi:10.1109/TTE.2017.2682111
  • Musavi, F. & Eberle, W. (2014). Overview of wireless power transfer technologies for electric vehicle battery charging. Power Electronics, IET, 7, 60-66. doi:10.1049/iet-pel.2013.0047
  • Musavi, F., Edington, M. & Eberle, W. (2012). Wireless power transfer: A survey of EV battery charging technologies, IEEE Energy Conversion Congress and Exposition (ECCE), 15-20 Sept. 2012, Raleigh, NC, USA. doi: 10.1109/ECCE.2012.6342593
  • National Academies of Sciences, E. & Medicine. (2021). Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy—2025-2035. The National Academies Press, ISBN: 978-0-309-37122-3, Washington DC, USA. doi: 10.17226/26092
  • NI Feng, T. I. (2023). A Unified Future-Oriented Charging Programme. Retrieved from https://www.chademo.com/wp2016/wp-content/uploads/ChaoJi202006/ChaoJiTechnicalPresentation0619.pdf
  • Panchal, C., Stegen, S. & Lu, J. (2018). Review of static and dynamic wireless electric vehicle charging system. Engineering Science and Technology, an International Journal, 21(5), 922-937. doi:https://doi.org/10.1016/j.jestch.2018.06.015
  • Qiu, C., Chau, K. T., Liu, C. & Chan, C. C. (2013). Overview of wireless power transfer for electric vehicle charging, World Electric Vehicle Symposium and Exhibition (EVS27), 17-20 Nov. 2013, Barcelona, Spain. Doi: 10.1109/EVS.2013.6914731
  • Rachid, A., Fadil, H., Gaouzi, K., Rachid, K., Abdellah, L., Idrissi, Z. & Koundi, M. (2022). Electric Vehicle Charging Systems: Comprehensive Review. Energies, 16 (1) 255, 1-38. doi:10.3390/en16010255
  • SAE J2954-202010: Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology, SAE International. Retrieved from https://www.sae.org/standards/content/j2954_202010/, (2024).
  • Sayin, A. A. & Yüksel, İ. (2011). Elektrikli Renault Fluence Aracı, Lityum-İyon Bataryasının Modellenmesi ve Batarya Yönetimi. Engineer & the Machinery Magazine, 52 (615), 75-82.
  • Shanmugam, Y., Rajamanickam, N., Vishnuram, P., Bajaj, M., Aboras, K., Thakur, P. & Kitmo. (2022). A Systematic Review of Dynamic Wireless Charging System for Electric Transportation. IEEE Access, 10, 133617-133642. doi:10.1109/ACCESS.2022.3227217
  • Singh, M. (2013). Green energy for metropolitan transport. International Journal on Power Engineering and Energy, 4 (1), 338-342.
  • Triviño, A., González-González, J. M. & Aguado, J. A. (2021). Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies, 14 (6) 1547), 1-21. doi: 10.3390/en14061547
  • Typhoon HIL. (2023). CAN Bus protocol, Typhoon HIL Documentation. Retrieved from https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/can_bus_protocol.html, (2024).
  • Unal, C., Yirik, E., Ünal, E., Cuma, M., Onur, B. & Tümay, M. (2018). A Review of Charging Technologies for Commercial Electric Vehicles. International Journal of Advances on Automotive and Technology, 2 (1), 61-70. doi:10.15659/ijaat.18.01.892
  • Ünlü, N., Karahan, Ş., Tür, O., Uçarol, H., Özsu, E., Yazar, A. & Tırıs, M. (2003). Elektrikli Araçlar, TÜBİTAK Marmara Araştırma Merkezi Enerji Sistemleri ve Çevre Araştırma Enstitüsü, ISBN: 975-403-306-4, Gebze, Kocaeli, Turkiye.
  • Yang, L., Zhang, Y., Li, X., Jian, J., Wang, Z., Huang, J. &Tong, X. (2021). Analysis and design of four-plate capacitive wireless power transfer system for undersea applications. CES Transactions on Electrical Machines and Systems, 5 (3), 202-211. doi:10.30941/CESTEMS.2021.00024
  • Zhang, B., Carlson, R. B., Galigekere, V. P., Onar, O. C., Mohammad, M., Dickerson, C. C. & Walker, L. K. (2021). Quasi-Dynamic Electromagnetic Field Safety Analysis and Mitigation for High-Power Dynamic Wireless Charging of Electric Vehicles, IEEE Transportation Electrification Conference & Expo (ITEC), 21-25 June 2021, Chicago, IL, USA. doi: 10.1109/ITEC51675.2021.9490192
  • Zhang, L., Yang, Y., Jiang, Z., Chen, Q., Yan, Q., Wu, Z. &Chen, H. (2021). Demonstration of topological wireless power transfer. Science Bulletin, 66 (10), 974-980. doi:10.1016/j.scib.2021.01.028

Review of the Charging System and Communication Protocols of the Electric Vehicles

Yıl 2024, Cilt: 2 Sayı: 1, 50 - 79, 28.06.2024

Öz

Today, factors like global warming, climate change have heightened environmental awareness. Consequently, the demand for electric vehicles is steadily rising due to considerations such as environmental impact, economic factors. In this regard, it is estimated that 125 million electric vehicles will be on the roads worldwide by 2030. The primary reason for the lag in electric vehicle technology is that the technology in this field has not yet reached a sufficient level. Especially in battery technology, factors such as power density, safety and charging time have affected this situation. Additionally, a common charging and communication standard has yet to be developed. Furthermore, there is no a standard for medium voltage and megawatt class charging system. In this study, international standards used for charging systems of electric vehicles were studied. Commonly used charging standards are divided into three subdivisions: wired, wireless and battery replacement. Also, charging standards such as CHAdeMO, GB/T, US -COMBO CSS1, EURO-COMBO CSS2, TESLA and Chaoji are studied. These standards categorized in terms of maximum power they provide, connector type, and communication protocols. Hence, the general characteristics of the standards, their electrical capabilities, connection types, communication protocol structures, and the general structures of these communication standards are introduced.

Kaynakça

  • Acharige, S. S. G., Haque, M. E., Arif, M. T., Hosseinzadeh, N., Hasan, K. N. & Oo, A. M. T. (2023). Review of Electric Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations. IEEE Access, 11, 41218-41255. doi:10.1109/ACCESS.2023.3267164
  • Ahmad, F., Alam, M. & Mohammad, A. (2017). Developments in xEVs Charging Infrastructure and Energy Management System for Smart Microgrids Including xEVs. Sustainable Cities and Society, 35, 552-564. doi:10.1016/j.scs.2017.09.008\
  • Ahmed, I., ElGhanam, E. A., Hassan, M. S. & Osman, A. (2020). Study of the Feasibility of Using Microwave Power Transfer for Dynamic Wireless Electric Vehicle Charging, IEEE Transportation Electrification Conference & Expo (ITEC), 23-26 June 2020, Chicago, IL, USA
  • BS EN IEC 61851-1:2019: Electric vehicle conductive charging system General requirements, European Standards. Retrieved from https://www.en-standard.eu/bs-en-iec-61851-1-2019-electric-vehicle-conductive-charging-system-general-requirements/, (2024).
  • Boyd, J. (2019). China and Japan drive a global EV charging effort: The new standard will be backward compatible with select charging stations - [News]. IEEE Spectrum, 56, 12-13. doi:10.1109/MSPEC.2019.8635804
  • Chan, C. C. (2013). The Rise & Fall of Electric Vehicles in 1828–1930: Lessons Learned [Scanning Our Past], Proceedings of the IEEE, 101(1), 206-212. doi:10.1109/JPROC.2012.2228370.
  • Corrigan, S. (2016). Introduction to the Controller Area Network (CAN), Texas Instruments Aplication Report, 1-17, Retrieved from https://www.ti.com/lit/an/sloa101b/sloa101b.pdf.
  • Ekici, Y. E., Dikmen, I. C., Nurmuhammed, M. & Karadağ, T. (2021). A Review on Electric Vehicle Charging Systems and Current Status in Turkey. International Journal of Automotive Science and Technology, 5(4), 316-330.
  • Ferreira, H. C., Lampe, L., Newbury, J. & Swart, T. G. (2011). Power Line Communications Theory and Applications for Narrowband and Broadband Communications Over Power Lines, John Wiley & Sons, ISBN: 978-1-119-95628-0, West Sussex, United Kingdom.
  • GB/T 20234.1-2015: Connection set of conductive charging for electric vehicles – Part 1: General requirements, National Standard of the People's Republic of China. Retrieved from https://www.chinesestandard.net/PDF.aspx/GBT20234.1-2015, (2024).
  • GB/T 20234.2-2015: Connection set of conductive charging for electric vehicles – Part 2: AC Chaging Coupler, National Standard of the People's Republic of China. Retrieved from https://www.chinesestandard.net/Related.aspx/GBT20234.2-2015, (2024).
  • GB/T 20234.3-2015: Connection set of conductive charging for electric vehicles – Part 3: DC Chaging Coupler, National Standard of the People's Republic of China. Retrieved from https://www.chinesestandard.net/PDF.aspx/GBT20234.3-2015, (2024).
  • Grbovic, P. J. (2013). Ultra-Capacitors in Power Conversion Systems: Applications, Analysis, and Design from Theory to Practice. Wiley-IEEE Press, ISBN: 978-1-118-35626-5, West Sussex, United Kingdom.
  • Herron, D. (2019). Types of electric car charging connectors, and compatibility: A Field Guide to electric vehicle service equipment. Retrieved from https://greentransportation.info/ev-charging/range-confidence/chap4-charging/4-evse-field-guide.html
  • Hongzuo, L., Zhang, Y., Hu, Y., Tse, Z. & Wu, J. (2021). Laser Power Transmission and Its Application in Laser-Powered Electrical Motor Drive: A Review. Power Electronics and Drives, 6, 167-184. doi:10.2478/pead-2021-0010
  • Hu, B., Li, H., Li, T., Wang, H., Zhou, Y., Zhao, X. & Ghannouchi, F. (2021). A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier. Energy Reports, 7, 1154-1161. doi:https://doi.org/10.1016/j.egyr.2020.12.026
  • Huang, L. & Hu, A. (2015). Defining the mutual coupling of capacitive power transfer for wireless power transfer. Electronics Letters, (51) 22, 1806–1807. doi:10.1049/el.2015.2709
  • IEC 63245-1:2021: Spatial wireless power transfer based on multiple magnetic resonances - Part 1: Requirements, International Electrotechnical Commission. https://webstore.iec.ch/publication/64142, (2024).
  • IEC/IEEE 62704-2:2017: Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 2: Specific requirements for finite difference time domain (FDTD) modelling of exposure from vehicle mounted antennas, International Electrotechnical Commission. Retrieved from https://webstore.iec.ch/publication/31306, (2024).
  • IEEE C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz, IEEE Standards Association. Retrieved from https://standards.ieee.org/ieee/C95.1/4940/, (2024).
  • IEEE 1901-2020: EEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications, IEEE Standards Association. Retrieved from https://standards.ieee.org/ieee/1901/7598/, (2024).
  • INL–Idaho National Laboratory, (2010). Francfort, J. Electric vehicle charging levels and requirements overview, clean cities. Idaho, USA, INL/MIS-10-20653, (29p) https://avt.inl.gov/sites/default/files/pdf/presentations/CleanCitiesWedinarCharging12-15-10.pdf.
  • ISO 11898-1:2024: Road vehicles — Controller area network (CAN), Part 1: Data link layer and physical coding sublayer, International Standards. Retrieved from https://www.iso.org/standard/86384.html.
  • ISO 15118-1:2019: Road Vehicles - Vehicle To Grid Communication Interface - Part 1: General Information and Use-Case Definition, International Standards. https://webstore.iec.ch/publication/29264, (2024).
  • ISO 15118-3:2015: Road vehicles — Vehicle to grid communication interface, Part 3: Physical and data link layer requirements, International Standards. Retrieved from https://www.iso.org/standard/59675.html, (2024).
  • ISO 15118-8:2020: Road vehicles — Vehicle to grid communication interface, Part 8: Physical layer and data link layer requirements for wireless communication, International Standards. https://webstore.iec.ch/publication/66460, (2024).
  • ISO 15118-9:2022: Road vehicles — Vehicle to grid communication interface, Part 9: Physical and data link layer conformance test for wireless communication, International Standards. Retrieved from https://webstore.iec.ch/publication/62035, (2024).
  • ISO 15118-20:2022: Road vehicles — Vehicle to grid communication interface, Part 20: 2nd generation network layer and application layer requirements, International Standards. Retrieved from https://webstore.iec.ch/publication/26347, (2024).
  • Jeon, S. J. & Seo, D.-W. (2022). Effect of Additional Transmitting Coils on Transfer Distance in Multiple-Transmitter Wireless Power Transfer System. IEEE Access, 10, 9174-9183.
  • JEVS G106-2000: EV inductive charging system: General requirements, Japan Electric Vehicle Association Standards. Retrieved from https://batterystandards.info/standard/jevs-g106, (2024).
  • Kalwar, K. A., Aamir, M. & Mekhilef, S. (2018). A design method for developing a high misalignment tolerant wireless charging system for electric vehicles. Measurement, 118, 237-245. doi:https://doi.org/10.1016/j.measurement.2017.12.013
  • Kerem, A. (2014). Elektrikli araç teknolojisinin gelişimi ve gelecek beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1-13.
  • Kersten, A., Rodionov, A., Kuder, M., Hammarstrom, T., Lesnicar, A. & Thiringer, T. (2021). Review of technical design and safety requirements for vehicle chargers and their ınfrastructure according to national swedish and harmonized european standards. Energies, 14, 3301. doi:10.3390/en14113301
  • Klontz, K. W., Esser, A., Bacon, R. R., Divan, D. M., Novotny, D. W. & Lorenz, R. D. (1993). An electric vehicle charging system with 'universal' inductive interface, Power Conversion Conference, 19-21 April 1993, Yokohama, Japan. doi: 10.1109/PCCON.1993.264219.
  • Koch, M. (2015). Power line communications and hybrid systems for home networks: ın ecological design of smart home networks, woodhead publishing, Elsevier, ISBN: 978-1-78242-124-5, Cambridge,United Kingdom.
  • Lampe, L., Tonello, A. M. & Swart, T. G. (2016). Power line communications: principles, standards and applications from multimedia to smart grid, John Wiley & Sons, ISBN: 978-1-118-67677-6, West Sussex, United Kingdom.
  • Lennartson, K. (2015). Comparing CAN FD with Classical CAN. Retrieved from https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
  • Lita, I. & Visan, D. A. (2012). Power line communication module for distributed control systems, 35th International Spring Seminar on Electronics Technology, 9-13 May 2012, Bad Aussee, Austria. doi: 10.1109/ISSE.2012.6273173
  • Liu Yong Dong, M. D. Y. (2020). ChaoJi Standard. Retrieved from https://www.chademo.com/wp2016/wp-content/uploads/ChaoJi202006/ChaoJiTechnicalPresentation0619.pdf
  • Machura, P., De Santis, V. & Li, Q. (2020). Driving Range of Electric Vehicles Charged by Wireless Power Transfer. IEEE Transactions on Vehicular Technology, 69 (6), 5968-5982. doi: 10.1109/TVT.2020.2984386
  • Mahesh, A., Chokkalingam, B. & Mihet-Popa, L. (2021). Inductive Wireless Power Transfer Charging for Electric Vehicles–A Review. IEEE Access, 9, 137667-137713. doi: 10.1109/ACCESS.2021.3116678
  • Manivannan, B., Kathirvelu, P. & Balasubramanian, R. (2023). A review on wireless charging methods – The prospects for future charging of EV. Renewable Energy Focus, 46, 68-87. doi:https://doi.org/10.1016/j.ref.2023.06.002
  • Mohamed, A. A. S., Lashway, C. R. & Mohammed, O. (2017). Modeling and Feasibility Analysis of Quasi-Dynamic WPT System for EV Applications. IEEE Transactions on Transportation Electrification, 3(2), 343-353. doi:10.1109/TTE.2017.2682111
  • Musavi, F. & Eberle, W. (2014). Overview of wireless power transfer technologies for electric vehicle battery charging. Power Electronics, IET, 7, 60-66. doi:10.1049/iet-pel.2013.0047
  • Musavi, F., Edington, M. & Eberle, W. (2012). Wireless power transfer: A survey of EV battery charging technologies, IEEE Energy Conversion Congress and Exposition (ECCE), 15-20 Sept. 2012, Raleigh, NC, USA. doi: 10.1109/ECCE.2012.6342593
  • National Academies of Sciences, E. & Medicine. (2021). Assessment of Technologies for Improving Light-Duty Vehicle Fuel Economy—2025-2035. The National Academies Press, ISBN: 978-0-309-37122-3, Washington DC, USA. doi: 10.17226/26092
  • NI Feng, T. I. (2023). A Unified Future-Oriented Charging Programme. Retrieved from https://www.chademo.com/wp2016/wp-content/uploads/ChaoJi202006/ChaoJiTechnicalPresentation0619.pdf
  • Panchal, C., Stegen, S. & Lu, J. (2018). Review of static and dynamic wireless electric vehicle charging system. Engineering Science and Technology, an International Journal, 21(5), 922-937. doi:https://doi.org/10.1016/j.jestch.2018.06.015
  • Qiu, C., Chau, K. T., Liu, C. & Chan, C. C. (2013). Overview of wireless power transfer for electric vehicle charging, World Electric Vehicle Symposium and Exhibition (EVS27), 17-20 Nov. 2013, Barcelona, Spain. Doi: 10.1109/EVS.2013.6914731
  • Rachid, A., Fadil, H., Gaouzi, K., Rachid, K., Abdellah, L., Idrissi, Z. & Koundi, M. (2022). Electric Vehicle Charging Systems: Comprehensive Review. Energies, 16 (1) 255, 1-38. doi:10.3390/en16010255
  • SAE J2954-202010: Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology, SAE International. Retrieved from https://www.sae.org/standards/content/j2954_202010/, (2024).
  • Sayin, A. A. & Yüksel, İ. (2011). Elektrikli Renault Fluence Aracı, Lityum-İyon Bataryasının Modellenmesi ve Batarya Yönetimi. Engineer & the Machinery Magazine, 52 (615), 75-82.
  • Shanmugam, Y., Rajamanickam, N., Vishnuram, P., Bajaj, M., Aboras, K., Thakur, P. & Kitmo. (2022). A Systematic Review of Dynamic Wireless Charging System for Electric Transportation. IEEE Access, 10, 133617-133642. doi:10.1109/ACCESS.2022.3227217
  • Singh, M. (2013). Green energy for metropolitan transport. International Journal on Power Engineering and Energy, 4 (1), 338-342.
  • Triviño, A., González-González, J. M. & Aguado, J. A. (2021). Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review. Energies, 14 (6) 1547), 1-21. doi: 10.3390/en14061547
  • Typhoon HIL. (2023). CAN Bus protocol, Typhoon HIL Documentation. Retrieved from https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/can_bus_protocol.html, (2024).
  • Unal, C., Yirik, E., Ünal, E., Cuma, M., Onur, B. & Tümay, M. (2018). A Review of Charging Technologies for Commercial Electric Vehicles. International Journal of Advances on Automotive and Technology, 2 (1), 61-70. doi:10.15659/ijaat.18.01.892
  • Ünlü, N., Karahan, Ş., Tür, O., Uçarol, H., Özsu, E., Yazar, A. & Tırıs, M. (2003). Elektrikli Araçlar, TÜBİTAK Marmara Araştırma Merkezi Enerji Sistemleri ve Çevre Araştırma Enstitüsü, ISBN: 975-403-306-4, Gebze, Kocaeli, Turkiye.
  • Yang, L., Zhang, Y., Li, X., Jian, J., Wang, Z., Huang, J. &Tong, X. (2021). Analysis and design of four-plate capacitive wireless power transfer system for undersea applications. CES Transactions on Electrical Machines and Systems, 5 (3), 202-211. doi:10.30941/CESTEMS.2021.00024
  • Zhang, B., Carlson, R. B., Galigekere, V. P., Onar, O. C., Mohammad, M., Dickerson, C. C. & Walker, L. K. (2021). Quasi-Dynamic Electromagnetic Field Safety Analysis and Mitigation for High-Power Dynamic Wireless Charging of Electric Vehicles, IEEE Transportation Electrification Conference & Expo (ITEC), 21-25 June 2021, Chicago, IL, USA. doi: 10.1109/ITEC51675.2021.9490192
  • Zhang, L., Yang, Y., Jiang, Z., Chen, Q., Yan, Q., Wu, Z. &Chen, H. (2021). Demonstration of topological wireless power transfer. Science Bulletin, 66 (10), 974-980. doi:10.1016/j.scib.2021.01.028
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Depolama
Bölüm Derlemeler
Yazarlar

Mehmet Burak Arslan 0009-0000-9378-9052

Şaban Özdemir 0000-0003-3910-0458

Yayımlanma Tarihi 28 Haziran 2024
Gönderilme Tarihi 20 Aralık 2023
Kabul Tarihi 8 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 1

Kaynak Göster

APA Arslan, M. B., & Özdemir, Ş. (2024). Review of the Charging System and Communication Protocols of the Electric Vehicles. Artvin Çoruh Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 2(1), 50-79.