Araştırma Makalesi
BibTex RIS Kaynak Göster

Dynamic Efficiency Measurement with the Fuzzy Malmquist Productivity Index: ÇAYKUR Case

Yıl 2021, , 1 - 31, 31.07.2021
https://doi.org/10.22466/acusbd.866589

Öz

One of the most important issues in the management of businesses is performance evaluation. Measuring the efficiency organizations and providing appropriate solutions for inefficient units ensures increased productivity in units. Public and private tea companies operating in Turkey need to make strategic decisions on efficient resource utilization in order to increase their competitiveness in both the national and global markets. In this study, the increase or decrease in the efficiency of the General Directorate of Tea Enterprises (ÇAYKUR) factories, whose share in tea production in Turkey is about 50%, were investigated on an annual basis. In the research, the Malmquist Total Factor Productivity Index using exact data and Jahanshahloo, Lotfi & Valami Model using interval data were applied. The study contributes to the literature due to the limited number of studies to measure the change in efficiency of tea businesses in an uncertain environment. In addition, the results of the study are expected to assist managers and other stakeholders in the tea sector in strategy development and decision making.

Kaynakça

  • Abbasi, M. & Kaviani, M.A. (2016). Operational efficiency-based ranking framework using uncertain DEA methods: an application to the cement industry in Iran. Manag. Decis. 54(4), 902-928. https://doi.org/10.1108/MD-09-2015-0413
  • Aktan, H. E., & Samut, P. K. (2013). Analysis of the efficiency determinants of Turkey's Agriculture Sector by two-stage Data Envelopment Analysis (DEA). Ege Akademik Bakış Dergisi, 13(1), 21-28. https://doi.org/10.21121/eab.2013119497
  • Al-Shammari, M. (1999). Optimization modeling for estimating and enhancing relative efficiency with application to industrial companies. European Journal of Operational Research, 115(3), 488-496. https://doi.org/10.1016/S0377-2217(98)00025-3
  • Ağayev S. & Saklı, A. R. (2012). Çaykur fabrikalarının etkinliklerinin veri zarflama analizi ile değerlendirilmesi. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 14(3), 11-37.
  • Ahmadvand, S. & Pishvaee, M. S. (2018). An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach. Health care management science, 21(4), 587-603. https://doi.org/10.1007/s10729-017-9414-6
  • Amindoust, A. (2018). Supplier selection considering sustainability measures: an application of weight restriction fuzzy-DEA approach. RAIRO-Operations Research, 52(3), 981-1001. https://doi.org/10.1051/ro/2017033
  • Arya, A. & Yadav, S. P. (2018). Development of intuitionistic fuzzy super-efficiency slack based measure with an application to health sector. Computers & Industrial Engineering, 115, 368-80. https://doi.org/10.1016/j.cie.2017.11.028
  • Arya, A. & Yadav, S. P. (2019). Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input-output targets. Soft Computing, 23(18), 8975-8993. https://doi.org/10.1007/s00500-018-3504-3
  • Azadeh, A. & Alem, S. M. (2010). A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37(12), 7438-7448. https://doi.org/10.1016/j.eswa.2010.04.022
  • Azadeh, A., Anvari, M., Ziaei, B. & Sadeghi, K. (2010). An integrated fuzzy DEA-fuzzy C-means-simulation for optimization of operator allocation in cellular manufacturing systems. The International Journal of Advanced Manufacturing Technology, 46(1-4), 361-375. https://doi.org/10.1007/s00170-009-2088-6
  • Azadeh, A., Atrchin, N., Salehi, V. & Shojaei, H. (2014). Modelling and improvement of supply chain with imprecise transportation delays and resilience factors. International Journal of Logistics Research and Applications, 17(4), 269-282. https://doi.org/10.1080/13675567.2013.846308
  • Azadeh, A., Farmand, A. H., & Sharahi, Z. J. (2012). Performance assessment and optimization of HSE management systems with human error and ambiguity by an integrated fuzzy multivariate approach in a large conventional power plant manufacturer. Journal of Loss Prevention in the Process Industries, 25(3), 594-603. https://doi.org/10.1016/j.jlp.2012.01.003
  • Azadeh, A., Moghaddam, M., Asadzadeh, S. M. & Negahban, A. (2011). An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout optimization: the case of injection process with ambiguous data. European Journal of Operational Research, 214(3), 768-779. https://doi.org/10.1016/j.ejor.2011.05.015
  • Azadeh, A., Rahimi-Golkhandan, A., & Moghaddam, M. (2014). Location optimization of wind power generation-transmission systems under uncertainty using hierarchical fuzzy DEA: a case study. Renewable and Sustainable Energy Reviews, 30, 877-885. https://doi.org/10.1016/j.rser.2013.10.020
  • Azadi, M., Jafarian, M., Saen, R. F. & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & Operations Research, 54, 274-285. https://doi.org/10.1016/j.cor.2014.03.002
  • Baeza-Sampere, I., Coll, V., Mzali, B. & Méndez-Rodríguez, P. (2016). A fuzzy data envelopment analysis model for evaluating the efficiency of socially responsible and conventional mutual funds. Journal of Risk, 19(1). https://doi.org/10.21314/JOR.2016.340
  • Baki̇, B. & Ar, İ. M. (2009). ÇAYKUR'a bağlı fabrikaların etkinlik analizi: Malmquist-TFV endeksi uygulaması. İktisat İsletme ve Finans, 24(284), 77-108. https://doi.org/10.3848/iif.2009.284.9445
  • Banker, R. D., Charnes, A. & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
  • Basnayake, B. M. J. K. & Gunaratne, L. H. P. (2002). Estimation of technical efficiency and it's determinants in the tea small holding sector in the Mid Country Wet Zone of Sri Lanka. Journal of Agricultural Economics, 4(1381-2016-115740), 137-150. https://doi.org/10.4038/sjae.v4i0.3488
  • Baten, A., Kamil, A. A. & Haque, M. A. (2010). Productive efficiency of tea industry: A stochastic frontier approach. African journal of Biotechnology, 9(25), 3808-3816.
  • Beheshtinia, M. A. & Omidi, S. (2017). A hybrid MCDM approach for performance evaluation in the banking industry. Kybernetes. 46(8), 1386-1407. https://doi.org/10.1108/K-03-2017-0105
  • Canan, S., Abacı, N. İ., Ceyhan, V. & Demiryürek, K. (2018). Samsun ili Çarşamba ilçesinde kivi yetiştiren tarım işletmelerinin üretim etkinliği. Mediterranean Agricultural Sciences, 31(3), 249-254. https://doi.org/10.29136/mediterranean.390087
  • Ceyhan, V., Cinemre, H. A., Bozoğlu, M., Demiryürek, K. & Kılıç, O. (2004). Karadeniz bölgesindeki alabalık işletmelerinde ekonomik etkinlik. Türkiye VI. Tarım Ekonomisi Kongresi, 16-18.
  • Chang K. (Secretary). World Tea Production and Trade, Current and Future Development Food and Agriculture Organization of the United Nations, Rome, Italy 2015. Erişim: 21.04.2020. http://www.fao.org/3/a-i4480e.pdf
  • Charnes, A., Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
  • Che, Z., Wang, H. S., & Chuang, C. L. (2010). A Fuzzy AHP and DEA approach for making bank loan decisions for small and medium enterprises in Taiwan. Expert Systems with Applications, 37(10), 7189-7199. https://doi.org/10.1016/j.eswa.2010.04.010
  • Chen, M. C., Yu, M. M. & Ho, Y. T. (2018). Using Network Centralized Data Envelopment Analysis for Shipping Line Resource Allocation. International Journal of Environmental Science and Technology, 15(8), 1777-1792. https://doi.org/10.1007/s13762-017-1552-3
  • Chirwa, E. W. (1998). Technical efficiency in manufacturing industries in Malawi using deterministic production frontier. Wadonda Consult Working Paper WC/05/98, 1-28.
  • Çakır, S. (2016). Bulanık Veri Zarflama Analizi ile ÇAYKUR Fabrikalarında etkinlik ölçümü. Journal of the Faculty of Engineering & Architecture of Gazi University, 31(2). https://doi.org/10.17341/gummfd.85874
  • Çakır, S. & Perçin, S. (2012). Kamu Şeker Fabrikalarında etkinlik ölçümü: VZA-Malmquist TFV uygulaması. Anadolu University Journal of Social Sciences, 12(4).
  • ÇAYKUR. (2019a), Çay İşletmeleri Genel Müdürlüğü Stratejik Plan 2019-2023. Erişim: 11.04.2020. http://www.caykur.gov.tr/uploads/Yay%C4%B1nlar/Plan%20ve%20Programlar/stratejikplan2023.pdf.
  • ÇAYKUR. (2019b), Çay İşletmeleri Genel Müdürlüğü 2018 Faaliyet Raporu. Erişim: 25.04.2020. http://www.caykur.gov.tr/Pages/Yayinlar/FaaliyetRaporlari.aspx.
  • ÇAYKUR. (2019c), Çay İşletmeleri Genel Müdürlüğü Çay Sektörü Raporu 2018. Erişim: 25.04.2020. http://www.caykur.gov.tr/Pages/Yayinlar/SektorelRaporlar.aspx. ÇAYKUR. (2020), Çay İşletmeleri Genel Müdürlüğü 2019 Faaliyet Raporu, Erişim: 25.04.2020. http://www.caykur.gov.tr/Pages/Yayinlar/FaaliyetRaporlari.aspx.
  • Çetin, E. & Bahşi, N. (2019). Tarımsal üretim gerçekleştiren işletmelerin faaliyetlerinin hedef maliyet yöntemine göre değerlendirilmesi. OPUS Uluslararası Toplum Araştırmaları Dergisi, 13(19), 2365-2380. https://doi.org/10.26466/opus.563520
  • Dağ, M. (1996). Rize ili Kalkandere çay işletmesinde yaş çay yaprağı üretim fonksivonu ve girdi kullanım etkinliği üzerine bir araştırma (Yayınlanmamış Yüksek Lisans Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü.
  • Dube, L. & Guveya, E. (2014). Technical efficiency of smallholder out-grower tea (Camellia Sinensis) farming in Chipinge District of Zimbabwe. Greener Journal of Agricultural Sciences, 4(8), 368-377. https://doi.org/10.15580/GJAS.2014.8.091114354
  • Dufrêne, B. (2020). The 2020 Global tea market report. Tea & Coffee Trade Journal, 192(3), 22.
  • FAO (2018). Committee on commodity problems. Intergovernmental group on tea. Twentythird session. CCP:TE 18/CRS1. Hangzhou, the People's Republic of China, 17-20 May 2018. Erişim: 22.04.2020. www.fao.org/3/BU642en/bu642en.pdf.
  • Färe, R., Grosskopf, S., Lindgren, B. & Roos, P. (1992). Productivity changes in Swedish pharamacies 1980-1989: A non-parametric Malmquist approach. Journal of productivity Analysis, 3(1-2), 85-101. https://doi.org/10.1007/BF00158770
  • Färe, R., Grosskopf, S., Norris, M. & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American economic review, 66-83.
  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281. https://doi.org/10.2307/2343100
  • Fu, H. P., Chu, K. K., Chao, P., Lee, H. H. & Liao, Y. C. (2011). Using fuzzy AHP and VIKOR for benchmarking analysis in the hotel industry. The Service Industries Journal, 31(14), 2373-2389. https://doi.org/10.1080/02642069.2010.503874
  • Hadipour Zimsar, S., Firouzi, S. & Allahyari, M. S. (2018). Enhancers of the energy efficiency in tea processing industry. Energy Equipment and Systems, 6(2), 201-209.
  • Gan, L., Xu, D., Hu, L. & Wang, L. (2017). Economic feasibility analysis for renewable energy project using an Integrated TFN-AHP-DEA Approach on the Basis of Consumer Utility. Energies, 10(12), 2089. https://doi.org/10.3390/en10122089
  • Razavi Hajiagha, S.H., Akrami, H., Zavadskas, E.K., Hashemi, S.S. (2013). An Intuitionistic Fuzzy Data envelopment analysis for efficiency evaluation under uncertainty: Case of a finance and credit institution. E a M: Ekonomie a Management 161, 128-137.
  • Han, Y., Geng, Z., Zhu, Q., & Qu, Y. (2015). Energy Efficiency Analysis Method Based on Fuzzy DEA Cross-model for Ethylene Production Systems in Chemical Industry. Energy, 83, 685-695. https://doi.org/10.1016/j.energy.2015.02.078
  • Hatami-Marbini, A. , Emrouznejad, A. , & Tavana, M. (2011). A Taxonomy and Review of the Fuzzy Data Envelopment Analysis Literature: Two Decades in the Making. European Journal of Operational Research, 214 (3), 457-472 . https://doi.org/10.1016/j.ejor.2011.02.001
  • He, Y., Liao, N., & Zhou, Y. (2018). Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN. Energy, 142, 79-89. https://doi.org/10.1016/j.energy.2017.10.011
  • Isik, I., & Hassan, M. K. (2002). Financial disruption and bank productivity: The 1994 experience of Turkish banks. The Quarterly Review of Economics and Finance, 211, 1-30.
  • İzdaş, H. İ. (2018). Kaynak Bağımlılığını Azaltma Stratejilerinin Sürdürülebilir Rekabet Üstünlüğüne Etkisi Üzerine Bir Araştırma. İşletme Araştırmaları Dergisi, 2018(2), 312-334. https://doi.org/10.20491/isarder.2018.431
  • Jahanshahloo, G. R., Lotfi, F. H., & Valami, H. B. (2006). Malmquist Productivity Index with Interval and Fuzzy Data, an Application of Data Envelopment Enalysis. In International Mathematical Forum, 1(33),1607-1623. https://doi.org/10.12988/imf.2006.06138
  • Ji, A. B., Chen, H., Qiao, Y., & Pang, J. (2019). Data envelopment analysis with interactive fuzzy variables. Journal of the Operational Research Society, 70(9), 1502-1510. https://doi.org/10.1080/01605682.2018.1495158
  • Kar, M.Y. (2017). Dünya'da ve Türkiye'de çay sektöründeki risk algıları raporu. Erişim: 25.04.2020. https://www.caysiad.org.tr/index.php?sayfa=dunyada_ve_turkiyede_cay_sektorundeki_risk_algilari.106&d=tr
  • Kavoosi-Kalashami, M. & Shahnazari, P. (2018). Technical efficiency of tea processing units in Iran. Ekonomika poljoprivrede, 65(3), 1277-1287. https://doi.org/10.5937/ekoPolj1803277K
  • Kaygısız, C. (2018). Tarım Ürünleri Piyasaları Çay. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. Erişim: 23.04.2020. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4% B1m%20% C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2018Ocak%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/2018-Ocak%20%C3%87ay.pdf.
  • Khalili-Damghani, K. & Hosseinzadeh Lotfi, F. (2012). Performance measurement of police traffic centres using fuzzy DEA-based Malmquist productivity index. International Journal of Multicriteria Decision Making, 2(1), 94-110. https://doi.org/10.1504/IJMCDM.2012.045085
  • Kök, R. & Yeşilyurt, M. E. (2008). İlk beş yüz imalat sanayi işletmesi içerisine giren kamu kuruluşlarının kaynak kullanımı ve etkinlik analizi (Türkiye örneği: 1993-2000). Verimlilik Dergisi, 2008(4), 31-47.
  • Lorcu, F. (2010). Malmquist toplam faktör verimlilik endeksi: Türk otomotiv sanayi uygulaması. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 39(2), 276-289.
  • Liu, S. T. (2008). A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Computers & Industrial Engineering, 54(1), 66-76. https://doi.org/10.1016/j.cie.2007.06.035
  • Liu, S. T., & Lee, Y. C. (2019). Fuzzy measures for fuzzy cross efficiency in data envelopment analysis. Annals of Operations Research, 1-30. https://doi.org/10.1007/s10479-019-03281-4
  • Nastis, S. A., Bournaris, T. & Karpouzos, D. (2019). Fuzzy data envelopment analysis of organic farms. Operational Research, 19(2), 571-584. https://doi.org/10.1007/s12351-017-0294-9
  • Orhan, N., Ekin, H. N., Şüküroğlu, M. K. & Aslan, M. (2019). In vitro antidiabetic effect, quantitative studies and UPLC-TOF-MS analysis of black tea samples from Turkish market. Marmara Pharmaceutical Journal, 23(3). https://doi.org/10.12991/jrp.2019.155
  • Oruç, K. O. (2016). Bulanık ortamda Malmquist verimlilik endeksi ve üniversite hastanelerinde bir uygulama. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(28), 163-188. https://doi.org/10.17130/ijmeb.20162819851
  • Parlakay, O. & Alemdar, T. (2011). Türkiye'de yerfıstığı tarımında teknik ve ekonomik etkinlik. Tarım Ekonomisi Dergisi, 17(1 & 2), 47-53.
  • Peykani, P., Mohammadi, E., Emrouznejad, A., Pishvaee, M. S. & Rostamy-Malkhalifeh, M. (2019). Fuzzy data envelopment analysis: An adjustable approach. Expert Systems with Applications, 136, 439-452. https://doi.org/10.1016/j.eswa.2019.06.039
  • Rouyendegh, B. D., Oztekin, A., Ekong, J. & Dag, A. (2016). Measuring the efficiency of hospitals: a fully-ranking DEA-FAHP approach. Annals of Operations Research, 1-18. https://doi.org/10.1007/s10479-016-2330-1
  • Rize Ticaret Borsası. (2018). Türk Çay Sektörü Güncel Durum Raporu. Erişim: 25.01.2020. https://www.rtb.org.tr/tr/cay-sektoru-raporlari.
  • Sarımehmet, M. (1988, Eylül). Çay üretim endüstrisinin verimlilik sorunları. Doğu Karadeniz Bölgesinde Tarımsal Üretimin Verimlilik Sorunları Sempozyumu. Rize.
  • Sharma, A., Dutta, A. K., Bora, M. K. & Dutta, P. P. (2019). Study of energy management in a tea processing industry in Assam, India. In AIP Conference Proceedings,2091(1). AIP Publishing LLC. https://doi.org/10.1063/1.5096503
  • Sueyoshi, T. (1998). Privatization of nippon telegraph and telephone: Was it a good policy decision? European Journal of Operational Research, 107(1), 45-61. https://doi.org/10.1016/S0377-2217(96)00366-9
  • Sueyoshi, T. & Aoki, S. (2001). A use of a nonparametric statistic for DEA frontier shift: the Kruskal and Wallis rank test. Omega, 29(1), 1-18. https://doi.org/10.1016/S0305-0483(00)00024-4
  • Şengül, Ü., Eslemian, S.& Eren, M. (2013). Türkiye'de istatistiki bölge birimleri sınıflamasına göre düzey 2 bölgelerinin ekonomik etkinliklerinin DEA yöntemi ile belirlenmesi ve Tobit Model uygulaması. Yönetim Bilimleri Dergisi, 11(21), 75-99.
  • Takano, R. & Kanama, D. (2019). The growth of the Japanese black tea market: how technological innovation affects the development of a new market. Journal of Economic Structures, 8(1), 13. https://doi.org/10.1186/s40008-019-0143-5
  • Taulo, J. L. & Sebitosi, A. B. (2013). Improving energy efficiency in Malawian tea industries using an integrated multi-objective optimlzation method combining IDA, DEA and evolutionary algorithms. In 2013 Proceedings of the 10th Industrial and Commercial Use of Energy Conference (1-7). IEEE.
  • Tran, N. D. (2009). Transition to organic tea production in the Thai Nguyen Province, Vietnam: economic and environmental impacts. EEPSEA Research Report, (2008-RR8).
  • Ton Nu Hai, A. & Speelman, S. (2020). Economic-environmental trade-offs in marine aquaculture: The case of lobster farming in Vietnam. Aquaculture, 516. https://doi.org/10.1016/j.aquaculture.2019.734593
  • Türkmen, B. & Songür, N. (2010). KOBİ'lerde E-Ticaret kullanımına yönelik bir araştırma: OSTİM örneği. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 23, 231-242.
  • Uzun, I., (2015). Dünya tarım sektöründe eksik/bulanık veri ile zamana dayalı etkinlik analizi (Yayınlanmamış Yüksek Lisans Tezi). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı.
  • Van Ho, B., Nanseki, T. & Chomei, Y. (2019). Profit efficiency of tea farmers: case study of safe and conventional farms in Northern Vietnam. Environment, Development and Sustainability, 21(4), 1695-1713. https://doi.org/10.1007/s10668-017-0073-z

Bulanık Malmquist Verimlilik Endeksi ile Dinamik Etkinlik Ölçümü: ÇAYKUR Örneği

Yıl 2021, , 1 - 31, 31.07.2021
https://doi.org/10.22466/acusbd.866589

Öz

İşletmelerin yönetiminde en önemli konulardan biri de performans değerlendirmesidir. Kuruluşların etkinliğini hesaplamak ve verimsiz birimler için uygun çözümler sunmak, birimlerde üretkenliğin artışını sağlamaktadır. Türkiye’de faaliyette bulunan kamu ve özel çay firmaları hem ulusal hem de küresel pazarda rekabet gücünü artırmak için etkin kaynak kullanımına yönelik stratejik kararlar vermesi gerekmektedir. Bu çalışmada, Türkiye’deki çay üretiminde payı yaklaşık %50 olan Çay İşletmeleri Genel Müdürlüğü (ÇAYKUR) Fabrikalarının, yıllık bazda etkinliğinin artış veya azalış durumları araştırılmıştır. Araştırmada kesin verilerin kullanıldığı Malmquist Toplam Faktör Verimlilik Endeksi (MTFVE) ile aralıklı verilerin kullanıldığı Jahanshahloo, Lotfi & Valami Modeli uygulanmıştır. Araştırma, çay işletmelerinin belirsizlik ortamında etkinlik değişimini ölçmeye yönelik araştırmaların sınırlı olmasından dolayı literatüre katkı sağlamaktadır. Ayrıca, çalışma sonuçlarının çay sektöründeki yönetici ve diğer paydaşlara strateji geliştirmede ve karar vermede yardımcı olması beklenmektedir.

Kaynakça

  • Abbasi, M. & Kaviani, M.A. (2016). Operational efficiency-based ranking framework using uncertain DEA methods: an application to the cement industry in Iran. Manag. Decis. 54(4), 902-928. https://doi.org/10.1108/MD-09-2015-0413
  • Aktan, H. E., & Samut, P. K. (2013). Analysis of the efficiency determinants of Turkey's Agriculture Sector by two-stage Data Envelopment Analysis (DEA). Ege Akademik Bakış Dergisi, 13(1), 21-28. https://doi.org/10.21121/eab.2013119497
  • Al-Shammari, M. (1999). Optimization modeling for estimating and enhancing relative efficiency with application to industrial companies. European Journal of Operational Research, 115(3), 488-496. https://doi.org/10.1016/S0377-2217(98)00025-3
  • Ağayev S. & Saklı, A. R. (2012). Çaykur fabrikalarının etkinliklerinin veri zarflama analizi ile değerlendirilmesi. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 14(3), 11-37.
  • Ahmadvand, S. & Pishvaee, M. S. (2018). An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach. Health care management science, 21(4), 587-603. https://doi.org/10.1007/s10729-017-9414-6
  • Amindoust, A. (2018). Supplier selection considering sustainability measures: an application of weight restriction fuzzy-DEA approach. RAIRO-Operations Research, 52(3), 981-1001. https://doi.org/10.1051/ro/2017033
  • Arya, A. & Yadav, S. P. (2018). Development of intuitionistic fuzzy super-efficiency slack based measure with an application to health sector. Computers & Industrial Engineering, 115, 368-80. https://doi.org/10.1016/j.cie.2017.11.028
  • Arya, A. & Yadav, S. P. (2019). Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input-output targets. Soft Computing, 23(18), 8975-8993. https://doi.org/10.1007/s00500-018-3504-3
  • Azadeh, A. & Alem, S. M. (2010). A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37(12), 7438-7448. https://doi.org/10.1016/j.eswa.2010.04.022
  • Azadeh, A., Anvari, M., Ziaei, B. & Sadeghi, K. (2010). An integrated fuzzy DEA-fuzzy C-means-simulation for optimization of operator allocation in cellular manufacturing systems. The International Journal of Advanced Manufacturing Technology, 46(1-4), 361-375. https://doi.org/10.1007/s00170-009-2088-6
  • Azadeh, A., Atrchin, N., Salehi, V. & Shojaei, H. (2014). Modelling and improvement of supply chain with imprecise transportation delays and resilience factors. International Journal of Logistics Research and Applications, 17(4), 269-282. https://doi.org/10.1080/13675567.2013.846308
  • Azadeh, A., Farmand, A. H., & Sharahi, Z. J. (2012). Performance assessment and optimization of HSE management systems with human error and ambiguity by an integrated fuzzy multivariate approach in a large conventional power plant manufacturer. Journal of Loss Prevention in the Process Industries, 25(3), 594-603. https://doi.org/10.1016/j.jlp.2012.01.003
  • Azadeh, A., Moghaddam, M., Asadzadeh, S. M. & Negahban, A. (2011). An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout optimization: the case of injection process with ambiguous data. European Journal of Operational Research, 214(3), 768-779. https://doi.org/10.1016/j.ejor.2011.05.015
  • Azadeh, A., Rahimi-Golkhandan, A., & Moghaddam, M. (2014). Location optimization of wind power generation-transmission systems under uncertainty using hierarchical fuzzy DEA: a case study. Renewable and Sustainable Energy Reviews, 30, 877-885. https://doi.org/10.1016/j.rser.2013.10.020
  • Azadi, M., Jafarian, M., Saen, R. F. & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & Operations Research, 54, 274-285. https://doi.org/10.1016/j.cor.2014.03.002
  • Baeza-Sampere, I., Coll, V., Mzali, B. & Méndez-Rodríguez, P. (2016). A fuzzy data envelopment analysis model for evaluating the efficiency of socially responsible and conventional mutual funds. Journal of Risk, 19(1). https://doi.org/10.21314/JOR.2016.340
  • Baki̇, B. & Ar, İ. M. (2009). ÇAYKUR'a bağlı fabrikaların etkinlik analizi: Malmquist-TFV endeksi uygulaması. İktisat İsletme ve Finans, 24(284), 77-108. https://doi.org/10.3848/iif.2009.284.9445
  • Banker, R. D., Charnes, A. & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
  • Basnayake, B. M. J. K. & Gunaratne, L. H. P. (2002). Estimation of technical efficiency and it's determinants in the tea small holding sector in the Mid Country Wet Zone of Sri Lanka. Journal of Agricultural Economics, 4(1381-2016-115740), 137-150. https://doi.org/10.4038/sjae.v4i0.3488
  • Baten, A., Kamil, A. A. & Haque, M. A. (2010). Productive efficiency of tea industry: A stochastic frontier approach. African journal of Biotechnology, 9(25), 3808-3816.
  • Beheshtinia, M. A. & Omidi, S. (2017). A hybrid MCDM approach for performance evaluation in the banking industry. Kybernetes. 46(8), 1386-1407. https://doi.org/10.1108/K-03-2017-0105
  • Canan, S., Abacı, N. İ., Ceyhan, V. & Demiryürek, K. (2018). Samsun ili Çarşamba ilçesinde kivi yetiştiren tarım işletmelerinin üretim etkinliği. Mediterranean Agricultural Sciences, 31(3), 249-254. https://doi.org/10.29136/mediterranean.390087
  • Ceyhan, V., Cinemre, H. A., Bozoğlu, M., Demiryürek, K. & Kılıç, O. (2004). Karadeniz bölgesindeki alabalık işletmelerinde ekonomik etkinlik. Türkiye VI. Tarım Ekonomisi Kongresi, 16-18.
  • Chang K. (Secretary). World Tea Production and Trade, Current and Future Development Food and Agriculture Organization of the United Nations, Rome, Italy 2015. Erişim: 21.04.2020. http://www.fao.org/3/a-i4480e.pdf
  • Charnes, A., Cooper, W. W. & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
  • Che, Z., Wang, H. S., & Chuang, C. L. (2010). A Fuzzy AHP and DEA approach for making bank loan decisions for small and medium enterprises in Taiwan. Expert Systems with Applications, 37(10), 7189-7199. https://doi.org/10.1016/j.eswa.2010.04.010
  • Chen, M. C., Yu, M. M. & Ho, Y. T. (2018). Using Network Centralized Data Envelopment Analysis for Shipping Line Resource Allocation. International Journal of Environmental Science and Technology, 15(8), 1777-1792. https://doi.org/10.1007/s13762-017-1552-3
  • Chirwa, E. W. (1998). Technical efficiency in manufacturing industries in Malawi using deterministic production frontier. Wadonda Consult Working Paper WC/05/98, 1-28.
  • Çakır, S. (2016). Bulanık Veri Zarflama Analizi ile ÇAYKUR Fabrikalarında etkinlik ölçümü. Journal of the Faculty of Engineering & Architecture of Gazi University, 31(2). https://doi.org/10.17341/gummfd.85874
  • Çakır, S. & Perçin, S. (2012). Kamu Şeker Fabrikalarında etkinlik ölçümü: VZA-Malmquist TFV uygulaması. Anadolu University Journal of Social Sciences, 12(4).
  • ÇAYKUR. (2019a), Çay İşletmeleri Genel Müdürlüğü Stratejik Plan 2019-2023. Erişim: 11.04.2020. http://www.caykur.gov.tr/uploads/Yay%C4%B1nlar/Plan%20ve%20Programlar/stratejikplan2023.pdf.
  • ÇAYKUR. (2019b), Çay İşletmeleri Genel Müdürlüğü 2018 Faaliyet Raporu. Erişim: 25.04.2020. http://www.caykur.gov.tr/Pages/Yayinlar/FaaliyetRaporlari.aspx.
  • ÇAYKUR. (2019c), Çay İşletmeleri Genel Müdürlüğü Çay Sektörü Raporu 2018. Erişim: 25.04.2020. http://www.caykur.gov.tr/Pages/Yayinlar/SektorelRaporlar.aspx. ÇAYKUR. (2020), Çay İşletmeleri Genel Müdürlüğü 2019 Faaliyet Raporu, Erişim: 25.04.2020. http://www.caykur.gov.tr/Pages/Yayinlar/FaaliyetRaporlari.aspx.
  • Çetin, E. & Bahşi, N. (2019). Tarımsal üretim gerçekleştiren işletmelerin faaliyetlerinin hedef maliyet yöntemine göre değerlendirilmesi. OPUS Uluslararası Toplum Araştırmaları Dergisi, 13(19), 2365-2380. https://doi.org/10.26466/opus.563520
  • Dağ, M. (1996). Rize ili Kalkandere çay işletmesinde yaş çay yaprağı üretim fonksivonu ve girdi kullanım etkinliği üzerine bir araştırma (Yayınlanmamış Yüksek Lisans Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü.
  • Dube, L. & Guveya, E. (2014). Technical efficiency of smallholder out-grower tea (Camellia Sinensis) farming in Chipinge District of Zimbabwe. Greener Journal of Agricultural Sciences, 4(8), 368-377. https://doi.org/10.15580/GJAS.2014.8.091114354
  • Dufrêne, B. (2020). The 2020 Global tea market report. Tea & Coffee Trade Journal, 192(3), 22.
  • FAO (2018). Committee on commodity problems. Intergovernmental group on tea. Twentythird session. CCP:TE 18/CRS1. Hangzhou, the People's Republic of China, 17-20 May 2018. Erişim: 22.04.2020. www.fao.org/3/BU642en/bu642en.pdf.
  • Färe, R., Grosskopf, S., Lindgren, B. & Roos, P. (1992). Productivity changes in Swedish pharamacies 1980-1989: A non-parametric Malmquist approach. Journal of productivity Analysis, 3(1-2), 85-101. https://doi.org/10.1007/BF00158770
  • Färe, R., Grosskopf, S., Norris, M. & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American economic review, 66-83.
  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281. https://doi.org/10.2307/2343100
  • Fu, H. P., Chu, K. K., Chao, P., Lee, H. H. & Liao, Y. C. (2011). Using fuzzy AHP and VIKOR for benchmarking analysis in the hotel industry. The Service Industries Journal, 31(14), 2373-2389. https://doi.org/10.1080/02642069.2010.503874
  • Hadipour Zimsar, S., Firouzi, S. & Allahyari, M. S. (2018). Enhancers of the energy efficiency in tea processing industry. Energy Equipment and Systems, 6(2), 201-209.
  • Gan, L., Xu, D., Hu, L. & Wang, L. (2017). Economic feasibility analysis for renewable energy project using an Integrated TFN-AHP-DEA Approach on the Basis of Consumer Utility. Energies, 10(12), 2089. https://doi.org/10.3390/en10122089
  • Razavi Hajiagha, S.H., Akrami, H., Zavadskas, E.K., Hashemi, S.S. (2013). An Intuitionistic Fuzzy Data envelopment analysis for efficiency evaluation under uncertainty: Case of a finance and credit institution. E a M: Ekonomie a Management 161, 128-137.
  • Han, Y., Geng, Z., Zhu, Q., & Qu, Y. (2015). Energy Efficiency Analysis Method Based on Fuzzy DEA Cross-model for Ethylene Production Systems in Chemical Industry. Energy, 83, 685-695. https://doi.org/10.1016/j.energy.2015.02.078
  • Hatami-Marbini, A. , Emrouznejad, A. , & Tavana, M. (2011). A Taxonomy and Review of the Fuzzy Data Envelopment Analysis Literature: Two Decades in the Making. European Journal of Operational Research, 214 (3), 457-472 . https://doi.org/10.1016/j.ejor.2011.02.001
  • He, Y., Liao, N., & Zhou, Y. (2018). Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN. Energy, 142, 79-89. https://doi.org/10.1016/j.energy.2017.10.011
  • Isik, I., & Hassan, M. K. (2002). Financial disruption and bank productivity: The 1994 experience of Turkish banks. The Quarterly Review of Economics and Finance, 211, 1-30.
  • İzdaş, H. İ. (2018). Kaynak Bağımlılığını Azaltma Stratejilerinin Sürdürülebilir Rekabet Üstünlüğüne Etkisi Üzerine Bir Araştırma. İşletme Araştırmaları Dergisi, 2018(2), 312-334. https://doi.org/10.20491/isarder.2018.431
  • Jahanshahloo, G. R., Lotfi, F. H., & Valami, H. B. (2006). Malmquist Productivity Index with Interval and Fuzzy Data, an Application of Data Envelopment Enalysis. In International Mathematical Forum, 1(33),1607-1623. https://doi.org/10.12988/imf.2006.06138
  • Ji, A. B., Chen, H., Qiao, Y., & Pang, J. (2019). Data envelopment analysis with interactive fuzzy variables. Journal of the Operational Research Society, 70(9), 1502-1510. https://doi.org/10.1080/01605682.2018.1495158
  • Kar, M.Y. (2017). Dünya'da ve Türkiye'de çay sektöründeki risk algıları raporu. Erişim: 25.04.2020. https://www.caysiad.org.tr/index.php?sayfa=dunyada_ve_turkiyede_cay_sektorundeki_risk_algilari.106&d=tr
  • Kavoosi-Kalashami, M. & Shahnazari, P. (2018). Technical efficiency of tea processing units in Iran. Ekonomika poljoprivrede, 65(3), 1277-1287. https://doi.org/10.5937/ekoPolj1803277K
  • Kaygısız, C. (2018). Tarım Ürünleri Piyasaları Çay. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü. Erişim: 23.04.2020. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4% B1m%20% C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2018Ocak%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/2018-Ocak%20%C3%87ay.pdf.
  • Khalili-Damghani, K. & Hosseinzadeh Lotfi, F. (2012). Performance measurement of police traffic centres using fuzzy DEA-based Malmquist productivity index. International Journal of Multicriteria Decision Making, 2(1), 94-110. https://doi.org/10.1504/IJMCDM.2012.045085
  • Kök, R. & Yeşilyurt, M. E. (2008). İlk beş yüz imalat sanayi işletmesi içerisine giren kamu kuruluşlarının kaynak kullanımı ve etkinlik analizi (Türkiye örneği: 1993-2000). Verimlilik Dergisi, 2008(4), 31-47.
  • Lorcu, F. (2010). Malmquist toplam faktör verimlilik endeksi: Türk otomotiv sanayi uygulaması. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 39(2), 276-289.
  • Liu, S. T. (2008). A fuzzy DEA/AR approach to the selection of flexible manufacturing systems. Computers & Industrial Engineering, 54(1), 66-76. https://doi.org/10.1016/j.cie.2007.06.035
  • Liu, S. T., & Lee, Y. C. (2019). Fuzzy measures for fuzzy cross efficiency in data envelopment analysis. Annals of Operations Research, 1-30. https://doi.org/10.1007/s10479-019-03281-4
  • Nastis, S. A., Bournaris, T. & Karpouzos, D. (2019). Fuzzy data envelopment analysis of organic farms. Operational Research, 19(2), 571-584. https://doi.org/10.1007/s12351-017-0294-9
  • Orhan, N., Ekin, H. N., Şüküroğlu, M. K. & Aslan, M. (2019). In vitro antidiabetic effect, quantitative studies and UPLC-TOF-MS analysis of black tea samples from Turkish market. Marmara Pharmaceutical Journal, 23(3). https://doi.org/10.12991/jrp.2019.155
  • Oruç, K. O. (2016). Bulanık ortamda Malmquist verimlilik endeksi ve üniversite hastanelerinde bir uygulama. Uluslararası Yönetim İktisat ve İşletme Dergisi, 12(28), 163-188. https://doi.org/10.17130/ijmeb.20162819851
  • Parlakay, O. & Alemdar, T. (2011). Türkiye'de yerfıstığı tarımında teknik ve ekonomik etkinlik. Tarım Ekonomisi Dergisi, 17(1 & 2), 47-53.
  • Peykani, P., Mohammadi, E., Emrouznejad, A., Pishvaee, M. S. & Rostamy-Malkhalifeh, M. (2019). Fuzzy data envelopment analysis: An adjustable approach. Expert Systems with Applications, 136, 439-452. https://doi.org/10.1016/j.eswa.2019.06.039
  • Rouyendegh, B. D., Oztekin, A., Ekong, J. & Dag, A. (2016). Measuring the efficiency of hospitals: a fully-ranking DEA-FAHP approach. Annals of Operations Research, 1-18. https://doi.org/10.1007/s10479-016-2330-1
  • Rize Ticaret Borsası. (2018). Türk Çay Sektörü Güncel Durum Raporu. Erişim: 25.01.2020. https://www.rtb.org.tr/tr/cay-sektoru-raporlari.
  • Sarımehmet, M. (1988, Eylül). Çay üretim endüstrisinin verimlilik sorunları. Doğu Karadeniz Bölgesinde Tarımsal Üretimin Verimlilik Sorunları Sempozyumu. Rize.
  • Sharma, A., Dutta, A. K., Bora, M. K. & Dutta, P. P. (2019). Study of energy management in a tea processing industry in Assam, India. In AIP Conference Proceedings,2091(1). AIP Publishing LLC. https://doi.org/10.1063/1.5096503
  • Sueyoshi, T. (1998). Privatization of nippon telegraph and telephone: Was it a good policy decision? European Journal of Operational Research, 107(1), 45-61. https://doi.org/10.1016/S0377-2217(96)00366-9
  • Sueyoshi, T. & Aoki, S. (2001). A use of a nonparametric statistic for DEA frontier shift: the Kruskal and Wallis rank test. Omega, 29(1), 1-18. https://doi.org/10.1016/S0305-0483(00)00024-4
  • Şengül, Ü., Eslemian, S.& Eren, M. (2013). Türkiye'de istatistiki bölge birimleri sınıflamasına göre düzey 2 bölgelerinin ekonomik etkinliklerinin DEA yöntemi ile belirlenmesi ve Tobit Model uygulaması. Yönetim Bilimleri Dergisi, 11(21), 75-99.
  • Takano, R. & Kanama, D. (2019). The growth of the Japanese black tea market: how technological innovation affects the development of a new market. Journal of Economic Structures, 8(1), 13. https://doi.org/10.1186/s40008-019-0143-5
  • Taulo, J. L. & Sebitosi, A. B. (2013). Improving energy efficiency in Malawian tea industries using an integrated multi-objective optimlzation method combining IDA, DEA and evolutionary algorithms. In 2013 Proceedings of the 10th Industrial and Commercial Use of Energy Conference (1-7). IEEE.
  • Tran, N. D. (2009). Transition to organic tea production in the Thai Nguyen Province, Vietnam: economic and environmental impacts. EEPSEA Research Report, (2008-RR8).
  • Ton Nu Hai, A. & Speelman, S. (2020). Economic-environmental trade-offs in marine aquaculture: The case of lobster farming in Vietnam. Aquaculture, 516. https://doi.org/10.1016/j.aquaculture.2019.734593
  • Türkmen, B. & Songür, N. (2010). KOBİ'lerde E-Ticaret kullanımına yönelik bir araştırma: OSTİM örneği. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 23, 231-242.
  • Uzun, I., (2015). Dünya tarım sektöründe eksik/bulanık veri ile zamana dayalı etkinlik analizi (Yayınlanmamış Yüksek Lisans Tezi). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı.
  • Van Ho, B., Nanseki, T. & Chomei, Y. (2019). Profit efficiency of tea farmers: case study of safe and conventional farms in Northern Vietnam. Environment, Development and Sustainability, 21(4), 1695-1713. https://doi.org/10.1007/s10668-017-0073-z
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tüm Bölümler
Yazarlar

Mustafa Özdemir 0000-0002-6591-2858

Süleyman Çakır 0000-0003-0334-8777

Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 22 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Özdemir, M., & Çakır, S. (2021). Bulanık Malmquist Verimlilik Endeksi ile Dinamik Etkinlik Ölçümü: ÇAYKUR Örneği. Artvin Çoruh Üniversitesi Uluslararası Sosyal Bilimler Dergisi, 7(1), 1-31. https://doi.org/10.22466/acusbd.866589

Artvin Çoruh Üniversitesi Uluslararası Sosyal Bilimler Dergisi

ACUSBDCreative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY-NC) ile lisanslanmıştır.